

 Designing an Optimized Transaction Commit Protocol

 By Peter M. Spiro, Ashok M. Joshi, and T. K. Rengarajan

 Abstract kernel called KODA. In
 Digital's database addition to other database
 products, VAX Rdb/VMS services, KODA provides the
 and VAX DBMS, share the transaction capabilities
 same database kernel and commit processing for
 called KODA. KODA uses these two products.

 a grouping mechanism to In this paper, we address
 commit many concurrent some of the issues relevant
 transactions together. to efficient commit
 This feature enables high processing. We begin by
 transaction rates in a explaining the importance
 transaction processing (TP) of commit processing in
 environment. Since group achieving high transaction
 commit processing affects throughput. Next, we
 the maximum throughput describe in detail the
 of the transaction current algorithm for group
 processing system, the commit used in KODA. We
 KODA group designed then describe and contrast
 and implemented several several new designs
 grouping algorithms and for performing a group
 studied their performance commit. Following these
 characteristics. discussions, we present
 Preliminary results our experimental results.
 indicate that it is And, finally, we discuss
 possible to achieve up the possible direction
 to a 66 percent improvement of future work and some
 in transaction throughput conclusions. No attempt
 by using more efficient is made to present formal
 grouping designs. analysis or exhaustive
 Introduction empirical results for
 commit processing;
 Digital has two general- rather, the focus is on
 purpose database products, an intuitive understanding
 Rdb/VMS software, which of the concepts and trade-
 supports the relational offs, along with some

 data model, and VAX DBMS empirical results that
 software, which supports support our conclusions.
 the CODASYL (Conference
 on Data Systems Languages)
 data model. Both products
 layer on top of a database

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
1

 Designing an Optimized Transaction Commit Protocol

 Commit Processing For the purpose of
 To follow a discussion analysis, it is useful
 of commit processing, two to divide a transaction
 basic terms must first processed by KODA into four
 be understood. We begin phases: the transaction
 this section by defining a start phase, the data
 transaction and the "moment manipulation phase, the
 of commit." logging phase, and the
 commit processing phase.
 A transaction is the Figure 1 illustrates the
 execution of one or phases of a transaction
 more statements that in time sequence. The
 access data managed by a first three phases are
 database system. Generally, collectively referred to as
 database management systems "the average transaction's
 guarantee that the effects CPU cost (excluding the
 of a transaction are cost of commit)" and the
 atomic, that is, either last phase (commit) as "the
 all updates performed cost of writing a group
 within the context of the commit buffer." [1]
 transaction are recorded
 in the database, or no
 updates are reflected in
 the database.

 The point at which a
 transaction's effects
 become durable is known
 as the "moment of commit."
 This concept is important
 because it allows database
 recovery to proceed in a
 predictable manner after
 a transaction failure. If
 a transaction terminates
 abnormally before it
 reaches the moment of
 commit, then it aborts.
 As a result, the database
 system performs transaction
 recovery, which removes all
 effects of the transaction.
 However, if the transaction
 has passed the moment of
 commit, recovery processing
 ensures that all changes

 made by the transaction are
 permanent.

 Transaction Profile

 2 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 The transaction start have to fetch and modify
 phase involves acquiring every employee/salary
 a transaction identifier record in the company
 and setting up control database. The commit
 data structures. This phase processing phase, in this
 usually incurs a fixed example, represents 0.2
 overhead. percent of the transaction
 duration. Thus, for this
 The data manipulation class of transaction,
 phase involves executing commit processing is a
 the actions dictated by small fraction of the
 an application program. overall cost. Figure 2
 Obviously, the time spent illustrates the profile of
 in this phase and the a transaction modifying 500
 amount of processing records.
 required depend on the In contrast, for
 nature of the application. transaction processing

 At some point a request applications such as
 is made to complete the hotel reservation systems,
 transaction. Accordingly banking applications, stock
 in KODA, the transaction market transactions, or
 enters the logging phase the telephone system,
 which involves updating the the data manipulation
 database with the changes phase is usually short
 and writing the undo/redo (requiring few I/Os).
 information to disk. Instead, the logging and
 The amount of work done commit phases comprise the
 in the logging phase is bulk of the work and must
 usually small and constant be optimized to allow high
 (less than one I/O) for transaction throughput.
 transaction processing. The transaction profile
 Finally, the transaction for a transaction modifying
 enters the commit one record is shown in
 processing phase. In KODA, Figure 3. Note that the
 this phase involves writing commit processing phase
 commit information to disk, represents 36 percent of
 thereby ensuring that the the transaction duration,
 transaction's effects are in this example.

 recorded in the database Group Commit
 and now visible to other Generally, database
 users. systems must force

 For some transactions, the write information to

 data manipulation phase is disk in order to commit
 very expensive, possibly transactions. In the
 requiring a large number event of a failure, this
 of I/Os and a great deal of operation permits recovery
 CPU time. For example, processing to determine
 if 500 employees in a which failed transactions
 company were to get a 10 were active at the time
 percent salary increase, of their termination and
 a transaction would which ones had reached

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
3

 Designing an Optimized Transaction Commit Protocol

 their moment of commit. There are several
 This information is often variations of the basic
 in the form of lists of algorithms for grouping
 transaction identifiers, multiple commit lists into
 called commit lists. a single I/O. The specific
 Many database systems group commit algorithm
 perform an optimized chosen can significantly
 version of commit influence the throughput
 processing where commit and response times of
 information for a group of transaction processing. One
 transactions is written to study reports throughput
 disk in one I/O operation, gains of as much as 25
 thereby, amortizing the percent by selecting
 cost of the I/O across an optimal group commit
 multiple transactions. algorithm. [1]

 So, rather than having At high transaction
 each transaction write throughput (hundreds of
 its own commit list to transactions per second),
 disk, one transaction efficient commit processing
 writes to disk a commit provides a significant
 list containing the commit performance advantage.
 information for a number There is little information
 of other transactions. This in the database literature
 technique is referred to about the efficiency
 in the literature as "group of different methods
 commit." [2] of performing a group
 Group commit processing commit. Therefore, we
 is essential for achieving analyzed several grouping
 high throughput. If every designs and evaluated their
 transaction that reached performance benefits.

 the commit stage had to Factors Affecting Group
 actually perform an I/O to Commit
 the same disk to flush its Before proceeding to
 own commit information, a description of the
 the throughput of the experiments, it is
 database system would be useful to have a better
 limited to the I/O rate of understanding of the
 the disk. A magnetic disk factors affecting the
 is capable of performing behavior of the group
 30 I/O operations per commit mechanism. This
 second. Consequently, section discusses the group
 in the absence of group size, the use of timers to
 commit, the throughput of stall transactions, and the
 the system is limited to relationship between these

 30 transactions per second two factors.
 (TPS). Group commit is
 essential to breaking this Group Size. An important
 performance barrier. factor affecting group
 commit is the number
 of transactions that
 participate in the group
 commit. There must be

 4 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 several transactions in the transaction throughput of
 group in order to benefit the transaction processing
 from I/O amortization. At system.
 the same time, transactions Use of Timers to Stall
 should not be required Transactions. One of the
 to wait too long for the mechanisms to increase
 group to build up to a the size of the commit
 large size, as this factor group is the use of timers.
 would adversely affect [1, 2] Timers are used
 throughput. to stall the transactions

 It is interesting to for a short period of time
 note that the incremental (on the order of tens of
 advantage of adding one milliseconds) during commit
 more transaction to a processing. During the
 group decreases as the stall, more transactions
 group size increases. The enter the commit processing
 incremental savings is phase and so the group size
 equal to 1/(G x (G + 1), becomes larger. The stalls
 where G is the initial provided by the timers have
 group size. For example, the advantage of increasing
 if the group consists of 2 the group size, and the
 transactions, each of them disadvantage of increasing
 does one-half a write. If the response time.
 the group size increases Trade-offs. This section
 to 3, the incremental discusses the trade-offs
 savings in writes will between the size of the
 be (1/2 - 1/3), or 1/6 group and the use of timers
 per transaction. If we do to stall transactions.
 the same calculation for a Consider a system where
 group size incremented from there are 50 active
 10 to 11, the savings will database programs, each
 be (1/10 - 1/11), or 1/110 repeatedly processing
 of a write per transaction. transactions against a

 In general, if G represents database. Assume that on
 the group size, and I average each transaction
 represents the number takes between 0.4 and
 of I/Os per second for 0.5 seconds. Thus, at
 the disk, the maximum peak performance, the
 transaction commit rate database system can
 is I x G TPS. For example, commit approximately 100
 if the group size is 45 transactions every second,
 and the rate is 30 I/Os each program actually
 per second to disk, the completing two transactions

 maximum transaction commit in the one-second time
 rate is 30 x 45, or 1350 interval. Also, assume that
 TPS. Note that a grouping the transactions arrive
 of only 10 will restrict at the commit point in a
 the maximum TPS to 300 TPS, steady stream at different
 regardless of how powerful times.
 the computer is. Therefore,
 the group size directly
 affects the maximum

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
5

 Designing an Optimized Transaction Commit Protocol

 If transaction commit is The concept of using commit
 stalled for 0.2 seconds timers is discussed in
 to allow the commit group great detail by Reuter.
 to build up, the group [1] However, there are
 then consists of about 20 significant differences
 transactions (0.2 seconds x between his group commit
 100 TPS). In this case, scheme and our scheme.
 each transaction only These differences prompted
 incurs a small delay at the work we present in this
 commit time, averaging paper.
 0.10 seconds, and the In Reuter's scheme, the
 database system should timer expiration triggers
 be able to approach its the group commit for
 peak throughput of 100 TPS. everyone. In our scheme, no
 However, if the mechanism single process is in charge
 delays commit processing of commit processing based
 for one second, an on a timer. Our commit
 entirely different behavior processing is performed
 sequence occurs. Since the by one of the processes
 transactions complete in desiring to write a commit
 approximately 0.5 seconds, record. Our designs involve
 they accumulate at the coordination between the
 commit stall and are forced processes in order to elect
 to wait until the one- the group committer (a
 second stall completes. The process).
 group size then consists
 of 50 transactions, Reuter's analysis to
 thereby maximizing the determine the optimum
 I/O amortization. However, value of the timer based
 throughput is also limited on system load assumes
 to 50 TPS, since a group that the total transaction
 commit is occurring only duration, the time taken
 once per second. for commit processing,
 Thus, it is necessary to and the time taken for
 balance response time and performing the other
 the size of the commit phases are the same for
 group. The longer the all transactions. In
 stall, the larger the contrast, we do not make
 group size; the larger that assumption. Our
 the group size, the better designs strive to adapt
 the I/O amortization that to the execution of many
 is achieved. However, if different transaction types
 the stall time is too long, under different system
 it is possible to limit loads. Because of the
 transaction throughput complexity introduced by
 because of wasted CPU allowing variations in

 cycles. transaction classes, we do
 not attempt to calculate
 Motivation for Our Work the optimal timer values as
 does Reuter.

 6 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 Cooperative Commit Processing The Commit-Lock Design uses
 In this section, we present a VMS lock to generate
 the stages in performing groups of committing
 the group commit with transactions; the lock
 cooperating processes, and is also used to choose the
 we describe, in detail, the group committer.

 grouping design currently Once a process completes
 used in KODA, the Commit- all its updates and
 Lock Design. wants to commit its
 Group Committer transaction, the procedure
 is as follows. Each
 Assume that a number of transaction must first
 transactions have completed declare its intent to
 all data manipulation and join a group commit. In
 logging activity and are KODA, each process uses
 ready to execute the commit the interlocked queue
 processing phase. To group instructions of the VAX
 the commit requests, the system running VMS software
 following steps must be to enqueue a block of
 performed in KODA: commit information, known
 1. Each transaction as a commit packet, onto a
 must make its commit globally accessible commit
 information available to queue. The commit queue
 the group committer. and the commit packets
 are located in a shared,
 2. One of the processes writeable global section.
 must be selected as the Each process then issues a
 "group committer." lock request for the commit

 3. The other members lock. At this point, a
 of the group need number of other processes
 to be informed that are assumed to be going
 their commit work through the same sequence;
 will be completed by that is, they are posting
 the group committer. their commit packets and
 These processes must making lock requests for
 wait until the commit the commit lock. One of
 information is written these processes is granted
 to disk by the group the commit lock. For the
 committer. time being, assume the
 4. Once the group committer process that currently
 has written the commit acquires the lock acts as
 information to stable the group committer.

 storage, it must inform The group committer,
 the other members that first, counts the number
 commit processing is of entries on the commit
 completed. queue, providing the
 Commit-Lock Design number of transactions
 that will be part of the
 group commit. Because of
 the VAX interlocked queue
 instructions, scanning

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
7

 Designing an Optimized Transaction Commit Protocol

 to obtain a count and Once the commit block
 concurrent queue operations is modified, the group
 by other processes can committer writes it to
 proceed simultaneously. disk in one atomic I/O.
 The group committer uses This is the moment of
 the information in each commit for all transactions
 commit packet to format in the group. Thus, all
 the commit block which transactions that were
 will be written to disk. In active and took part in
 KODA, the commit block this group commit are now
 is used as a commit stably marked as committed.
 list, recording which In addition, as explained
 transactions have committed above, these transactions
 and which ones are active. now have new transaction
 In order to commit for a identifiers. Next, the
 transaction, the group group committer sets a
 committer must mark each commit flag in each commit
 current transaction as packet for all recently
 completed. In addition, committed transactions,
 as an optimization, the removes all commit packets
 group committer assigns a from the commit queue,
 new transaction identifier and, finally, releases
 for each process's next the commit lock. Figure
 transaction. Figure 4 5 illustrates a committed
 illustrates a commit block group with new transaction

 ready to be flushed to identifiers and with commit
 disk. flags set.

 8 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 At this point, the lock request is mastered
 remaining processes that on a different node in a
 were part of the group VAXcluster system, the lock
 commit are, in turn, enqueue/dequeues are very
 granted the commit lock. expensive.
 Because their commit flags Also, there is no explicit
 are already set, these stall time built into the
 processes realize they algorithm. The latency
 do not need to perform a associated with the lock
 commit and, thus, release enqueue/dequeue requests
 the commit lock and proceed allows the commit queue
 to the next transaction. to build up. This stall is
 After all these committed entirely dependent on the
 processes release the contention for the lock,
 commit lock, a process which in turn depends on
 that did not take part in the throughput.
 the group commit acquires
 the lock, notices it has
 not been committed, and, Group Commit Mechanisms- Our
 therefore, initiates the New Designs
 next group commit. To improve on the

 There are several transaction throughput
 interesting points about provided by the Commit-
 using the VMS lock as the Lock Design, we developed
 grouping mechanism. Even three different grouping
 though all the transactions designs, and we compared
 are effectively committed their performances at
 after the commit block high throughput. Note
 I/O has completed, the that the basic paradigm of
 transactions are still group commit for all these
 forced to proceed serially; designs is described in the
 that is, each process is Group Committer section.
 granted the lock, notices Our designs are as follows:
 that it is committed, and Commit-Stall Design
 then releases the lock.
 So there is a serial In the Commit-Stall Design,
 procession of lock enqueues the use of the commit lock
 /dequeues before the next as the grouping mechanism
 group can start. is eliminated. Instead, a
 This serial procession can process inserts its commit
 be made more concurrent packet onto the commit
 by, first, requesting the queue and, then, checks
 lock in a shared mode, to see if it is the first
 hoping that all processes process on the queue. If

 committed are granted the so, the process acts as
 lock in unison. However, in the group committer. If
 practice, some processes not, the process schedules
 that are granted the its own wake-up call, then
 lock are not committed. sleeps. Upon waking, the
 These processes must then process checks to see if it
 request the lock in an has been committed. If so,
 exclusive mode. If this the process proceeds to its

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
9

 Designing an Optimized Transaction Commit Protocol

 next transaction. If not, automatically, because the
 the process again checks to database management system
 see if it is first on the cannot judge which is more
 commit queue. The algorithm important to the user in a
 then repeats, as described general customer situation-
 above. the transaction response
 This method attempts to time or the throughput.

 eliminate the serial wake- The Willing-to-Wait
 up behavior displayed Design provides a user
 by using the commit parameter called WTW time.
 lock. Also, the duration This parameter represents
 for which each process the amount of time the
 stalls can be varied user is willing to wait
 per transaction to allow for the transaction to
 explicit control of the complete, given this wait
 group size. Note that will benefit the complete
 if the stall time is too system by increasing
 small, a process may wake throughput. WTW time may
 up and stall many times be specified by the user
 before it is committed. for each transaction. Given
 Willing-to-Wait Design such a user specification,
 it is easy to calculate the
 As we have seen before, commit stall to increase
 a delay in the commit the group size. This stall
 sequence is a convenient equals the WTW time minus
 means of converting a the time taken by the
 response time advantage transaction thus far, but
 into a throughput gain. only if the transaction
 If we increase the stall has not already exceeded
 time, the transaction the WTW time. For example,
 duration increases, which if a transaction comes to
 is undesirable. At the commit processing in 0.5
 same time, the grouping second and the WTW time
 size for group commit is 2.0 seconds, the stall
 increases, which is time is then 1.5 seconds.
 desirable. The challenge In addition, we can make
 is to determine the a further improvement by
 optimal stall time. Reuter reducing the stall time
 presented an analytical way by the amount of time
 of determining the optimal needed for group commit
 stall time for a system processing. This delta time
 with transactions of the is constant, on the order
 same type. [1] of 50 milliseconds (one I/O
 Ideally, we would like to plus some computation).

 devise a flexible scheme The WTW parameter gives
 that makes the trade-off the user control over
 we have just described in how much of the response
 real time and determines time advantage (if any)
 the optimum commit stall may be used by the system
 time dynamically. However, to improve transaction
 we cannot determine throughput. The choice of
 the optimum stall time an abnormally high value

 10 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 of WTW by one process only actually schedule the wake-
 affects its own transaction up call after a delay.
 response time; it does not Such a delay allows the
 have any adverse effect on next group size to become
 the total throughput of the larger.
 system. A low value of WTW
 would cause small commit Experiments
 groups, which in turn would
 limit the throughput. We implemented and tested
 However, this can be the Commit-Lock, the
 avoided by administrative Commit-Stall, and the
 controls on the database Willing-to-Wait designs
 that specify a minimum WTW in KODA. The objectives of
 time. our experiments were

 Hiber Design o To find out which
 The Hiber Design is similar design would yield
 to the Commit-Stall Design, the maximum throughput
 but, instead of each under response time
 process scheduling its constraints

 own wake-up call, the group o To understand
 committer wakes up all the performance
 processes in the committed characteristics of the
 group. In addition, the designs

 group committer must wake In the following sections,
 up the process that will be we present the details
 the next group committer. of our experiments, the

 Note, this design exhibits results we obtained, and
 a serial wake-up behavior some observations.

 like the Commit-Lock Details of the Experiments
 Design, however, the
 mechanism is less costly The hardware used for
 than the VMS lock used by all of the following
 the Commit-Lock Design. tests was a VAX 6340
 In the Hiber Design, if a with four processors,
 process is not the group each rated at 3.6 VAX
 committer, it simply units of performance
 sleeps; it does not (VUP). The total possible
 schedule its own wake- CPU utilization was 400
 up call. Therefore, each percent and the total
 process is guaranteed processing power of the

 to sleep and wake up at computer was 14.4 VUPs.
 most once per commit, in As the commit processing
 contrast to the Commit- becomes more significant
 Stall Design. Another in a transaction (in
 interesting characteristic relation to the other
 of the Hiber Design is that phases), the impact of
 the group committer can the grouping mechanism on
 choose to either wake up the transaction throughput
 the next group committer increases. Therefore, in
 immediately, or it can order to accentuate the
 performance differences

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
11

 Designing an Optimized Transaction Commit Protocol

 between the various by the formula: number
 designs, we performed of servers x 1000/WTW =
 our experiments using a maximum TPS. For example,
 transaction that involved our maximum TPS for the
 no database activity except WTW design was obtained
 to follow the commit with 50 servers and 90
 sequence. So, for all milliseconds WTW time.
 practical purposes, the Using the formula, 50 x
 TPS data presented in this 1000/90 = 555. The actual
 paper can be interpreted TPS achieved was 500,
 as "commit sequences per which is 90 percent of
 second." Also, note that the maximum TPS. This
 our system imposed an upper ratio is also a measure
 limit of 50 on the grouping of the effectiveness of the
 size. experiment.

 Results During our experiments, the
 Using the Commit-Lock maximum group size observed
 Design, transaction was 45 (with the Willing-
 processing bottlenecked to-Wait Design). This is
 at 300 TPS. Performance close to the system-imposed
 greatly improved with limit of 50 and, so, we
 the Commit-Stall Design; may be able to get better
 the maximum throughput grouping with higher limits
 was 464 TPS. The Willing- on the size of the group.

 to-Wait Design provided Observations
 the highest throughput, In the Commit-Stall
 500 TPS. Using this last and the Willing-to-Wait
 design, it was possible to designs, given a constant
 achieve up to a 66 percent stall, if the number of
 improvement over the less- servers is increased, the
 efficient Commit-Lock TPS increases and then
 Design. Although both timer decreases. The rate of
 schemes, i.e., the Commit- decrease is slower than
 Stall and Willing-to-Wait the rate of increase. The
 designs, needed tuning TPS decrease is due to
 to set the parameters and CPU overloading. The TPS
 the Commit-Lock Design did increase is due to more
 not, we observed that the servers trying to execute
 maximum throughput obtained transactions and better
 using timers is much better CPU utilization. Figure 6
 than that obtained with the illustrates how TPS varies
 lock. These results were with the number of servers,
 similar to those of Reuter. given a constant stall WTW

 For our Willing-to- time.
 Wait Design, the minimum Again, in the stalling
 transaction duration is designs, for a constant
 the WTW time. Therefore, number of servers, if the
 the maximum TPS, the number stall is increased, the
 of servers, and the WTW TPS increases and then
 stall time, measured in decreases. The TPS increase
 milliseconds, are related is due to better grouping

 12 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 and the decrease is due
 to CPU underutilization.
 Figures 7 and 8 show the
 effects on TPS when you
 vary the commit-stall time
 or the WTW time, while
 keeping the number of
 servers constant.

 To maximize TPS with
 the Commit-Stall Design,
 the following "mountain-
 climbing" algorithm was
 useful. This algorithm is
 based on the previous two
 observations. Start with
 a reasonable value of the
 stall and the number of
 servers, such that the
 CPU is underutilized. Then
 increase the number of
 servers. CPU utilization
 and the TPS increase.
 Continue until the CPU
 is overloaded; then,
 increase the stall time.
 CPU utilization decreases,
 but the TPS increases due
 to the larger group size.

 This algorithm demonstrates
 that increasing the number
 of servers and the stall
 by small amounts at a
 time increases the TPS,
 but only up to a limit.
 After this point, the TPS
 drops. When close to the
 limit, the two factors
 may be varied alternately
 in order to find the true
 maximum. Table 1 shows the
 performance measurements
 of the Commit-Stall Design.
 Comments are included in

 the table to highlight the
 performance behavior the
 data supports.

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
13

 Designing an Optimized Transaction Commit Protocol

 Table 1

 Commit-Stall Design Performance Data

 Commit
 Stall CPU Uti-
 Number (Mil- lization
 of lisec- (Per-
 Servers_onds)_____cent)*____TPS__Comments__________________________

 50 20 360 425 Starting point

 55 20 375 454 Increased number of servers,
 therefore, higher TPS

 60 20 378 457 Increased number of servers,
 therefore, CPU saturated

 60 30 340 461 Increased stall, therefore, CPU
 less utilized

 65 30 350 464 Increased number of servers,
 maximum TPS

 70 30 360 456 "Over-the-hill" situation, same
 strategy of further increasing
 the number of servers does not
 increase TPS

 70 40 330 451 No benefit from increasing number
 of servers and stall

 65 40 329 448 No benefit from just increasing
 stall
 *_Four_processors_were_used_in_the_experiments._Thus,_the_total____

 possible CPU utilization is 400 percent.

 The same mountain- TPS with this design is
 climbing algorithm is inversely proportional to
 modified slightly to the WTW time, while CPU
 obtain the maximum TPS is not fully utilized.
 with the Willing-to-Wait The first four rows of

 Design. The performance
 measuremenmts of this Table 2 illustrate this
 design are presented behavior. The rest of the
 in Table 2. As we have table follows the same
 seen before, the maximum pattern as Table 1.

 Table 2

 Willing-to-Wait Performance Data

 14 Digital Technical Journal Vol. 3 No. 1 Winter 1991

 Designing an Optimized Transaction Commit
Protocol

 Table 2 (Cont.)

 Willing-to-Wait Performance Data

 Willing-
 to-Wait
 Stall CPU Uti-
 Number (Mil- lization
 of lisec- (Per-
 Servers_onds)_____cent)*____TPS__Comments__________________________

 45 100 285 426 Starting point, CPU not saturated

 45 90 295 466 Decreased stall to load CPU, CPU
 still not saturated

 45 80 344 498 Decreased stall again

 45 70 363 471 Further decreased stall, CPU
 almost saturated

 50 80 372 485 Increased number of servers, CPU
 more saturated

 50 90 340 500 Increased stall to lower CPU
 usage, maximum TPS

 55 90 349 465 "Over-the-hill"situation, same
 strategy of further increasing
 number of servers does not
 increase TPS

 50 100 324 468 No benefit from just increasing
 stall
 *_Four_processors_were_used_in_the_experiments._Thus,_the_total____

 possible CPU utilization is 400 percent.

 The Willing-to-Wait Design we expect the Willing-to-
 performs slightly better Wait Design to perform much
 than the Commit-Stall better than the Commit-
 Design by adjusting to the Stall Design.

 variations in the speed at
 which different servers Future Work
 arrive at the commit
 point. Such variations There is scope for more
 are compensated for by interesting work to further
 the variable stalls in the optimize commit processing
 Willing-to-Wait Design. in the KODA database
 Therefore, if the variation kernel. First, we would
 is high and the commit like to perform experiments
 sequence is a significant on the Hiber Design and
 portion of the transaction, compare it to the other

 Digital Technical Journal Vol. 3 No. 1 Winter 1991
15

 Designing an Optimized Transaction Commit Protocol

 designs. Next, we would
 like to explore ways of
 combining the Hiber Design considerable gains in
 with either of the two transaction processing
 timer designs, Commit-Stall performance.

 or Willing-to-Wait. This Acknowledgments
 may be the best design We wish to acknowledge
 of all the above, with a the help provided by Rabah
 good mixture of automatic Mediouni in performing the
 stall, low overhead, and experiments discussed in
 explicit control over this paper. We would like
 the total stall time. In to thank Phil Bernstein
 addition, we would like and Dave Lomet for their
 to investigate the use careful reviews of this
 of timers to ease system paper. Also, we want
 management. For example, to thank the other KODA
 a system administrator may group members for their
 increase the stalls for contributions during
 all transactions on the informal discussions.
 system in order to ease Finally, we would like
 CPU contention, thereby to acknowledge the efforts
 increasing the overall of Steve Klein who designed
 effectiveness of the the original KODA group
 system. commit mechanism.

 Conclusions References

 We have presented the
 concept of group commit 1. P. Helland, H. Sammer,
 processing as well as a J. Lyon, R. Carr, P.
 general analysis of various Garrett, and A. Reuter,
 options available, some "Group Commit Timers and
 trade-offs involved, and High Volume Transaction
 some performance results Processing Systems,"
 indicating areas for High Performance
 possible improvement. It Transaction Systems,
 is clear that the choice Proceedings of the 2nd
 of the algorithm can International Workshop
 significantly influence (September 1987).
 performance at high 2. Gawlick and D.
 transaction throughput. Kinkade, "Varieties
 We are optimistic that with of Concurrency Control
 some further investigation in IMS/VS Fast Path,"
 an optimal commit sequence Database Engineering
 can be incorporated into (June 1985).

 Rdb/VMS and VAX DBMS with

 16 Digital Technical Journal Vol. 3 No. 1 Winter 1991
===
Copyright 1991 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

