
February 2000
AE-QX5KG-TE

Software
Product
Description
PRODUCT: Compaq Visual TeMIP V4.0 for Tru64 Unix SPD 60.64.06

DESCRIPTION

Visual TeMIP is a C++ software development
environment for TeMIP applications (management
modules), providing third parties and users with a
TeMIP environment open to new functionality
integration and significantly reducing management
module development time.

The Developer’s Toolkit consists of software
libraries, various sample modules and tools to
facilitate the creation of management modules. In
particular, it contains the following:

• Visual TeMIP classes and their corresponding
libraries

• Visual TeMIP Dev AM, Example AM, Example
FM, Dictionary Driven Dev AM and Dictionary
Driven Example AM management modules

Visual TeMIP makes extensive use of the object-
oriented features of C++ (inheritance and virtual
functions), but a basic C++ understanding as well
as a minimum knowledge of TeMIP Framework is
enough to fully benefit from this toolkit.

Visual TeMIP now supports the RogueWave
Tools.h++ class library. Utility classes are provided
in Visual TeMIP to support RogueWave’s queue
and list features. Visual TeMIP classes have been
modified to better integrate with the RogueWave
classes, and have been made collectable as
defined by RogueWave.

Using Visual TeMIP, third parties and users can
develop applications for the TeMIP Network
Management family of products to provide access
to, and management functions for, any manageable
object. Software and documentation for the
development of integrated TeMIP modules are
available as part of the Visual TeMIP Developer’s
Toolkit.

VISUAL TEMIP CLASSES

Visual TeMIP provides three levels of class to
develop a management module. Each level is
designed so that it can be used without the layers
above it. These are the Support Classes, Wrapper
Classes (including the Extension Classes), and
Framework Classes, as described below:

Support Classes

The Support classes provide a set of basic, general
purpose C++ classes that support common
functions, such as:

• Queues and lists: the Visual TeMIP classes are
based on the RogueWave queuing functions
with some additional features added, such as
thresholds for signaling a normal or congested
state, and a monitor to ensure threadsafe
operation

• Thread management: for the synchronization
of threads; mutex, lock and condition variable
handling

• Tracing

• Exception handling

• Tidy pointers: provide leak-free memory
management

• Sets and sequences: generic set/sequence
management for any base datatype is provided
by functions such as Add, Remove, Contains,
Intersection, and Union. Bags provide sets with
counted membership.

Note: These classes have now been replaced by
RogueWave functions, but are maintained for
backward compatibility.

The Support classes are designed to interact with
the Wrapper and Framework classes, and are used
extensively by the Framework.

Compaq Visual TeMIP V4.0 for Compaq Tru64 UNIX SPD 60.64.06

2

Wrapper Classes

The Wrapper classes and their member functions
provide a wrapper around the TeMIP function calls
and their associated datatypes, greatly reducing the
amount of repetitive code needed to use them.

Many of the Wrapper Classes include conversion
operators that provide access to the TeMIP
Framework datatypes that they include. Thus they
can be passed as parameters to the classic TeMIP
Framework functions as well as to Wrapper and
Framework class functions.

Wrapper classes are intended to ease the task of
implementation, but not change or simplify the
semantics of the TeMIP Framework interfaces.

The Wrapper classes provide a set of basic C++
classes (or families of classes) for the following:

• TeMIP Framework datatypes. Most Framework
datatypes have their corresponding wrapper
classes (Refer to the Visual TeMIP Reference
Guide for a full list). Also provided are classes
for facilitating the support of constructed and
user-defined types. All datatype classes are
collectable, as defined by RogueWave (in the
Tools.h++ User’s Guide) to facilitate integration
with RogueWave classes.

• Generic datatypes, which can be encoded and
decoded using the TeMIP dictionary.

• TeMIP descriptors

• Entity specifications

• Entity classes

• Handles

• Strings

• ILV encoding/decoding

• Time specifications for handling Abstract Time
Specifications (ATS)

• Management Information Repository (MIR)

• Exception handling

• Event handling, allowing the creation of an
event, adding arguments to it and the use of
the Event Manager to dispatch it. Specific
support is provided for OSI events

• Making Call Requests. (Note: receiving call
requests is done by the Framework Classes.)
Using Visual TeMIP’s generic support for
request/response objects, it is possible to
encode/decode calls and to encode events by
referring to the TeMIP dictionary.

Wrapper Classes (Extension)

The Wrapper Extension Classes (layered on top of
the Wrapper Classes) provide a set of extended
functionality around TeMIP Framework. They offer
more value-added functions around Presentation
Module development and Event Filtering
management:

• TeMIP Security (ACLOC) C++ API.

This is delivered as a separate library and allows
the filtering and logging of operator requests and
verification of whether a request is authorized or
not. It supports multiple sessions: for modules that
act as multi-user servers, distinct security profiles
can be used.

• Asynchronous Call Support.

This is delivered as a separate library and include
file and allows Call Requests to be made without
needing to wait for the response. This is particularly
adapted to Presentation Module development,
where user interface events are asynchronously
delivered.

• Low Level Event Filtering C++ API.

Allows the filtering of events put in the Event
Manager, benefiting from the Event Filtering and
Correlation features (Wrapper Classes).

Framework Classes

The Framework classes provide high-level classes
for dealing with management module classes,
attributes, directives and events. The Framework
classes enable management modules to be written,
using C++, without a detailed understanding of the
underlying TeMIP Kernel functions nor of the
conventions for passing information between
modules.

The TeMIP Framework takes care of all the normal
interactions with the TeMIP Kernel. A set of C++
macros is used to describe the structure of the
entities being modeled, and their interaction with
the developer’s code. Using C++ virtual functions,
all essential or default behavior is provided by this
framework.

Aspects that are specific to the management
module are coded by deriving the Framework
classes (using macros) and by implementing the
code as member functions of the derived classes.

The main classes that are visible to a user of the
Framework are:

• MModule class: represents the properties of
the module as a whole.

• MClassGroup class: represents the properties
of a class group. It also contains the properties
and behavior shared by the classes belonging
to the class group.

• MClass class: represents the properties of a
single entity class.

• MInstance class: represents the properties of a
single instance of an entity class.

• MAttributeGroup class: represents the
properties of an attribute group. It also contains
the properties and behavior shared by the
attributes belonging to the attribute group.

• MAttribute class: represents the properties of
the attributes of an entity class.

Compaq Visual TeMIP V4.0 for Compaq Tru64 UNIX SPD 60.64.06

3

• MAttribInstance class: represents the value of
the attribute instance for a given instance
within an entity class.

• MVerbGroup class: represents the properties
of a verb group. It also contains the properties
and behavior shared by the verbs belonging to
the verb group.

• MVerb class: represents the properties of a
particular verb of a particular class.

• MDirectiveContext class: represents the
information (dynamic context) needed to
process a directive.

• MEventClass class: represents the properties
of the event. It is the counterpart to MVerb, for
handling received events from another
management module.

• MEventContext class: is the counterpart to
MDirectiveContext, for dealing with received
events.

• MFmkAttribList class: represents the attribute
lists of the Show/Set directive.

The Visual TeMIP Reference Guide describes each
class in detail.

Dictionary Driven Features

Dictionary driven features allow an extension of the
module definition and behavior with a minimum
code writing/compilation impact.

The dictionary driven mechanisms have to be
turned on explicitly by the module: by default no
dictionary driven feature will be used.

The core of these features is the notion of groups:
each group handles the properties and behavior of
a set of objects (class group for classes, verb group
for verbs and attribute group for attributes). Then,
an external textual configuration file provides the
mapping between the behavior contained in groups
(that is supplied in the code of the module), and the
actual managed model.

As a consequence, it is not mandatory, when using
dictionary driven features, to completely define the
structure of information on which the module
operates. Once the code is written/compiled for
groups, any new class/verb/attribute of interest to
the module that matches a group behavior can be
added to the module just by modifying slightly the
textual configuration file: no code writing needed,
no recompilation needed, just reenroll and restart
the module.

In order to optimize the dictionary driven added
value, It is critical to find out the groups that best
match the module functionality. The dictionary
driven features also provide mechanisms to ease
the directive handling:

• Manipulation of input and output arguments in
a generic way on the Call Provider side.

• Declaration of the lists of input and output
arguments not required: the lists can be
expanded dynamically.

Dictionary Wrapper

The Dictionary Wrapper adds a family of C++
classes for encapsulating dictionary access. These
classes provide:

• Information methods to access data specific to
a given dictionary object (MOID class)

• Navigation methods to access subordinate
definitions from a parent object and
representation of the possible datatypes for
attributes and arguments (MDictObject
classes)

ERROR HANDLING

Visual TeMIP takes advantage of the exception
mechanism in the C++ language to eliminate code-
written checks of status values that can be
returned from any of the TeMIP Framework
functions.

All Visual TeMIP functions make use of the
exception mechanism when they detect
unrecoverable errors. The framework contains
exception handlers at appropriate points which
convert the error into some appropriate return to
the caller.

All common exceptions can be generated with
arguments, using the dictionary to encode the
exception arguments.

DOCUMENTATION

The Visual TeMIP Developer’s Toolkit
documentation provides information to assist in the
design and development of TeMIP management
modules. It includes the following documents:

• The Visual TeMIP Reference Guide

• The Visual TeMIP Development Guide

Note: Since C++ is an extension of C, the user can
at any time go to the level of the TeMIP Framework
System Reference Manual and interact directly with
the TeMIP Kernel. Refer also to the TeMIP
Framework Software Product Description (SPD
54.17.xx) for more information.

DEVELOPMENT PROCESS AND EXAMPLES

Management modules that use Visual TeMIP and
an object-oriented approach contain several code
modules. Each code module contains the
necessary code to implement or to override a
method needed by the Visual TeMIP architecture.
Therefore, the implementation consists of the
header file and one or more conventional C++
source files (modules):

Compaq Visual TeMIP V4.0 for Compaq Tru64 UNIX SPD 60.64.06

4

• Header Module: contains a description of the
classes to be handled by the module (for
example, a translation of the MSL
specifications of the management module).
The header module can also contain a
description of the groups that will be used to
dynamically manage the classes, verbs and
attributes of interest to the module. In this
case, an external textual configuration file,
describing the mapping between groups and
the actual model managed, has to be written.

• Main Code Module: contains the declarations
necessary to Visual TeMIP to automatically
generate the code for the standard behavior of
the module, classes, attributes, and directives
managed by the module (whether they are
defined - in the Header Module - explicitly or
indirectly through groups).

• Override Code Module: contains the code of
the overridden Visual TeMIP methods
necessary to modify the default behavior of
standard directives to meet the user’s specific
needs or to implement nonstandard directives.

• Specific Code Module: contains routines that
perform common internal functions, mainly for
encoding and decoding complex parameters.

VISUAL TEMIP EXAMPLES

The Visual TeMIP Developer’s Toolkit provides
various sample modules:

• The Visual TeMIP Development AM:
implements a simple example of a
management module, using the default Visual
TeMIP behavior. It has only a Header and Main
code module and no Override code module.

• The Visual TeMIP Example AM: implements a
more complex model with specific directive
processing, event generation and manipulation
of complex datatypes and event parameters.

• The Visual TeMIP Example FM: a value-added
module that enhances the Visual TeMIP
Example AM with counter and statistic
computations as well as some event-
monitoring functions.

• The Visual TeMIP Dictionary Driven
Development AM: implements a simple
example of a dictionary driven management
module.

• The Visual TeMIP Dictionary Driven Example
AM: implements a dictionary driven module
handling a more complex model. Most of the
available dictionary driven features are used in
this example.

• The Visual TeMIP Asynchronous Example:
implements a TeMIP application, which
performs asynchronous Call Requests that
display all active management modules using a
graphical representation.

• The Visual TeMIP Dictionary Wrapper
Example: "dumps" the dictionary information
for a given entity class.

The Visual TeMIP Development Guide explains
how to build and enroll management modules.

HARDWARE REQUIREMENTS

Tier 1:
Compaq AlphaServer DS10, DS20
Compaq Professional Workstation XP1000

Tier 2:
Compaq AlphaServer ES40

Tier 3:
Compaq AlphaServer GS60, GS140

Disk Space Requirements

Disk space required for installation:

Root file system 0 Kbytes

Other file systems, /usr 10,000 Kbytes

Disk space required for use (permanent):

Root file system 0 Kbytes

Other file systems, /usr 15,000 Kbytes

These counts refer to the disk space required on
the system disk. The sizes are approximate; actual
sizes may vary depending on the user’s system
environment, configuration, and software options.

Memory Requirements

The minimum memory supported is 128 Mbytes.

Recommended Configuration (for developing
management modules using Visual TeMIP):

Compaq Professional Workstation XP1000
128 MB memory
RZ26 disk or equivalent disk space
Ethernet controller

Note: For testing purposes, one should consider
increasing memory size at least to the closest
operational system size. Specific network
environments may require larger configurations.

Compaq Visual TeMIP V4.0 for Compaq Tru64 UNIX SPD 60.64.06

5

SOFTWARE REQUIREMENTS

For Systems Using Terminals and Workstations:

• COMPAQ Tru64 UNIX V4.0F

• TeMIP Framework V4.0

• DIGITAL C++ V6.1

Please contact your Compaq representative for
availability dates on Tru64 UNIX V4.0-F

OPTIONAL SOFTWARE

• Ladebug Debugger V4.0-44

GROWTH CONSIDERATIONS

The minimum hardware/software requirements for
any future version of this product may be different
from the current version requirements.

YEAR 2000 READY

This product is Year 2000 Ready.

"Year 2000 Ready" products are defined by
Compaq as products capable of accurately
processing, providing, and/or receiving date data
from, into and between the twentieth and the
twenty-first centuries, and the years 1999 and
2000, including leap year calculations, when used
in accordance with the associated Compaq product
documentation and provided that all hardware,
firmware and software used in combination with
such Compaq products properly exchange accurate
date data with the Compaq products.

For additional information visit Compaq’s Year 2000
Product Readiness web site located at
http://www.compaq.com/year2000

To ensure that this product is Year 2000 Ready,
code assessment and system tests to verify the
transition between December 31st 1999 and
January 1st 2000 were utilized.

To ensure that this product interoperates properly
with other hardware and software, the system tests
involving Compaq’s TeMIP V3.2 are applicable, as
this product was verified as being Year 2000
Ready.

DISTRIBUTION MEDIA

This product is only available as part of the UNIX
Consolidated Software distribution on CD-ROM.
Please refer to the ordering information for each
Software Media reference.

ORDERING INFORMATION
Software License : QM-6HSAA-AA
which replaces the license QL-58RA9-AA
or QM-58RAA-AA of TeMIP 3.2

Software Media : QA-6HPAA-H8
Software Documentation : QA-6HSAA-GZ
Software Product Services : QT-6HS**-**

The QA-*****-H8 part numbers no longer include
the QA-*****-GZ documentation kits.Hard copy
documentation for this product should be ordered
using the QA-6HSAA--GZ number, if required.

Note: * denotes variant fields. For additional
information on available licenses, services and
media, refer to the appropriate price book.

SOFTWARE LICENSING

This software is furnished under the licensing
provisions of Compaq Computer Corporation's
Shrinkwrap License Terms and Conditions. For
more information about the Compaq licensing
terms and policies, contact your local Compaq
office.

Licence units for Visual TeMIP Developer’s Toolkit
are allocated on an Unlimited System Use basis, in
line with the machine tier on which they run.

COMPAQ TRU64 UNIX LICENSE MANAGEMENT

This product uses the FLEXlm Software License
Key system.

A FLEXlm key must be obtained using information
provided with the license deliverable. An
authorization ID is provided for each license, which
allows the user to generate license keys from the
Compaq License Key Fulfillment Web Site
according to instructions provided with the license
agreement.

SOFTWARE PRODUCT SERVICES

A variety of service options are available from
Compaq. For more information on these services or
other available Network Management Services,
contact your local Compaq office.

Compaq Visual TeMIP V4.0 for Compaq Tru64 UNIX SPD 60.64.06

6

SOFTWARE WARRANTY

This software is provided by Compaq with a 90 day
conformance warranty in accordance with the
Compaq warranty terms and applicable to the
license purchase.

The above information is valid at time of release.
Please contact your local Compaq office for the
most up-to-date information.

® COMPAQ, the Compaq logo, and the
Digital Logo are registered in U.S. Patent
and Trademark Office.

FLEXlm is a registered trademark of
GLOBEtrotter Software, Inc.

RogueWave and .h++ are registered
trademarks of RogueWave Software, Inc.

UNIX is a registered trademark in the
United States and other countries licensed

exclusively through X/Open Company Ltd

™ AlphaStation, AlphaServer, DIGITAL UNIX,
RZ and TeMIP are trademarks of Compaq
Computer Corporation.

Other product names mentioned herein may be the
trademarks of their respective companies.

©2000 Compaq Computer Corporation. All
Rights Reserved.

	PRODUCT NAME: Compaq Visual TeMIP V4.0 for Tru64 UNIX SPD 60.64.06
	DESCRIPTION
	VISUAL TEMIP CLASSES
	ERROR HANDLING
	DOCUMENTATION
	DEVELOPMENT PROCESS AND EXAMPLES
	VISUAL TEMIP EXAMPLES
	HARDWARE REQUIREMENTS
	SOFTWARE REQUIREMENTS
	OPTIONAL SOFTWARE
	GROWTH CONSIDERATIONS
	YEAR 2000 READY
	DISTRIBUTION MEDIA
	ORDERING INFORMATION
	SOFTWARE LICENSING
	COMPAQ TRU64 UNIX LICENSE MANAGEMENT
	SOFTWARE PRODUCT SERVICES
	SOFTWARE WARRANTY

