Digital's Transaction Processing Mnitors

By Thomas G. Speer and Mark W Storm

Abstract

Digital provides two
transacti on processing

(TP) nonitor products-
ACMS (Application Contro
and Managenent System
and DECi ntact (Integrated
Application Control).
Each nonitor is a unified
set of transaction
processi ng services for the
application environment.
These services are | ayered
on the VMS operating
system Although there

is a large functiona
overl ap between the two,
bot h products achieve
simlar goals by neans

of sone significantly

di fferent inplenentation
strategies. Flow contro
and nmultithreading in the
ACMS nonitor is managed
by means of a fourth-
generation | anguage

(4GL) task definition

| anguage. Flow contro

and nmultithreading in

the DECi ntact nonitor is
managed at the application
| evel by third-generation
| anguage (33.) calls to a
library of services. The
ACMS nonitor supports a

nonitors will be their
di fferent application
programm ng i nterfaces.

I ntroducti on

Transacti on processing

is the execution of

an application that
perfornms an administrative
function by accessing a
shared dat abase. Wthin
transacti on processing,
processi ng nonitors
provi de the software "gl ue"
that ties together many
sof tware conmponents into

a transaction processing
system sol uti on.

A typical transaction
processi ng application

i nvol ves interaction with
many term nal users by
means of a presentation
manager or forms system
to collect user requests.
I nformati on gat hered by
the presentation manager
is then used to query

or update one or nore

dat abases that reflect
the current state of the
busi ness. A characteristic
of transaction processing
systens and applications
is many users performng

deferred task nodel of

queui ng, and the DEC ntact
noni tor supports a nmessage-
based nodel. Over tinme, the
persi stent distinguishing
feature between the two

Digital Technica

a small nunber of simlar
functi ons agai nst a conmon
dat abase. A transaction
processing nonitor is a
system envi ronnent that
supports the efficient

Journal Vol. 3 No. 1 Wnter 1991

devel opnent, execution,
and managenent of such
applications.

Processing nonitors are
usually built on top of
or as extensions to the
operating system and ot her
products such as dat abase
systens and presentation
services. By so doing,
addi ti onal conponents can
be integrated into a system
and can fill "hol es" by
provi di ng functions that
are specifically needed

by transaction processing
applications. Some exanpl es
of these functions are
application control and
managenent, transaction-
processi ng-specific
execution environnents,
and transacti on-processi ng-
speci fic programi ng

i nterfaces.

Digital provides two
transacti on processing
nmonitors: the Application

Control and Managenent
System (ACMS) and the

DECi ntact nonitor. Both
nonitors are built on

top of the VMS operating
system Each nonitor

provi des a unified set

of transacti on-processing-
specific services to the
application environment,
and a large functiona
overl ap exi sts between

t he services each

nmoni t or provi des. The

di sti ngui shing factor
between the two nonitors is

Digital's Transaction Processing Mnitors

customers have their own
styles of application
programm ng. Those t hat
prefer 4G styles should be
able to build transaction
processi ng applications
using Digital's TP nonitors
Wi t hout changing their
style. Simlarly, those
that prefer 3GL styles
shoul d al so be able to
build TP applications

using Digital's TP nonitors
wi t hout changing their
styl e.

The ACMS nonitor was
first introduced by
Digital in 1984. The ACMS
noni t or addresses the
requi renents of |arge,
conpl ex transaction
processi ng applications
by maki ng them easier to
devel op and manage. The
ACMS nonitor al so creates
an efficient execution
envi ronnent for these
applications.

The DECi ntact nonitor
(Integrated Application
Control) was originally
devel oped by a third-
party vendor. Purchased
and introduced by Digita
in 1988, and it has
been installed in mjor
financial institutions and
manuf acturing sites. The
DECi nt act nonitor includes
its own presentation
manager, support for
DECf orms, a recoverable
gueui ng subsystem a
transacti on manager, and

in the area of application
progranmm ng styl es

and interfaces-fourth-
generation | anguage (4QG.)
versus third-generation

| anguage (3GL). This

di stinction represents
Digital's recognition that

2 Digital Technical Journa

Vol .

3

No.

a resource manager that
provides its own recovery
of RMS (Record Managenent
Services) files.

1 Wnter 1991

Moni tors

Digital's Transaction Processing

Thi s paper highlights the
i mportant simlarities and
di fferences of the ACMS and
DECi ntact nonitors in terns
of goals and inpl enentation
strategi es.

Devel opnent Envi ronnent

Transacti on processing
nmonitors provide a view of
the transaction processing
system for application
devel opnent. Therefore, the
ACMS and DECi ntact nonitors
nmust enbody a styl e of
program devel opnent .

ACMS Programr ng Style

A "divide and conquer"”
approach was used in the
ACMS monitor. The work
typically involved in
devel oping a TP application
was divided into logically
separate functions
descri bed bel ow. Each of
t hese functions was then
"conquered" by a specia
utility or approach

In the ACMS nonitor, an
"application" is defined as
a collection of selectable
units of work called tasks.
A separate application

definition facility

i sol ates the system
managenment characteristics
of the application (such as
resource allocation, file

| ocation, and protection)
fromthe | ogic of the
application.

poi nts either to another
menu or to an application
and a task. (Decoupling
menus fromthe application
al l ows user nenus to be
i ndependent of how t he
tasks are grouped into
applications.)

In addition to separate
menu speci fication
and system managenent
characteristics, the
application logic is broken
down into the three | ogica
parts of interactive TP
applications:

o Exchange steps support

t he exchange of data
with the end user.

Thi s exchange is
typically acconplished
by displaying a formon
a term nal screen and
col lecting the input.

0 Processing steps perform
comput ati onal processing
and dat abase or file
I/ O through standard

subroutines. The
subroutines are witten
in any | anguage t hat
accepts records passed
by reference.

o The task definition
| anguage defines the
flow of control between
processi ng steps and
exchange steps and
speci fies transaction
demarcati on. Work
spaces are specia

The specification of
menus i s al so decoupl ed
fromthe application.

A nonprocedural (4G.)
nmet hod of defining nenu
| ayouts is used in which

the |l ayouts are conpil ed
into formfiles and data
structures to be used at
run-time. Each nenu entry

Digital Technica

Jour na

records that the ACMS
noni t or provi des to pass
data between the task
definition, exchange

st eps, and processing

st eps.

Vol. 3 No. 1 Wnter 1991

A conpiler, called the
application definition
utility (ADU), is
i mpl enented in the ACVMS
nmonitor to conpile the task
definition | anguage into
bi nary data structures.
The run-tine systemis
tabl e-driven, rather than
interpreted, by these
structures.

Digital is the only vendor
that supplies this "divide
and conquer" solution to
buil ding | arge conplex TP
applications. W believe
t hi s approach- uni que
in the industry-reduces
conpl exity, thus meking
applications easier to
produce and to nanage.

DECi ntact Programming Style

The approach to application
devel opnent used in the
DECi nt act nonitor provides
the application devel oper
with 3GL control over the
transacti on processing
services required. This
approach all ows application
prototypi ng and devel opnent
to be done rapidly.

Mor eover, the application
can nmake the nost efficient
use of nonitor services by
sel ecting and controlling
only those services
required for a particular

t ask.

In the DEC ntact nonitor,
an application is defined
as one or nore prograns
written entirely in 3G

Digital's Transaction Processing Mnitors

DECi ntact nonitor. Al
DECi nt act services are
cal | abl e, including nost
servi ces provided by the
DECi ntact utilities. The
DECi ntact services are as
foll ows:

o Alibrary of
presentation services
used for all interaction
with users. The

application devel oper
includes calls to
t hese services for
form mani pul ati on and
di splay. Fornms are
created with a forns
editor utility and can
be updated dynanically.
Forms are displayed
by the DECi nt act
term nal manager in
ermul at ed bl ock node.
Devi ce- and term nal -
dependent information
is conpletely separated
fromthe inplenentation
of the application.

0 The separation of
speci fication of nmenus
fromthe application.
DECi nt act nenus are
defined by neans of
a nmenu dat abase and
are conpiled into data
structures accessed at
run-time. The menus are
tree-structured. Each
entry points either
to another nmenu entry

or to an executabl e
application inmage.

The specification of
menus is linked to the

and supported by the VMS DECi ntact nonitor's

system The code witten by security subsystem
the application devel oper The DECi ntact term na
manages all flow control, user sees only those
user interaction, and data specific menu entries
mani pul ati on through the for which the user has
utilities and service been granted access.

libraries provided by the

4 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Moni tors

Digital's Transaction Processing

o Alibrary of services
for the control of file
and queue operations.

In addition to | ayered
access to the RVS file
system the DECi ntact
noni t or supports

its own hash file

format (a functiona
anal og to single-

keyed i ndexed files

in RMS) which provides
very fast, efficient
record retrieval. The
application devel oper
includes calls to

t hese services for
managi ng RMS and hash
file 1/ 0O operations,
demarcating recovery
unit boundari es,
creating queues, placing
data itenms on queues,
and renoving data itens
from queues. The queui ng
subsystemis typically
an integral part of
application design

and work flow control
Appl i cation-defined

DECi ntact recovery units
ensure that RMS, hash,
and queue operations can
be conmritted or aborted
atomically; that is,
either all permanent
effects of the recovery
uni t happen, or none
happen.

Because of DECintact's 3GL
devel opnent environment,
application programrers who
are accustoned to calling
procedure libraries from

3GL are required. Further,
conpl eted applications can
be produced quickly because
training time is mninmal.

| i ne Execution Environnent

Transacti on processing
nonitors provide an
execution environnent
tailored to the
characteristics and
needs of transaction
processi ng applications.
Thi s environnent generally
has two aspects: on-
line, for interactive
applications that use
termnals; and off-
line, for noninteractive
applications that use other
devi ces.

Tradi tional VMS tinesharing
applications are
i mpl emented by all ocating
one VMS process to each
term nal user when the
user logs in to the system
An inmage activation is
t hen done each tine the
term nal user invokes a new
function. This method is
nost beneficial in sinple
transacti on processing
applications that have a
relatively small nunber
of users. However, as the
nunber of users grows or
as the application becones

| arger and nore conpl ex,

several problem areas may

arise with this method:

0 Resource use. As the
nunber of processes

standard VMS | anguages or grows, nore and nore
who are familiar with other menory is needed to run
transacti on processing the system effectively.
nmonitors can easily learn

DECi ntact's services.

Appl i cation prototypes

can be produced quickly

because only skills in

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Digital's Transaction Processing Mnitors

0o Start-up costs.
Process creation, inage
activation, file opens,
and dat abase binds are
expensi ve operations
in terms of system
resources utilized and
time el apsed. These
operations can degrade
syst em performance if
done frequently.

o Contention. As the
nunber of users
si mul t aneously accessi ng
a database or file
grows, contention for
| ocks al so increases.
For many applications,
| ock contention is a

significant factor in
t hr oughput .

o Processing |ocation.

Si ngl e process
i mpl enmentations limt
di stribution options.

ACMS On-line Execution
To address the problens

listed above, Digita

i mpl enented a client/server
architecture in the ACMS
monitor. (Client/server

is also called request
/response.) The basic
run-time architecture

consi sts of three types

of processes, as shown

in Figure 1: the command

process, execution
controller, and procedure
servers.

t he command process

i mpl enments the functions
of a request initiator
presentati on nmanager, and
request manager for direct
requests.) [1] The conmmand
process is generally
created at systemstart-
up tinme, although ACMS
conmands allow it to be
started at other tinmes. The
process is nultithreaded

t hrough the use of VMS
asynchronous systemtraps
(AST). Thus, one conmmand
process per node is
general ly sufficient for
all term nals handl ed by

t hat node.

There are two subconponents
of the ACMS nonitor within

t he command process:

o Systeminterface, which
is a set of services for
submitting work requests

and for interacting with
the ACMS application

o DECforns, Digital's
forms managenent
product, which
i mpl ements the ANSI
/1SO Forns Interface
Managenment System
(FI'MS) that provides the
presentation server for
executing the exchange
st eps

An agent in the ACMS
nmonitor is a process that
submts work requests to
an application. In the
ACMS system the command
process is a speci al
agent responsible for
interactions with the
termnal user. (In terns
of the DECdta architecture,

6 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Moni tors

Digital's Transaction Processing

The command process reads
the nmenu definition for

a particular termna

user and determnines which
menu to display. Wen the
term nal user selects a
particul ar nenu entry,

the command process calls
the ACMS systeminterface
services to submt the
task. The systeminterface
uses | ogi cal nanes fromthe
VMS systemto translate the
application nane into the
address of the execution
controller that represents
that application. The
systeminterface then sends
a nessage to the execution
controller. The nessage
contai ns the | ocations of
the presentation server
and an index into the
task definition tables
for the particular task.
The status of the task is
returned in the response.
During the course of task
execution, the command
process accepts call backs
fromthe task to display a
formfor interaction with
the term nal user.

The execution controller
executes the task
definition | anguage
and creates and manages
procedure servers. The
controller is created at
application start-up tine
and is nultithreaded by
usi ng VMs ASTs. There is
one execution controller
per application. (In terms

When the execution
controller receives a
request fromthe command
process, it invokes DECdtm
(Digital Distributed
Transacti on Manager)
services to join the
transaction if the agent
passes the transaction
identifier. If the agent
does not pass a transaction
identifier, there is no
transaction to join and a
DECdt m or resource- nanager -
specific transaction is
started as specified
in the task definition.

The execution controller
then uses the task index
to find the tables that
represent the task. Wen

t he execution of a task
reaches an exchange step,

t he execution controller
sends a call back to the
command process for a form
to be displayed and the

i nput to be collected for
the task. Wen the request
to display a formis sent
to the command process,

t he execution controller

di smisses the AST to enable
ot her threads to execute.
When the response to the
request arrives fromthe
exchange step, an AST is
added to the queue for the
execution controller

VWhen a task conmes to
a processing step, the
execution controller
all ocates a free procedure
server to the task. It
then sends a request to

of the DECdta architecture,
t he execution controller
and the procedure servers

i mpl enent the functions of
a transaction server.) [1]

Digital Technica

the procedure server to
execute the particul ar
procedure and di sm sses
the AST. If no procedure
server is free, the

execution controller puts
the request on a waiting

Journal Vol. 3 No. 1 Wnter 1991

list and di snm sses the AST.
When a procedure server
becones free, the execution
controller checks the wait
list and al |l ocates the
procedure server to the
next task, if any, on the
wait list.

Procedure servers are
created and del eted by
t he execution controller
Procedure servers are a
collection of user-witten
procedures that perform
conmput ati on and provide
dat abase or file accesses
for the application. The
procedures are witten

in standard | anguages and
use no special services.
The ACMS system creates
a transfer vector from
the server definition.
This transfer vector is
linked into the server

i mge. Wth this vector,
the ACMS system code can
receive i ncomng nessages
and translate theminto
calls to the procedure.

A procedure server

is specified with
initialization and
term nati on procedures,

whi ch are routines
suppl i ed by the user.

The ACMS nonitor calls

t hese procedures whenever
a procedure server is
created and del eted. The
initialization procedure
opens files and perforns
dat abase bi nd operations.
The term nation procedure

Digital's Transaction Processing Mnitors

The ACMS architecture
addresses the problem
areas discussed in the On-
i ne Execution Environnment
section in several ways.

Resource Use. Because
procedure servers are
allocated only for the

time required to execute

a processing step, the
servers are available for
ot her use while a termna
user types in data for the
form Thus, the system can
execute efficiently with
fewer procedure servers
than active term na

users. |nprovenent gains
in resource use can

vary, depending on the
application. Qur debit

and credit benchmark
experinments with the ACMS
noni tor and the Rdb/ VM5
rel ati onal database system
i ndi cated that the nost

i mprovenent occurs with one
procedure server for every
one or two transactions
per second (TPS). These
benchmarks equate to 1
procedure server for every
10 to 20 active termna
users.

The use of procedure
servers and the

mul tithreaded character

of the execution controller
and the command process
allow the architecture

to reduce the nunber of
processes and, therefore,

t he nunmber of resources
needed. The opti nmal

does cl ean-up work, such sol ution for resource use

as closing files prior to woul d consi st of one | arge

process exit. mul tithreaded process that
performed all processing.
However, we chose to trade
of f some resource use in
the architecture in favor
of other gains.

8 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Moni tors

Digital's Transaction Processing

Ease of use-

Mul tithreaded
applications are
generally nmore difficult
to code than single-

t hreaded applications.
For this reason,
procedure server
subroutines in the ACMS
system can be witten

in a standard fashion

by using standard calls
to Rdb/VMS and the VMS
system

Error isolation-ln one

I arge multithreaded
process, the threads are
not conpletely protected
within the process.

An application |ogic
error in one thread

can corrupt data in a
thread that is executing

for a different user.

A severe error in one
thread could potentially
bring down the entire
application. The

nmul tithreaded processes
in the ACMS architecture
(i.e., the execution
control |l er and command
process) are provided
by Digital. Because

no application code
executes directly

in these processes,

we can guar ant ee

that no application
codi ng error can

af fect them Procedure
servers are single-

t hreaded. Therefore,

an application logic

Start-up Costs. The
run-time environment is
basically "static," which
nmeans that the start-
up costs (i.e., system
resources and el apsed tine)
are incurred infrequently
(i.e., at system and
application start-up tine).
A tinmesharing user who
is running many different
applications causes inmage
activations and rundowns by
swi t chi ng anong i mages.
Because the term nal
user in the ACMS system
is separated fromthe
applications processes,
the process of switching
applications involves
only changi ng nessage
destinati ons and incurs
m ni mal over head.

Contention. The dat abase
accesses in the ACMS
envi ronnent are channel ed
through a relatively few,
but heavily used, nunber
of processes. The typica
VMS tinesharing environnment
uses a | arge nunber of
lightly used processes.
By reduci ng the nunber of
processes that access the
dat abase, the contention
for locks is reduced.

Processi ng Location.
Because the ACMS nonitor
is a nmultiprocess
architecture, the

command process and forns
processi ng can be done
close to the termi nal user
on small, inexpensive

error in a procedure
server is isolated to
affect only the task
that is executing in the
procedure server.

Digital Technica

machi nes. This net hod

t akes advant age of the

i nexpensi ve processing
power avail able on these
smal | er machi nes while the

rest of the application
executes on a | arger
VAXcl ust er system

Journal Vol. 3 No. 1 Wnter 1991

DECi ntact On-1ine Execution

Al t hough the specific
conmponents of the DECi ntact
nmonitor vary fromthose
of the ACMS nonitor, the
basic architecture is very
simlar. Figure 2 shows
the application configured
locally to the front end.
The run-time architecture

The DECi ntact nonitor can
run in nultiple copies
on any one VAX node. Each
copy can be an independent
run-time environnent; or
it can share data and
resources, such as user
security profiles and
menu definitions, with
ot her copies on the sane
system Thus, independent
devel opnent, testing, and
production environments can
resi de on the sane node.
In the DECi ntact system
the term nal manager
/ di spat cher process (one

per copy) is responsible

for the foll ow ng:

o Displaying DECi ntact
forns

o Coordinating DECforns
forms display

o0 Interacting with | ocal
applications

o Conmuni cating, through
DECnet, with renote
DECi nt act copi es

o Mintaining security
aut horization, including

Digital's Transaction Processing Mnitors

consi sts of three types

of DECi ntact system
processes-term nal nanager
/ di spat cher, DECforms
servers, server manager-
and, typically, one or nore
application processes.
When forns processing

is distributed, the same
application is configured
as shown in Figure 3.

Applications designated in
the | ocal nmenu dat abase as
renote applications cause
the front-end ternina
manager / di spat cher process
to comunicate with the
cooperating back-end
term nal manager/ di spat cher
process through a task-to-
task DECnet link. (In terms
of the DECdta architecture,
the term nal manager
/ di spat cher inplenents the
functions of presentation
manager, request initiator,
and request manager for
direct requests.) [1]

VWhen a user selects the
renote task, that user's
request is sent to the
back end and is treated
by the application as a
| ocal request. The termna
manager / di spat cher process

is started automatically

as part of a copy start-

up and is multithreaded.
Theref ore, one such process
can handle all the term na
users for a particular
DECi nt act copy.

When the term nal user

the dynam c generation sel ects a nenu task, one
of user-specific nenus of the follow ng actions

occurs, depending on

whet her the task is |oca

or renote and whether it is
single- or multithreaded.

10 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Moni tors

Digital's Transaction Processing

If the application is |oca
and single-threaded, a VMs
process may be created that
activates the application
i mage associated with this
task. The term nal manager
/ di spat cher, upon start up,
may create a user-specified
nunber of application shel
VMS processes to activate
subsequent application
i mges. |If such a shel
exi sts when the user
sel ects a task, this
process is used to run
the application i mage. Each
user who selects a given
menu entry receives an
i ndi vi dual VMS process and
i mage.

If the application is |oca
and rmultithreaded, the
term nal manager/ di spat cher
first determ nes whether
this task has al ready
been activated by previous
users. If the task has
not been activated and a
shell is not available, the
term nal manager/ di spat cher
creates a VMS process
for the application and
activates the image. If the
task is already activated,
the term nal manager
/ di spat cher connects the
user to the active task.
The user becones anot her
thread of execution within
the image. Multithreaded
appl i cations handl e many
si mul taneous users within
the context of one VMS
process and i nage.

/ di spat cher processes the
sel ection locally by using
the sane procedures as
descri bed above.

Local DECi ntact formns
interaction is handl ed

in the foll owi ng manner

by the local termna
manager/ di spat cher. The
application's call to
di splay a form sends a
request to the termna
manager. The term na
manager | ocates the form
in its database of active
forms, displays the form
on the user's term nal
and returns control to the
application when the user
has entered all data in the

form If the application
is renote, forminformation
is sent between cooperating
| ocal and renote term na
manager processes; the
interface is transparent to
the application.

In addition to supporting
DECi ntact forns, the
DECi ntact nonitor also
supports applications
that use DECforms as their
presentation service. The
i mpl enentation of this
support follows the sane
client/server nodel used by
the ACMS systenis support
for DECforms and shares
much of the underlying
run-time interprocess
conmuni cati on code used
by the ACMS nonitor.
Functionally, the two
i mpl ement ati ons of DECf orns

11

Renot e applications,
whet her single- or
nmul tithreaded, route the
menu task selection to a
renote term nal manager
/ di spat cher process. On
recei pt of the request,
the renpte term nal nanager

Digital Technica

support are also simlar to
the ACMS nonitor. Both

i mpl ement ati ons of fer
transparent support for

di stri buted DECformns
processi ng, automatic forns
caching (i.e., propagation
of updated DECfornms in a

Journal Vol. 3 No. 1 Wnter 1991

di stributed environnent),
and DECforns session
caching for increased

per f or mance.

The DECi ntact nonitor
supports application-Ievel,
single- and nultithreaded
environnents. The DECi nt act
monitor's threading
package al |l ows application
programmers to use standard
| anguages supported by
the VM5 systemto wite
nmul tithreaded processes.
Applications declare
t hemsel ves as either
single- or multithreaded.
Wth the exception of
t he decl aration, there
islittle difference
bet ween the way an on-
line nultithreaded
application and its single-
t hreaded counterpart
nmust be coded. For on-
line applications, thread
creation, deletion, and
managenent are autonmtic.
New t hreads are created
when a termnal user
sel ects the nultithreaded
application and are del eted
when the user |eaves the
application.

In a single-threaded
application, the follow ng
occurs:

o Each user receives an
i ndi vi dual VMS process
and i nage cont ext
(e.g., 200 users, 200

processes).
o Al termnal and file

Digital's Transaction Processing Mnitors

In a multithreaded on-1ine
application, the follow ng
occurs:

o One VMS process/imge

can handl e nmany
si mul t aneous users.

o Al termnal and file
I/ O is asynchronous.

o0 New threads are created
automatically when new
users are connected to
t he process.

o The application inmge
does not exit when al
currently allocated
t hreads have conpl et ed
execution but remains
for use by new on-line
users.

For each thread in a

nmul tithreaded application

i mmge, the DECi ntact system

mai ntai ns thread context

and state information.

Each I/ O request is issued

asynchronously. |Imediately

after control is returned,
but before the 1/0 request
conpl etes, the DEC ntact
system saves the currently
executing thread' s context
and schedul es anot her
thread to execute. \Wen the

thread's 1/0O conpletion AST
is delivered, the thread's
context is restored, and
the thread is inserted on
an internally maintained
list of threads eligible
for execution.

A thread' s context consists
of the follow ng:

I/ O is synchronous.

o The application inmge
normal |y exits when

the application work is
conpl et ed.

12 Digital Technical Journa

An internally maintained

thread bl ock cont ai ni ng
state information

The stack

1 Wnter 1991

Moni tors

Digital's Transaction Processing

o Standard DEC nt act
wor k spaces that are
all ocated to each thread
and that maintain
termnal and file
managenent cont ext

o Local storage (e.g.
the $LOCAL PSECT in
COBOL applications)
that the application has
desi gnated as thread-
specific

The PSECT nami ng convention
all ows the application

to decide which variable
storage is thread-specific
and which is process-

gl obal . Thread-specific
storage is unavail abl e

to other threads in the
same process because it

is saved and restored

on each thread switch
Process- gl obal storage is
al ways avail able to al
threads in the process

and can be used when
interthread comuni cation
or synchronization is
desired.

The use of multithreading
in the DECi ntact system
is appropriate for
hi gher vol une nul tiuser
applications that perform
frequent 1/0O. Such
application usage is
typical in transaction
processi ng environments.
Because thread swi tches
occur only when I/Ois
requested or when | ocking

prograns or other batch-

ori ented processing. These
ki nds of applications
typically choose to declare
t hensel ves as singl e-

t hr eaded.

Al 1/Ofromwithin a
mul tithreaded DEC ntact
application process is
asynchronous. Therefore,
t he DECi ntact system
provi des a client/server

i nterface between

nmul tithreaded applications

and synchronous dat abase

systenms, such as VAX DBMS

(Dat abase Managenent

Systen) and Rdb/ VMS

systens. The interface

is provided because calling

a synchronous dat abase

operation directly from

within a nmultithreaded
application would stal

the calling thread and al

ot her threads until the

call conpleted. Figure 2

shows that a typical on-

line DECi ntact application
accessi ng Rdb/ VMS, for
exanple, is witten in two
pi eces:

o A multithreaded, on-line
pi ece (the client), that
handl es forns requests
frommultiple users

o A single-threaded,
dat abase server piece
(a server instance),
that perforns the actual
synchronous database |/0O
This client/server approach

requests are issued,

this environnent may

not be recomrended for
applications that perform
i nfrequent /0O or that
expect very small nunbers
of concurrent users, such
as end-of-day accounti ng

Digital Technica

to dat abase access is
functionally very sinilar
to that of ACMS procedure
servers and offers simlar
benefits. Like the ACVMS
nmoni t or, the DECi ntact
nmonitor offers system
managenment facilities to

define pools of servers

Journal Vol. 3 No. 1 Wnter 1991

Digital's Transaction Processing Mnitors

and to adjust them

dynami cally at run-tine

in accordance with | oad.
Simlar algorithnms are
used in both nonitors to

al l ocate server instances
to client threads and to
start up new i nstances, as
necessary. The DEC ntact
server code, like the ACVS
procedure server code, can
define initialization and
term nati on procedures to
perform once-only start-up
and shut -down processing.
Wt h DECi ntact transaction
semantics, which are

| ayered on DECdt m servi ces,
a client can declare a

gl obal transaction that

the server instance wll
join. The server instance
can al so declare its own

i ndependent transaction or
no transaction. (In terns
of the DECdta architecture,
this client/server approach
i mpl ements the functions of
a transaction server.) [1]
The principal difference
bet ween the DECi ntact and
ACMS approach is that

DECi ntact clients and
servers use a nessage-
based 3G communi cati ons
interface to send and
recei ve work requests.
Control in the ACMS nonitor
resides in the execution
controller.

As the ACMS nonitor does,
t he DECi ntact architecture
addresses the problem
areas discussed in the
On-1ine Execution section

Resource Use. The DECi nt act
system s multithreaded
nmet hodol ogy econoni zes
on VMS resources. Simlar
to the method used in the
ACMS nonitor, t