Tracing and
Characterization of
Windows NT-based
System Workloads

To optimize the design of pipelines, branch pre-
dictors, and cache memories, computer archi-
tects study the characteristics of benchmark
programs by examining traces, i.e., samples of
program execution. Since commercial desktop
applications are increasingly dependent on ser-
vices and application programming interfaces
provided by the host operating system, the
authors argue that traces from benchmark exe-
cution must capture operating system execution
in addition to native application execution.
Common benchmark-based workloads, how-
ever, lack operating system execution. This
paper discusses the ongoing joint efforts of the
Northeastern University Computer Architecture
Research Laboratory and Compaq Computer
Corporation’s Advanced and Emerging Tech-
nologies Advanced Development Group to cap-
ture operating system-rich traces on Alpha-
based machines running the Windows NT oper-
ating system. The authors describe the latest
PatchWrx software toolset and demonstrate its
trace-generating capabilities by characterizing
numerous applications. Included is a discussion
of the fundamental differences between using
traces captured from common benchmark pro-
grams and using those captured on commercial
desktop applications. The data presented
demonstrates that operating system execution
can dominate the overall execution time of
desktop applications such as Microsoft Word,
Microsoft Visual C/C++, and Microsoft Internet
Explorer and that the characteristics of the
operating system instruction stream can be
quite different from those typically found in
benchmarking workloads.

Digital Technical Journal Vol.10 No.1 1998

Jason P. Casmira
David P. Hunter
David R. Kaeli

The computer architecture research community com-
monly uses trace-driven simulation in pursuing
answers to a variety of design issues. Architects spend a
significant amount of time studying the characteristics
of benchmark programs by examining traces, i.e., sam-
ples taken from program execution. Popular bench-
mark programs include the SPEC' and the BYTEmark?
benchmark test suites. Since the underlying assump-
tion is that these programs generate workloads that
represent user applications, today’s computer designs
have been optimized based on the characteristics of
these benchmark programs.

Although the authors of popular benchmarks are
well intentioned, the resulting workloads lack operat-
ing system execution and consequently do not repre-
sent some of the most prevalent desktop applications,
e.g., Microsoft Word, Microsoft Visual C/C++, and
Microsoft Internet Explorer. Such applications make
heavy use of application programming interfaces
(APIs), which in turn execute many instructions in the
operating system. As a result, the overall performance
of many desktop applications depends on efficient
operating system interaction. Clearly operating system
overhead can greatly reduce the benefits of a new
computer design feature. Past architectural studies,
however, have generally ignored operating system
interaction because few tools can generate operating
system-rich traces.

This paper discusses the ongoing joint efforts of
Northeastern University and Compaq Computer
Corporation to capture operating system-tich traces on
DIGITAL Alpha-based machines running the Microsoft
Windows NT operating system. We argue that for traces
of today’s workloads to be accurate, they must capture
the operating system execution as well as the native appli-
cation execution. This need to capture complete pro-
gram trace information has been a driving force behind
the development and use of software tools such as the
PatchWrx dynamic execution-tracing toolset, which we
describe in this paper.

The PatchWrx toolset was originally developed by
Sites and Perl at Digital Equipment Corporation’s
Systems Research Center. They described PatchWrx, as
developed for Windows NT version 3.5, in “Studies of

Windows NT Performance Using Dynamic Execution
Traces.” The Northeastern University Computer
Architecture Research ILaboratory and Compagq’s
Advanced and Emerging Technologies Advanced
Development Group continue to develop the toolset.
We have updated the framework to operate under
Windows NT version 4.0, added the ability to trace
programs that have code sections larger than 4 mega-
bytes (MB), added multiple trace buffer sizes, and
developed additional postprocessing tools.

After briefly discussing related tracing tools, we
describe the PatchWrx toolset and specify the new
features we have added. We then analyze PatchWrx
traces captured on Windows NT version 4.0, demon-
strating the capabilities of the tool while illustrating
the importance of capturing operating system-rich
traces. In the final section, we summarize the paper,
discuss the current limitations of the toolset, and sug-
gest new directions for development and study.

Trace Generation Tools

Trace-driven simulation has been the method of
choice for evaluating the merits of various architec-
tural trade-offs.** Traces captured from the system
under test are recorded and replayed through a model
of the proposed design. Computer architecture
researchers have proposed methodologies that capture
both application and operating system references.
These tools include hardware-based®" and software-
based""* methods. Some of the issues involved in cap-
turing operating system-rich traces are

1. Tracing overhead (system slowdown)
2. Accuracy (perturbation of the memory address space)
3. Completeness (capturing all desired information,

e.g., the operating system reference stream)

Table 1 contains a list of 10 tracing tools that have
been developed over the past 10 to 15 years. Although

far from complete, this list provides a sample of the
tools that have been used to generate input to a variety
of trace-driven simulation studies. We have character-
ized each tool in terms of the three issues (criteria) pre-
viously mentioned. Table 1 lists the target platform(s)
for each tracing tool.

Note that many of these tools cannot capture oper-
ating system activity. For those that can, their associ-
ated slowdown can significantly affect the accuracy of
the captured trace. Of the tools that provide this capa-
bility, PatchWrx introduces the least amount of slow-
down yet maintains the integrity of the address space.
The next section discusses the PatchWrx toolset.

PatchWrx

PatchWrx is a dynamic execution-tracing toolset
developed for use on the Alpha-based Microsoft
Windows NT operating system. The toolset utilizes
the Privileged Architecture Library (PAL) facility, also
referred to as PALcode, of the Alpha microprocessor
to perform tracing with minimal overhead.” PatchWrx
can instrument, i.e., patch, all Windows NT applica-
tion and system binary images, including the kernel,
operating system services, drivers, and shared libraries.
The PAL facility is a set of architected functions and
instructions that provides a consistent interface to a set
of complex system functions. These routines provide
primitives for memory management, context switch-
ing, interrupts, and exceptions.

PatchWrx and the Alpha PAL Routines

The PatchWrx software tool is made possible through
the PAL used by DIGITAL Alpha microprocessors.
PAL routines have access to physical memory and
internal hardware registers and operate with interrupts
disabled. PALcode is loaded from disk at system boot
time. We modified and extended the shrink-wrapped
Alpha PALcode on a DIGITAL Alpha 21064-based
system to support the PatchWrx operations. The mod-

Table 1
Sample of Tracing Tools
Average Address Operating
Name Slowdown Perturbation System Activity Platform
ATOM® 10X to 100X No Yes DIGITAL Alpha UNIX
ATUM'™ 20X No Yes DIGITAL VAX OpenVMS
EEL"” 10X to 100X Yes No SPARC Solaris
Etch®™ 35X Yes No Intel x86 Microsoft Windows NT V4.0
NT-Atom™ 10X to 100X No No DIGITAL Alpha Microsoft Windows NT V4.0
PatchWrx® 4X No Yes DIGITAL Alpha Microsoft Windows NT V4.0
Pixie? 10X to 100X Yes No DIGITAL MIPS ULTRIX
QPT™ 10X to 100X Yes No SPARC Solaris, DIGITAL ULTRIX
Shade” 6X No No SPARC Solaris
SimQOSs™ 10X to 50,000X No Yes DIGITAL Alpha UNIX, SGI IRIX, SPARC Solaris

Digital Technical Journal Vol.10 No.1 1998

7

ified PatchWrx PAL routines serve two major pur-
poses: (1) to reserve the trace buffer at system boot
time and (2) to log trace entries at trace time.

One way that PatchWrx maintains a low operating
overhead is to store the captured trace in a physical
memory buffer, which is reserved at boot time. The
size of the buffer can be varied depending on the
amount of physical memory installed on the system.
Since we use PAL routines to reserve this memory, the
operating system is not aware that the memory exists
because the PALcode performs all low-level system ini-
tialization before the operating system is started.

PatchWrx logs all trace entries in this bufter. Writing
trace entries directly to physical memory has several
advantages. First, writing to memory is much faster
than writing to disk or to tape. Second, using physical
memory allows tracing of the lowest levels of the oper-
ating system (i.e., the page fault handler) without gen-
erating page faults. Third, using physical memory
allows tracing across multiple threads running in mul-
tiple address spaces regardless of which address space is
currently running,.

To enable PatchWrx to operate under Windows NT
versions 3.51 and 4.0, we started with the PAL rou-
tines modified by Sites and Perl® and made additional
modifications as required by the operating system ver-
sions. These modifications were concentrated in the
process data structures. The PatchWrx-specific PAL
routines are listed in Table 2. The first three routines
are used for reading the trace entries from the buffer
and for turning tracing on and oft. The remaining five
routines are used to log trace entries based on the type
of instruction instrumented.

PatchWrx Image Instrumentation

Next we describe how we use PatchWrx to instrument
Microsoft Windows NT images. Patching the operat-
ing system involves the instrumentation of all the
binary images, including applications, operating sys-
tem executables, libraries, and kernel. Once patching
is complete, trace entries are logged by means of PAL
routines as images execute.

Table 2
PatchWrx-specific PAL Routines

We define a patched instruction as an instruction
within an image’s code section that is overwritten with
an unconditional branch (BR) to a patch. The target of
the BR contains the patch section. The patch section
includes the trap (CALL_PAL) to the appropriate PAL
routine that logs a trace entry corresponding to the
type of instruction patched and the return branch to
the original target.

PatchWrx does not modify the original binary
images; instead, it generates new images that contain
patches. This operation preserves the original images
on the system in case they need to be restored.
Instrumentation involves replacing all branching
instructions of type unconditional branch, conditional
branch (e.g., branch if equal to zero [BEQ]), branch
to subroutine (BSR), function return (RET), jump
(JMP), and jump to subroutine (JSR) within an
image’s code section with unconditional branches to
a patch section. If loads and stores are also traced,
PatchWrx replaces these instructions (e.g., load sign-
extended longword [LDL]) with unconditional
branches to the patch section, where the original load
or store instruction is copied. A return branch is also
needed to return control flow to the instruction subse-
quent to the original load. When PatchWrx encoun-
ters this patch, the tool records the register value of the
original load or store instruction in the trace log. The
patch section contains all the patches for the image
and is added to the rewritten image. Figure 1 shows
examples of patched instructions. PatchWrx replaces
only branch instructions within an image to reduce the
type and number of entries logged in the trace buffer.
Using these traced branches, the tool can later recon-
struct the basic blocks they represent.

As shown in Figure 1, PatchWrx replaces BR and
JMP instructions with BR instructions that transfer
control to the patch section. The original BR or JMP
instruction is repeated in the patch section for the pur-
pose of recording the value of the target register (if
necessary) into the trace buffer when the patched
image is executed. This register value is necessary for
reconstructing the traced instruction stream. PatchWrx

PAL Routines Function

PWRDENT Read a trace entry from trace memory
PWPEEK Read an arbitrary location (for debug)
PWCTRL Initialize, turn tracing on/off

PWBSR Record a branch to subroutine

PWIJSR Record a jump/call/return

PWLDST Record a load/store base register value
PWBRT Record a conditional branch taken bit
PWBRF Record a conditional branch fall-through bit

Digital Technical Journal Vol.10 No.1 1998

ORIGINAL CODE

EXAMPLE 1 JMP ZERO, (R19)
EXAMPLE2 JSR R26, (RL9)
EXAMPLE 3 BEQ R3, TARGET. 003
EXAMPLE 4 LDL R20, 4(R16)

PATCHED CODE

IMPZERO{RI9) BR PATCH 001

PATCH. 001: CALL_PAL PWSR
JMP ZERO, (R19)

JSR-R26(Rt9) BSR R26, PATCH. 002

PATCH. 002: CALL_PAL PWSR
JMP ZERO, (R19)

BEQ-R3TFARGEF©662- BR PATCH. 003
BACK. 00
PATCH. 003: BEQ R2, PATCH. 003T
CALL_PAL PWVBRF
BR BACK. 003
BR TARGET. 003
; BR PATCH. 004
BACK. 004
PATCH. 004: CALL_PAL PW.DST

LDL R20, 4(RL6)
BR BACK. 004

Figure 1
Instruction Patch Examples

replaces JSR and BSR instructions with BSR patches.
This replacement preserves the return address (RA)
register field value, which contains the return address
for the subroutine. Again, the original instruction is
repeated in the patch section for register value record-
ing during tracing to help facilitate reconstruction.

Conditional branches have a larger and more com-
plex patch than the other branch types because the
original condition is duplicated and resolved within
the patch. The taken or fall-through path generates a
bit value when logged within the taken or fall-through
trace entry. The return branch in the patch section is a
replica of the original conditional branch.

As explained earlier, for all patches, PatchWrx replaces
the original branch with a patch unconditional branch.
Since Alpha instructions are equal in size, this replace-
ment process allows patching without increasing the
code size within the image. Although the code size
remains unchanged, the image size will increase in
proportion to the number of patches added. This

image size change becomes an issue for dynamically
linked library (DLL) images.

Patching Dynamic Link Libraries
The Microsoft Windows NT operating system pro-
vides a memory management system that allows shar-
ing between processes.* For example, two processes
that edit text files can share the text editor application
image that has been mapped into memory. When the
first process invokes the editor, the operating system
loads the application into memory and maps the
process’s virtual address space to it. When the second
process invokes the editor, rather than load another
editor image, the operating system maps the second
process’s virtual address space to the physical pages
that contain the editor. Of course, both processes con-
tain local storage for private data.

DLLs are loaded into memory and shared in this
manner. When patches are added to a DLL, the size of
the image increases. When this image is mapped to

Digital Technical Journal Vol.10 No.1 1998

10

physical memory (as per its preferred base load
address), the larger image may overlap with another
image having a base address within the new range.
This image overlap can prevent the operating system
from booting properly: some environment DLLs will
conflict in memory because they perform calls directly
into other DLLs at fixed offsets. To resolve this issue,
we rebase® the preferred base load addresses of the
patched DLLs, which modifies the base load addresses
of each patched DLL to eliminate conflicts. Rebasing
affects the address accuracy of the patched system,
though we are able to readjust the addresses during
reconstruction. An increase in the paging activity may
also be observed since the additional code may cross
page boundaries.

The original version of the PatchWrx toolset was
developed on Microsoft Windows NT version 3.5.
When versions 3.51 and 4.0 were released, several mod-
ifications were made to the image format. In complet-
ing the 3.51- and 4.0-compatible versions of PatchWrx,
we had to address this issue. One change that affected
how we patch was the placement of the Import Address
Table (IAT) into the front of the initial code section of
executable binary images. This table is used to look up
the addresses of DLL procedures used (i.e., imported)
by the executable binary. In developing the current gen-
eration of PatchWrx, we had to make modifications to
use image header fields that had previously remained
unused or reserved, indicating the executable code sec-
tions that contained data areas.

Another issue that we addressed in the recent modi-
fications to PatchWrx was long branches. The original
version of PatchWrx replaces all branch, jump, call,
and return instructions with either BR or BSR instruc-
tions to the patch section. Since the PatchWrx tool has
no information about machine state during the patch-
ing phase, it is impossible to utilize other branching
instructions (e.g., JMP or JSR instructions) to provide
this branch-to-patch transition. Register and register-
indirect branching instructions would require per-
turbing the machine state. Therefore, the developers
could use only program counter (PC)-based offset
branching instructions.

The branch target virtual address computation for
this format is newPC = (oldPC + 4) + (4 = sign-
extended(21-bit branch displacement)). The register
field holds the return address for BSRs. With this
branch format and target virtual address computation,
the Alpha architecture provides a branch target range
of'4 MB from an instruction’s current PC.

Several applications that run today on Microsoft
Windows NT version 4.0 are sufficiently large that the
displacement between a control flow instruction to be
patched and the patch location within the patch section
exceeds this 4-MB limit. (Recall that since we want to
avoid moving code or data sections, the patch section is
placed at the end of the image.) To address this problem,
we developed two new branch instructions for use with
PatchWrx. These new branches were not implemented
in the instruction set architecture of the Alpha architec-
ture. Instead, we used PALcode to implement them. The
two new branches are designated long branch (LBR) and
long branch subroutine (LBSR). Figure 3 illustrates the
format of these two instructions.

The computation of the target virtual address is
newPC = (oldPC + 4) + (4 sign-extended(25-bit
branch displacement)) for LBR branches and newPC =
(oldPC + 4) + (32 * zero-extended(20-bit branch dis-
placement)) for LBSR branches. PatchWrx uses LBRs
when patching any control flow instruction that has
a displacement greater than 4 MB. PatchWrx uses
LBSRs similarly for control flow instructions that must
preserve the register field value.

When an LBR or LBSR instruction is executed
within the image code section, a trap to PALcode
occurs. Normally, CALL,_PAL instructions have one of
several defined function fields that cause a correspond-
ing PAL routine to be executed. The two long branch
instructions have function fields that do not belong to
any of the defined CALL_PAL instructions and there-
fore force an illegal instruction exception within the
PALcode. This PALcode flow has been modified to
detect if'a long branch has been encountered.

As discussed previously, in replacing a control flow S
instruction with a patch branch, PatchWrx uses a BR 000000 25-BIT DISPLACEMENT 0
or BSR instruction in which the offset field is set to = YT TS
branch to the corresponding patch within the image’s
. . : LBR INSTRUCTION FORMAT
patch section. The Alpha architecture branching
instructions use the format shown in Figure 2.
000'30%8(?'5 REG 20-BIT DISPLACEMENT 1
OPCODE | REG 21-BIT DISPLACEMENT
31 2625 2120 10
31 2625 2120 0 LBSR INSTRUCTION FORMAT
Figure 2 Figure 3

Alpha Branch Instruction Format

Digital Technical Journal Vol.10 No.1 1998

PALcode Long Branch Instruction Formats

As shown in Figure 3, both long branch types have
the same PALcode operation code (opcode) value of
000000. To distinguish between the two types, the least
significant bit in the instruction word is set to 0 for LBRs
and to 1 for LBSRs. This bit is not included as a usable
bit for the displacement fields of either branch type.
Consequently, each LBR has a 25-bit displacement field
and each LBSR has a 20-bit field. With a 25-bit usable
displacement field, the PALcode performs the LBR tar-
get address computation, allowing a +64-MB range.

Since each LBSR instruction has a 20-bit displace-
ment field, whereas the original Alpha architecture
branch displacement field is 21 bits, the target instruc-
tion address computation for LBSR instructions is per-
formed difterently than for standard branches within
the PALcode. As shown in the address computation
equation, the 20-bit displacement is multiplied by 32
rather than by 4 (as for the LBR branch). Notice that
the 20-bit displacement is always zero extended. The
computation provides the LBSR instruction with a dis-
placement of +32 MB.

This computation procedure has two implications.
First, LBSR instructions can only be used to branch
from an image code section to an image’s patch sec-
tion. Second, branches into the patch section are
either BR or BSR instructions (or their long displace-
ment counterparts). PatchWrx uses only BR or LBR
instructions to return from the patch section to the
original branch target within a code section; BSR and
LBSR instructions are never used. Therefore, restrict-
ing LBSR instructions to use positive displacements
does not present a problem.

The LBSR displacement multiplier value of 32 does
present some restrictions, however. The multiplier
value of 4 used in the original Alpha instruction set
architecture represents the instruction word length
of 4 bytes. Thus, normal branch instruction target
addresses must be aligned on a 4-byte boundary. By
using the multiplier value of 32 for LBSR instructions,
LBSR target addresses are restricted to align on a 32-
byte (i.e., eight-instruction) boundary. Since all LBSR
targets reside within the patch section, this restriction
does not pose a problem. If an LBSR is to be inserted
into the image code section and the next available
patch target address is not aligned properly, PatchWrx
can insert no operation (NOP) instruction words and
advance the next available patch target address until
the necessary alignment is achieved. PatchWrx never
executes the NOPs; they are inserted for alignment
purposes only. Although inserting these NOP instruc-
tions increases the image size, we have implemented
several optimizations into the instrumentation algo-
rithm to minimize this increase. For example, a queue
is used to hold LBSRs that do not align. As LBR
patches are committed, PatchWrx probes the queue to
determine if any LBSRs align from their origin to the
newly available patch target offset.

Trace Capture

The PatchWrx toolset allows the user to turn tracing on
and off and thus capture any portion of workload execu-
tion. The tracing tool is also responsible for copying trace
entries from the physical memory buffer to disk. Copying
the trace buffer to disk is performed after tracing has
stopped so that the time required to perform the copy
does not introduce any overhead during trace capture.

PatchWrx logs a trace entry for each patch encoun-
tered during program execution. As it executes instruc-
tions within the code section, PatchWrx encounters an
unconditional PatchWrx branch. Instead of branching to
the original target, the patched branch transfers control
to the image’s patch section. Within the patch section, a
PatchWrx PALcall traps to the PAL routine correspond-
ing to the patch type and logs a trace entry to the trace
buffer. The PAL routine then returns to the instruction
following the CALL,_PAL instruction. PatchWrx uses an
unconditional branch to transfer control from the patch
section back to the original target within an image code
section. During the execution of the PatchWrx PAL rou-
tine, necessary machine state information is recorded
and logged in the trace bufter. This allows for the capture
of register contents, process ID information, etc., which
are used later during trace reconstruction.

The trace capture facility captures the dynamic execu-
tion of a workload running on the system. To recon-
struct the trace after it has been captured, the tracing
tool must also capture a snapshot of the base load
addresses of all active images on the system. This snap-
shot serves as the virtual address map used in recon-
structing the trace. Each active process and its associated
libraries is loaded into a separate address space, which
may be different than the preferred load address as spec-
ified statically in the image header. If each image was
loaded into memory at its preferred base address, the
virtual address map would not be necessary to perform
reconstruction. Instead, PatchWrx could map target
addresses from the trace buffer using the base address
values contained in the static image headers.

The type of trace record that PatchWrx logs into the
trace buffer depends on the type of branch or low-level
PAL function being traced. Figure 4 shows the trace
record formats. The first three trace entry formats
consist of an 8-bit opcode and a 24-bit time stamp.
The time stamp is the low-order 24 bits of the CPU
cycle counter. The 32-bit field of these three formats
depends on the type of trace entry logged. The first
format is used for target virtual addresses for all
unconditional direct and indirect branches, jumps,
calls, returns, interrupts, and returns from interrupts.
The 32-bit field of the second format is used to record
the base register value for traced load and store
instructions and stack pointer values that are flushed
into the trace buffer during system calls and returns.
The 32-bit field of the third format is used for logging
the current active process ID at a context swap.

Digital Technical Journal Vol.10 No.1 1998

11

12

OPCODE TIME STAMP TARGET PC

8 24 32
OPCODE TIME STAMP BASE REGISTER VALUE

8 24 32
OPCODE TIME STAMP NEW PROCESS ID

8 24 32

OPCODE
F START BIT
VECTOR OF 60 TAKEN/FALL-THROUGH TWO-WAY BRANCH BITS

3 1

Figure 4
Trace Entry Formats

The fourth trace entry type is used for tracing con-
ditional branches. It uses a 3-bit opcode and up to 60
taken/fall-through bits. A start bit is used to deter-
mine how many bits are active. The start bit is set to
1 if a conditional branch is taken and to 0 if the branch
is not taken. This recording scheme allows a compact
encoding of conditional branch trace entries. During
trace reconstruction, PatchWrx uses conditional branch
trace entries to reconstruct the correct instruction
flow when conditional branches are encountered and
to provide concise information about when to deliver
interrupts in loops.

Trace Reconstruction

The reconstruction phase is the final step in generating
a full instruction stream of traced system activity. As
shown in Figure 5, trace reconstruction requires sev-
eral resources in order to generate an accurate instruc-
tion stream of all traced system activity.

Trace reconstruction reads and initializes the head-
ing of the captured trace, which includes a time stamp,
the name of the user who captured the trace, and any
important system configuration information, e.g., the
operating system version number. Next, reconstruc-
tion reads the first four raw trace records, which are
automatically entered whenever tracing is turned on.
These records contain the first target virtual address,
the active process ID, the value of the stack pointer,
and the first taken/fall-through record to be used
(such records always precede the branches they repre-
sent). PatchWrx uses this information to initialize the
necessary data structures of the reconstruction process.

Digital Technical Journal Vol.10 No.1 1998

Using the first target virtual address and process ID
pair from the captured trace, trace reconstruction con-
sults the virtual address map to determine in which
image the instruction falls (based on its dynamic base
load address) and where that image is physically
located on the system. The tool consults the patched
image to determine the actual instruction at the target
address, records this instruction, and then reads the
next instruction from the patched image. This process
continues until reconstruction encounters either a
conditional branch or an unconditional branch. A
conditional branch causes the tool to check the first
active bit of the current taken/fall-through entry to
determine subsequent control flow; the process then
continues at that address. If an unconditional branch is
encountered, reconstruction records the entry and
checks it against the next captured trace entry. If the
two entries match, the tool outputs the recorded
instructions to an instruction stream file, consults the
captured trace entry for the next target instruction vir-
tual address, and repeats the procedure until the entire
captured trace has been processed.

Since PatchWrx captures interrupts and other low-
level system activities (e.g., page faults) in the trace,
these activities must also be reconstructed. When
PatchWrx logs an interrupt into the trace buffer, the
corresponding target virtual address in the captured
record represents the address of the first instruction
not executed when the interrupt was taken. PatchWrx
flushes the currently active taken/fall-through entry
to the memory buffer and initializes a new taken/fall-
through entry. This new entry will be responsible for

PATCHED PATCHED
IMAGE IMAGE
PATCHED
IMAGE
, RECONSTRUCTED
INSTRUCTION
STREAM
CAPTURED RECONSTRUCTION o
RAW TOOL -
TRACE
VIRTUAL
ADDRESS
MAP

Figure 5
Instruction Stream Reconstruction Resources

the conditional branches encountered beginning with
the interrupt service routine. The address of the first
instruction within the interrupt service routine is then
logged in the trace.

During reconstruction, the reconstruction tool looks
for the interrupt’s first unexecuted instruction address
to know which instruction to stop at when recon-
structing the instruction stream. The tool then begins
reconstructing the instruction stream, including the
interrupt handler stream. If the unexecuted instruc-
tion is within a loop, trace reconstruction utilizes the
taken/fall-through entry convention. On taking the
interrupt, the active taken /fall-through record is flushed
and another record is started. This process allows the
tool to continue to reconstruct iterations of the loop
until all the taken/fall-through bits are exhausted.

Operating System-Rich Workload
Characterization

As presented in the study by Lee et al.}® desktop appli-
cations and benchmarks share some workload charac-
teristics, but applications alone do not represent full
system behavior. To investigate and address system
design issues, computer architects should use operat-
ing system-rich traces.

To illustrate this point, we present a sample of the
various workload characteristics that exist in a set of
benchmark and desktop applications specially selected
to study the differences in the use of the operating sys-
tem and related services. The first characteristic we dis-
cuss is the amount of time each benchmark or desktop
application spends within three domains:

1. Application-only domain (e.g., winword.exe and
excel.exe)

2. DLL domain—Win32 user (e.g., kernel32.dll,
user32.dll, and ntdll.dll)

3. Operating system domain—Win32 kernel, kernel,
system processes, system idle process (e.g.,
Win32K.sys, ntoskrnl.exe, drivers, and the spooler)

Examining these times provides insight into a work-
load’s use of each domain. We also examine DLL and
system service usage on an image basis for each work-
load. This breakdown helps us more clearly identify the
dependence between the workload and the system ser-
vices provided by the Windows NT operating system.

We also present the instruction mix of each workload
with and without the inclusion of the operating system
execution. Understanding the differences in instruc-
tion composition in the presence of system activity fur-
ther highlights the behavior lacking in application-only
traces, such as increases in branch and memory instruc-
tions, when compared to application-only workloads.
We present the average basic block lengths for each
domain of execution (application-only, DLL, operating
system) separately and then in combination. This met-
ric reveals which workload domain dominates the
branching behavior. Casmira’s work provides a more
complete description of these differences across a wider
set of workload characteristics.”

Workload Descriptions

We performed all the experiments reported on in this
paper on a DIGITAL Alpha platform running the
Microsoft Windows NT version 4.0 operating system.
We captured the traces on a 150-megahertz Alpha
21064 processor. The system configuration included
80 MB of physical memory. Table 3 lists the workloads
we examined.

Digital Technical Journal Vol.10 No.1 1998

13

14

Table 3
Workload Description

Workload Description

fourier BYTEmark benchmark; a numerical analysis routine for calculating series approximations of waveforms
neural BYTEmark benchmark; a small, functional back-propagation network simulator

go SPEC95 Go! game benchmark

li SPEC95 Lisp interpreter benchmark

cdplay Microsoft CD Player playing a music CD

fx132 DIGITAL FX!32 V1.1 interpreting/translating included OpenGL sample x86 application

ie Microsoft Internet Explorer V2.0 following a series of web page links

vc50 Microsoft Visual C/C++ V5.0 compiling a 3,000-line C program

word Microsoft Word97 V7.0, spell-checking a 15-page document

The fourier and neural workloads are from the
BYTEmark benchmark test suite: the neural workload
is a small array-based floating-point test; the fourier
workload is designed to measure transcendental and
trigonometric floating-point unit performance.

The go and li workloads are from the SPEC95 integer
benchmark suite: the go workload is a simulation of the
game Go/, with the computer playing against itself; the li
workload is a Lisp interpreter. All the workloads use the
standard inputs provided with the benchmarks and are
compiled with the default optimization level using the
native Alpha version of Microsoft C/C++ version 5.0.

The cdplay workload is the Microsoft CD Player
application included in Microsoft Windows NT ver-
sion 4.0. The device was traced while playing a music
CD using default playing options (e.g., playing all the
songs in order).

The fx!32 workload is the DIGITAL FX!32 version 1.1
emulator/translator provided by Compaq’s DIGITAL
Alpha Migration Tools Group.* We ran the robot arm
OpenGL sample Intel-based application in the fore-
ground during trace capture.

The ie workload is the standard Microsoft Internet
Explorer version 2.0 workload included in Microsoft
Windows NT version 4.0. The ie workload was traced
while traversing four links through the Sony home
web page, arriving finally at the Sony PlayStation Store
web page. The trace was captured on May 4, 1998;
pages may have changed since this date. The history
cache and the web link cache were both empty when
the trace was captured.

The vc50 workload is the Microsoft C/C++ version
5.0 compiler compiling a 3,000-line C source code file.
We used the command line interface, and we used the
default optimization levels and other parameters, which
best represented the common usage of the compiler.

The word workload is Microsoft Word from the
Microsoft Office97 desktop application suite for the
Alpha processor used to capture a manual spell check
of'a 15-page Microsoft Word document. The standard
Microsoft Word dictionary was employed.

Digital Technical Journal Vol.10 No.1 1998

To provide a clear and representative comparison
of workload behavior, we captured several traces. For
all scenarios, full traces of each workload captured
approximately 5 to 10 seconds of execution, filling the
45-MB trace buffer. To characterize workload behav-
ior, each experiment was run with the benchmark or
application as the only activity on the system. Each
workload was run in the foreground.

To ensure that the traces captured were representa-
tive of the overall workload behavior, we captured
multiple traces. We chose different points during exe-
cution for tracing to allow comparison between differ-
ent portions of the selected scenarios. To investigate
the variability present in selected workloads, we traced
additional scenarios. A second Microsoft Word trace
was captured with the application performing an auto-
format operation of the same document used in the
first trace of the spell-check operation, and we cap-
tured a second Microsoft Internet Explorer trace,
repeating the Sony links but with the links cached. We
captured a second trace of FX!32 using the included
boggle sample game (for comparison against using the
OpenGL application input). Additionally, the FX!32
translator was traced while it optimized a native Intel
x86 application’s profile. To condense the number of
memory pages occupied by an image, Microsoft
designed the new linker to allow data to reside within
the code regions. Hookway and Herdeg? provide an
explanation of the DIGITAL FX!32 emulation and
translation /optimization procedures. Casmira discusses
these scenarios and others >

Domain Mix

To illustrate the inherent differences between bench-
mark and desktop application behavior, we break
down the captured trace in terms of three mutually
exclusive domains. These domains are (1) application,
(2) DLL, and (3) operating system. The application
domain represents the set of executed instructions that
are within the traced application’s executable image.

The DLL domain represents the instructions executed
by the application of interest’s process but excludes
the application’s executable image. This domain is
made up of the DLLs, system services, and drivers that
the application may access during execution. The
operating system domain includes instructions exe-
cuted by the kernel or other system support service
executable images, and all associated DLL and driver
images. These are the processes, images, and libraries
that are always present and running on the system.
Figure 6 displays the breakdown of instructions into
these three domains. The x-axis lists the workloads,
and the y-axis presents the percent composition of the
captured trace. Note that the four benchmarks, i.e.,
fourier, neural, go, li, spend at least 95 percent of their
execution within their application image. Both the
fourier and the neural benchmarks spend about
99 percent of their execution within their application
image. The go and li benchmarks do exhibit some
operating system activity, but this activity is due to the
1/0 generated as go displays output as it progresses
and as li reads input from its standard input file.

The operating system dominates the execution in
the cdplay workload. The Microsoft CD Player appli-
cation is I/O bound, relying heavily on the necessary
services provided by the operating system and the
DLLs to access the CD hardware. While waiting for
1/0s to complete, the system activity is composed

100
90

80 |

COMPOSITION (PERCENT)
w N 1 o ~
S S <] o o

N
o
T

=
o
T

FOURIER NEURAL GO LI

CDPLAY FXI32 IE VC50
WORKLOAD

almost completely of the kernel idle loop performing
busy waiting (recall that each workload investigated is
the only application running on the system, so there is
no other work to be done during these periods).

The tx!32 workload spends nearly all its execution
time operating within DLLs. The robot arm Intel x86
OpenGL sample that the DIGITAL FX!32 application
is interpreting heavily exercises the graphics display
libraries and console display services.

The ie workload is more evenly distributed across
the three domains. The moderate amount of operating
system activity is due to the network and screen display
I/0 and also to the Microsoft Internet Explorer’s
caching of the pages it touches to local disk files. The
DLL activity is generated by operating system services
for screen and file I/0 and by network service library
routines. The application image coordinates the usage
of these routines, and network and display I/O, which
is frequently encountered during the operations of
selecting and opening web links. This coordination
accounts for the high percentage of application domain
execution exhibited by ie, as shown in Figure 6.

The vc50 workload spends nearly all its execution
time within its application image. This phase of the
compiler is responsible for performing the parsing and
lexical analysis of the source code file. There is some
use of DLLs through invoking library routines to load
included header files. The operating system activity,

KEY:

APP
DLL
0s

WORD

Figure 6
Domain Execution Mix

Digital Technical Journal Vol.10 No.1 1998

15

16

although small, is present; all I/O must be accessed by
means of a system service.

The Microsoft Word spell-checking service is pro-
vided by means of a DLL included with the application.
Thus for the word workload, this DLL handles both the
search through the document and the successive diction-
ary lookups. Operating system services are required for
accessing portions of the file residing on disk (not in
memory pages), for displaying the search and compare
results to the user, and for performing the user-driven
1/0 associated with accepting/rejecting word replace-
ment choices (prompted by the spell-checking tool).

Figure 6 shows the consistent pattern of instruction
domains that the four benchmarks follow in contrast to
the variability in the instruction mix domain of the desktop
application workloads. Even though there is slight operat-
ing system activity for go and li (attributable to 1/0 ser-
vices), the benchmarks spend practically all their execution
within their application images; no DLL use is visible.
Clearly these benchmarks do not utilize system services to
the level observed in the commercial desktop workloads.
With the exception of the CD player, the commercial
desktop applications examined use DLLs more heavily
than they do operating system services. This is especially
true in the fx!32 and word workloads, which carry out the
tasks captured in the trace by means of DLL routines.

Characterization of Image Usage

To investigate the domains present in the trace at the
image level, we identified the top five most heavily
used images, based on the number of instructions exe-
cuted in each image. First, an explanation of some of
the more frequently used system executables and
DLLs is in order. Table 4 lists the names of the com-
monly used images and a brief description of each.

We present the image usage of the nine traces. This
characterization includes all the images (e.g., executa-
bles, DLLs, services, and drivers) listed in Table 5. The
data helps demonstrate several points. First, commercial
desktop workloads spend a lot more time in DLLs than
benchmarks do. Consequently, we can project that the

Table 4
Common System Images

number of procedure calls in desktop applications will
be higher than the number of calls in benchmarks.
Second, real applications depend not only on system
DLLs but also on their local DLLs. We see this behavior
explicitly with the Microsoft Word application.

Instruction Mix

Although understanding the domain mix and image
usage helps identify differences between benchmarks
and desktop applications, we would like to look deeper
within each domain to see inherent differences that
affect design decisions. Figure 7 shows the application-
only instruction mix (i.e., the instruction mix for only
the application and application-specific DLLs) for each
workload. Each entry in the legend represents a class
of instructions found within the application domain.
The y-axis denotes the percent composition of the
trace; the workloads are displayed on the x-axis.

Note that the instruction mix for the fx!32 workload
is zero. This value is a result of the lack of execution
within the application image itself. Referring back to
Table 5 and the domain instruction mix, note that
nearly all the workload execution is within DLLs (some
execution is within ntoskrnl.exe). The remaining work-
loads consist mainly of load, store, conditional branch,
and arithmetic and logic unit (ALU) logic operations.
No overriding characteristic differentiates benchmarks
and desktop applications. Note the significant variabil-
ity in the instruction mix among the different bench-
marks and among the different desktop applications.

Figure 8 shows the instruction mix of the entire
trace. The first and most noticeable difference between
the application domain and full-trace instruction mix
figures is the increase in instruction types present in
the trace. Nine instruction classes were present in the
application domain instruction mixes, while 17 are
present in the full-system traces. Worth noting is the
presence of 6 CALL_PAL instruction types (all use the
same opcode, but invoke 6 different PAL routines)
in the full traces. Since each executed CALL_PAL
instruction causes a trap that takes on the order of tens
of cycles to complete, we can conclude that this is a

Name Description

ntoskrnl.exe

Windows NT operating system kernel core
Hardware Abstraction Library (HAL), which is responsible for the underlying hardware interface

hal.dll

kernel32.dll Main kernel library

win32k.sys Kernel-mode device driver

gdi32.dll Graphics display interface library

ntdll.dll Library routines provided to each client process on the Windows NT system
MSVCRT.dII Microsoft C/C++ run-time library

s3.dll Graphics adapter library for the test platform

qv.dll Graphics adapter library for the test platform

Digital Technical Journal Vol.10 No.1 1998

Table 5

The Five Most Frequently Used Images in Each Application or Benchmark

Image Name
Workload (Percentage of Total Number of Instructions Executed within the Image)
fourier bytecpu.exe winsrv.dll win32k.sys ntoskrnl.exe user32.dll Other
(99.5%) (0.2%) (0.1%) (0.1%) (0.02%) (0.08%)
neural bytecpu.exe winsrv.dll ntoskrnl.exe win32k.sys ntdll.dll Other
(99.7%) (0.2%) (0.03%) (0.03%) (0.02%) (0.02%)
go go.exe win32k.sys ntoskrnl.exe hal.dll qv.dll Other
(95.5%) (2.0%) (1.0%) (0.4%) (0.1%) (1.0%)
li li.exe win32k.sys ntoskrnl.exe user32.dll qv.dll Other
(97.7%) (1.0%) (0.6%) (0.1%) (0.1%) (0.5%)
cdplay ntoskrnl.exe hal.dll win32k.sys tcpip.sys winsrv.dll Other
(81.8%) (14.7%) (1.1%) (0.4%) (0.3%) (1.7%)
fx132 hal.dll s3.dll OPENGL32.DLL MSVCRT.dII GLU32.dll Other
(42.5%) (24.6%) (12.2%) (11.7%) (2.7%) (6.3%)
ie iexplore.exe win32k.sys ntoskrnl.exe Fastfat.sys ntdll.dll Other
(37.2%) (19.3%) (17.5%) (6.1%) (6.0%) (13.9%)
vc50 cl.exe ntoskrnl.exe MSVCRT.dII Ntfs.sys win32k.sys Other
(83.1%) (10.5%) (2.8%) (1.2%) (1.1%) (1.3%)
word MSSP232.DLL MSGREN32.DLL ntoskrnl.exe win32k.sys hal.dll Other
(36.4%) (34.0%) (10.2%) (7.7%) (4.0%) (7.7%)

significant insight into the system’s inherent run-time
latency, not visible with application-only workloads.

Next note the striking similarities in instruction
mix for the four benchmarks in Figures 7 and 8.
Benchmarks do not interact with the operating system
in any significant manner. The desktop application
workloads, however, show significant differences
between the application domain and the complete
trace instruction mixes.

The number of store instructions for the cdplay
workload decreases from about 11 percent to approxi-
mately 1 percent. The number of BSR instructions
increases from 1 percent to about 6 percent. Most
interesting for this application is the decrease in the
number of ALU operations from almost 30 percent to
about 2 percent, while the number of CALL_PAL
instructions increases from 0 to 21 percent. Referring to
Figure 6, the domain execution mix plots clearly show
why the differences for this workload are so large when
the system activity is included—more than 95 percent
of the workload trace is operating system execution.

Considering the latency incurred by executing
CALL_PAL instructions, clearly an optimization that
concentrates on improving ALU operations based on
the application domain instruction mixes would have a
much smaller impact on the true system performance.
The measured difference in instruction mix under-
scores the importance not only of using real workloads
for trace-driven simulations but also of including the
operating system behavior in order to see the full picture.

The fx!32 complete trace instruction mix is, of
course, completely different from the application
instruction mix of Figure 7, in which no instructions

were executed within the fx!32 application image. Both
the ie and the word workloads introduce CALL,_PAL
instructions when including the operating system. The
ie instruction mix shows an increase in jumps, calls, and
returns, which most likely reflects the increase in sub-
routine calls for system services. The word instruction
mix experiences a reduction in load instructions from
approximately 52 percent to 35 percent. This decrease
can be attributed to the increase in ALU operations pre-
sent when operating system activity is included.

The results presented in Figures 7 and 8 reinforce
the points that benchmarks do not represent true desk-
top workloads and that the desktop workloads display
significantly different characteristics when viewed in the
presence of system activity.

Average Basic Block Length

Including the operating system activity in our traces yields
an overall increase in the percentage of control flow
instructions present. Figure 9 shows a consequence of
this fact. In this figure, we present the average basic block
length for each workload, on a per-domain basis. The
ALL bar is the average basic block length across all
domains; OS denotes the operating system instructions
only; DLL denotes the workload’s DLL instructions
only; APPDLL denotes the combined application and
DLL instructions; and APP denotes the application
instructions only.

Inspecting the four benchmarks, we notice little dif-
ference between the application-only basic block
length and the overall basic block length. Referring to
our domain instruction mix figure, recall that the
benchmarks spend about 95 percent of their execution

Digital Technical Journal Vol.10 No.1 1998

17

18

a0}

1001 KEY:
ALULOG
0r JSR
RET
80 LD
L ST
BRXX
- —
£ 70 BR
g l — BSR
- IMP
g — l
S
=z
o sor =4
-
3 -
@ 40
= L
o)
: |
30 F
20 F
10
o — — L — —]
FOURIER NEURAL GO Ll CDPLAY FXI32 IE VC50 WORD
WORKLOAD
Figure 7
Application-only Instruction Mix
100 [KEY:
ALULOG
ok PMISC
SWAPIRQL
RETSYS
g0 | RDTHREAD
RDTEB
. CALLSYS
70 b MB
— TRAPB
—
£ BSR
— — BR
w 60 L —_— I
O | BRXX
o L ST
=]
i =
E RET
(%)
3 JSR
s IMP
o .
o

30

20 |

10 i I

| [L]
— — L e—
FOURIER NEURAL GO LI CDPLAY FXI32 IE VC50 WORD
WORKLOAD

Figure 8
Complete Trace Instruction Mix
Digital Technical Journal Vol. 10 No.1 1998

25 - KEY:
ALL
os
DLL
APPDLL

20 r APP

'_

3
3151
o

P4

]

=

O = m
2

o

=

2]

Z

10 -

5k
FOURIER NEURAL GO LI CDPLAY FXI32 IE VC50 WORD
WORKLOAD
Figure 9

Average Basic Block Length

within their executable images. Therefore, including
any operating system activity into a basic block length
average has a minimal effect.

However, considering the large amount of operat-
ing system execution present in the cdplay trace, the
overall basic block length is significantly less than the
application-only length. The overall and operating
system length values are almost the same. Not only
does including the system activity in the trace influ-
ence the overall basic block length but the amount
of system activity determines to what degree the length
is affected.

In a similar fashion, the overall basic block length of
the fx!32 trace tracks that of its DLLs. The length is
directly proportional to the amount of time the work-
load spends in its DLL domain. The execution of the ie
workload is more evenly distributed among the three
domains, which affects the overall basic block length,
producing a more evenly weighted average of all its
domain basic block lengths (no one domain dominates).

The ve50 workload spends a significant amount of
time within its own executable image, which leads to
an overall average basic block length similar to the
application-only value. The word workload is similar,
but the DLL behavior dominates. The cdplay and ie
workloads experience a 50 percent decrease in average
basic block length. This decrease can be attributed to
an increase in the number of branches in the presence
of operating system activity. With this increase in con-
trol flow instructions, we expect increased pressure to
be placed upon the branch prediction hardware.

As observed in other characteristic categories, the
four benchmarks do not exhibit noticeable deviations
from application-only behavior when the operating
system activity is introduced. Again this explains why
simulation results using benchmark traces usually track
the actual performance when the benchmarks are run
on the real system. In contrast, four of the five desktop
applications exhibit significantly different behavior in
the presence of the operating system.

Digital Technical Journal Vol.10 No.1 1998

19

Summary

In this paper we described the PatchWrx toolset. We
compared it to existing tools and demonstrated the
need for operating system-rich traces by showing the
amount of the total execution spent in the kernel and
the DLLs. In addition, we showed that existing desk-
top benchmarks do not exercise the kernel and the
DLL sufficiently to provide meaningful indicators of
desktop performance.

These results have reinforced our argument that
rescarchers need to use traces with both application
and operating system information, especially as new
applications spend more time executing within the
operating system. The goal is for computer architects
to use operating system—rich traces of applications that
dominate the desktop market.

We have recently finished modifications to the PAL
to enable PatchWrx to run on the Alpha 21164 plat-
form. We plan to study a wider range of desktop appli-
cations, including database and server applications.
Future plans also include migrating the toolset to the
Windows 2000 operating system.

Acknowledgments

We would like to acknowledge the help and advice of
the following people: Richard Sites of Adobe Systems;
Sharon Smith, Geoff Lowney, Joel Emer, Steve
Thierauf, Tom Wenners, Paul Delvy, and Dan
Lambalot, all from Compaq Computer Corporation;
and Robert Davidson from Microsoft Research. Jason
Casmira and David Kaeli have been supported by a
National Science Foundation CAREER grant.

References and Notes

1. SPEC Newsletter (September 1995).

2. Information about the BYTEmark benchmark suite is
available from BYTE Magazine at http://www.byte.
com/bmark/bmark.htm.

3. S. Perl and R. Sites, “Studies of Windows NT Perfor-
mance Using Dynamic Execution Traces,” Proceed-
ings of the Second USENIX Symposium on Operating
System Design and Implementation (October 1996):
169-183.

4. D. Kaeli, “Issues in Trace-Driven Simulation,” Lecture
Notes in Computer Science, No. 729, Performance
Evaluation of Computer and Communication
Systems, L. Donatiello and R. Nelson, eds. (Springer-
Verlag, 1993): 224-244.

5. R. Uhlig and T. Mudge, “Trace-Driven Memory Sim-
ulation: A Survey,” ACM Computing Surveys, vol. 29,
no. 2 (June 1997): 128-170.

Digital Technical Journal Vol.10 No.1 1998

10.

11.

12.

13.

14.

15.

16.

17.

J. Emer and D. Clark, “A Characterization of Proces-
sor Performance in the VAX 11-780,” Proceedings of
the Eleventh Symposium on Computer Architecture
(June 1994): 126-135.

K. Flanagan, J. Archibald, B. Nelson, and K. Grim-
srud, “BACH: BYU Address Collection Hardware;
The Collection of Complete Traces,” Proceedings of
the Sixth International Conference on Modeling Tech-
niques and Tools for Computer Evaluation (1992):
51-65.

. D. Kaeli, O. LaMaire, W. White, P. Hennet, and W.

Starke, “Real-Time Trace Generation,” International
Journal on Computer Simulation, vol. 6, no. 1 (1996):
53-68.

D. Kaeli, L. Fong, D. Renfrew, K. Imming, and
R. Booth, “Performance Analysis on a CC-NUMA
Prototype,” IBM Journal of Research and Develop-
ment, Special Issue on Performance Tools, vol. 41,
no. 3 (May 1997): 205-214.

D. Nagle, R. Uhlig, and T. Mudge, “Monster: A Tool
for Analyzing the Interaction Between Operating Sys-
tems and Computer Architectures,” Technical Report,
CSE-TR-147-92, University of Michigan, 1992.

B. Chen and B. Bershad, “The Impact of Operating
System Structure on Memory System Performance,”
Operating Systems Review, vol. 27, no. 5 (December
1993): 120-133.

J. Larus, “Abstract Execution: A Technique for Effi-
ciently Tracing Programs,” Technical Report, CS-TR-
90-912, University of Wisconsin-Madison, 1990.

A. Srivastava and A. Eustace, “ATOM: A System
for Building Customized Program Analysis Tools,”
Proceedings of the ACM SIGPLAN’94 Conference on
Programming Language Design and Implementation,
Orlando, Fla. (June 1994): 196-205.

M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta,
“Complete Computer System Simulation: The SimOS
Approach,” IEEE Journal of Parallel and Distributed
Technology, 1998, forthcoming.

M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod,
“Using the SimOS Machine Simulator to Study Com-
plex Computer Systems,” ACM Transactions on Mod-
eling and Simulation, vol. 7, no. 1 (January 1997):
78-103.

A. Agarwal, Analysis of Cache Performance for Oper-
ating Systems and Multiprogramming (Kluwer Acade-
mic Publisher, 1989).

J. Larus and E. Schnarr, “EEL: Rewriting Executable
Files to Measure Program Behavior,” Proceedings of
the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation, La Jolla, Calif.
(June 1995): 291-300.

18. D. Lee, P. Crowley, J.-L. Baer, T. Anderson, and
B. Bershad, “Execution Characteristics of Desktop
Applications on Windows NT,” Proceedings of the
Twenty-fifth International Symposium on Computer
Architecture, Barcelona, Spain (June 1998).

19. E. Betts, D. Hunter, and S. Smith, “Moving ATOM to
Windows NT for Alpha,” Digital Technical Journal,
vol. 10, no. 2, accepted for publication.

20. M. Smith, “Tracing with Pixie,” Technical Report,
CSL-TR-91-497, Stanford University, November
1991.

21. R. Cmelik and D. Keppel, “Shade: A Fast Instruction-
Set Simulator for Execution Profiling,” Proceedings of
ACM Sigmetrics (May 1994): 128-137.

22. Alpha AXP Architecture Handbook, Order No. EC-
QD2KA-TE (Maynard, Mass.: Digital Equipment
Corporation, October 1994).

23. H. Custer, Inside Windows NT (Redmond, Wash.:
Microsoft Press, 1993).

24. Microsoft Software Developer’s Toolkit. This toolkit is

available at http://msdn.microsoft.com/developer/
sdk/platform.htm.

25. J. Casmira, “Operating System Rich Workload Char-
acterization,” Master’s thesis, ECE-CEG-98-018,
Northeastern University, May 1998.

26. R. Hookway and M. Herdeg, “DIGITAL FX!32:
Combining Emulation and Binary Translation,”
Digital Technical Journal, vol. 9, no. 1 (1997): 3-12.

Biographies

Jason P. Casmira

Jason Casmira received B.S. and M.S. degrees in electrical
engineering from Northeastern University in 1996 and
1998, respectively, and is pursuing a Ph.D. degree in com-
puter science at the University of Colorado, Boulder. For
the past two years, Jason was a member of the Northeastern
University Computer Architecture Research Laboratory
(NUCAR), where he focused on developing the current
version of the PatchWrx tracing toolset. He also investi-
gated issues related to studying operating system-rich
traces. While at NUCAR, Jason was supported by a grant
from the National Science Foundation. He has published
seven papers and is a member of the IEEE and the Eta
Kappa Nu honor society.

David P. Hunter

David Hunter is the engineering manager of Compaq
Computer Corporation’s Advanced and Emerging
Technologies Group. Prior to that he was the manager

of DIGITAL’s Software Partner Engineering Advanced
Development Group, where he was involved in performance
investigations of databases and their interactions with the
UNIX and Windows NT operating systems. He has held
positions in the Alpha Migration Organization, the ISV
Porting Group, and the Government Group’s Technical
Program Management Office. David joined DIGITAL’s
Laboratory Data Products Group in 1983, where he devel-
oped the VAXlab User Management System. He was the
project leader of the advanced development project, ITS, an
executive information system, for which he designed hard-
ware and software components. David has two patent appli-
cations pending in the area of software engineering. He
holds a degree in electrical and computer engineering from
Northeastern University in Boston, Massachusetts, and a
diploma in National Security and Strategic Studies from the
United States Naval War College in Newport, Rhode Island.

David R. Kaeli

David Kaeli received Ph.D. (1992) and B.S. (1981) degrees in
electrical engineering from Rutgers University and an M.S.
degree in computer engineering from Syracuse University
in 1985. He joined the electrical and computer engineering
faculty at Northeastern University in 1993 after spending
12 years at IBM, the last 7 of which were at the IBM T. J.
Watson Research Center in Yorktown Heights, New York.
David is the director of the Northeastern University
Computer Architecture Research Laboratory (NUCAR),
where he investigates the performance and design of high-
performance computer systems and software. His current
research topics include I/0O workload characterization,
branch prediction studies, memory hierarchy design, object-
oriented code execution performance, 3-D microelectronics,
and back-end compiler design. He frequently gives tutorials
on the subject of trace-driven characterization and simula-
tion. In 1995, David received the prestigious National
Science Foundation CAREER Award. His research has
been supported by the Office of Naval Research, Kopin
Corporation, Digital Equipment Corporation, EMC, Data
General, Microsoft Research, I-Tech Corporation, IEEE
DAC, and IBM Research. David is a member of the ACM,
IEEE, and the Eta Kappa Nu and Sigma Xi honor societies.

Digital Technical Journal Vol.10 No.1 1998

21

