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Abstract

Digital's database
products, VAX Rdb/VMS
and VAX DBMS, share the
sane dat abase kerne
cal | ed KODA. KODA uses

a groupi ng nmechanismto
conmit many concurrent
transacti ons together.
This feature enabl es high
transaction rates in a
transacti on processing (TP)
envi ronnent. Since group
commit processing affects
t he maxi mum t hr oughput

of the transaction
processi ng system the
KODA group desi gned

and i npl enented severa
groupi ng al gorithms and
studi ed their performance
characteristics.
Prelimnary results
indicate that it is
possi bl e to achieve up

to a 66 percent inprovenent
in transaction throughput
by using nore efficient
groupi ng desi gns.

I ntroducti on

Digital has two general -
pur pose dat abase products,
Rdb/ VMS sof tware, which
supports the relationa

and T. K. Rengarajan

kernel called KODA. In
addition to other database
servi ces, KODA provides the
transaction capabilities
and commit processing for
these two products.

In this paper, we address
some of the issues rel evant
to efficient commt
processi ng. We begin by
expl ai ni ng the inportance
of conmit processing in
achi eving high transaction
t hroughput. Next, we
describe in detail the
current algorithmfor group
conmit used in KODA. We
t hen describe and contrast
several new designs
for perform ng a group
commit. Foll ow ng these
di scussi ons, we present
our experinmental results.
And, finally, we discuss
the possible direction
of future work and some
concl usions. No attenpt
is made to present fornmal
anal ysis or exhaustive
enpirical results for
comit processing;
rather, the focus is on
an intuitive understanding
of the concepts and trade-
offs, along with sone



dat a nodel, and VAX DBMS
sof tware, which supports

t he CODASYL (Conference

on Data Systens Languages)
data nodel. Both products
| ayer on top of a database
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Commit Processing For the purpose of

To follow a discussion

of conmit processing, two
basic ternms nmust first

be understood. W begin
this section by defining a
transaction and the "nmonent
of commt."

A transaction is the
execution of one or

nore statenents that
access data managed by a
dat abase system Generally,
dat abase nmnagenent systens
guarantee that the effects
of a transaction are
atomc, that is, either
all updates perforned
within the context of the
transaction are recorded
in the database, or no
updates are reflected in
t he dat abase.

The point at which a
transaction's effects
become durable is known
as the "nmonment of commit."
This concept is inportant
because it all ows database
recovery to proceed in a
predi ctabl e manner after
a transaction failure. I|f
a transaction term nates
abnormal ly before it
reaches the nonment of
commit, then it aborts.

As a result, the database
system perforns transaction
recovery, which renoves al
effects of the transaction.
However, if the transaction
has passed t he nonent of
commit, recovery processing
ensures that all changes

analysis, it is usefu

to divide a transaction
processed by KODA into four
phases: the transaction
start phase, the data
mani pul ati on phase, the

| oggi ng phase, and the
commit processing phase.
Figure 1 illustrates the
phases of a transaction

in tinme sequence. The

first three phases are
collectively referred to as
"the average transaction's
CPU cost (excluding the
cost of comit)" and the

| ast phase (commit) as "the
cost of witing a group
commit buffer." [1]



made by the transaction are
per manent .

Transaction Profile
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The transaction start
phase i nvol ves acquiring

a transaction identifier
and setting up contro

data structures. This phase
usually incurs a fixed

over head.

The data mani pul ation
phase i nvol ves executing
the actions dictated by
an application program
Qobviously, the time spent
in this phase and the
anount of processing
requi red depend on the
nature of the application.

At sone point a request
is made to conplete the
transaction. Accordingly
in KODA, the transaction
enters the | oggi ng phase
whi ch invol ves updating the
dat abase with the changes
and witing the undo/redo
i nformati on to disk.
The amount of work done
in the | ogging phase is
usually small and const ant
(less than one 1/0O for
transacti on processing.
Finally, the transaction
enters the conmmt
processi ng phase. | n KODA,
this phase involves witing
conmit information to disk,
t hereby ensuring that the
transaction's effects are

recorded in the database
and now visible to other

users.

For sonme transactions, the

have to fetch and nodify
every enpl oyee/ sal ary
record in the conpany
dat abase. The commi t
processi ng phase, in this
exanpl e, represents 0.2
percent of the transaction
duration. Thus, for this
cl ass of transaction,
commit processing is a
smal | fraction of the
overall cost. Figure 2
illustrates the profile of
a transaction nodifying 500
records.

In contrast, for
transacti on processing

applications such as

hotel reservation systens,
banki ng applications, stock
mar ket transactions, or
the tel ephone system

the data mani pul ation
phase is usually short
(requiring few 1/0Cs).

I nstead, the |ogging and
commit phases conprise the
bul k of the work and nust
be optim zed to allow high
transaction throughput.
The transaction profile
for a transaction nodifying
one record is shown in
Figure 3. Note that the
commit processing phase
represents 36 percent of
the transacti on duration,
in this exanple.

Group Comnmit
General |l y, database
systenms nust force

wite information to



data mani pul ati on phase is
very expensive, possibly
requiring a |arge nunber

of 1/Cs and a great deal of
CPU tinme. For exanpl e,

if 500 enpl oyees in a
conpany were to get a 10
percent sal ary increase,

a transaction would

Digital Technica

disk in order to commit
transactions. In the

event of a failure, this
operation pernits recovery
processing to deternine
which failed transactions
were active at the tine

of their term nation and
whi ch ones had reached
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their nonent of conmit.
This information is often
in the formof |ists of
transaction identifiers,
called conmmt |ists.

Many dat abase systens
performan optim zed
version of commt
processi ng where conmit
i nformati on for a group of
transactions is witten to
disk in one |/O operation,
t hereby, anortizing the
cost of the I/ O across
nmul tiple transactions.

So, rather than having

each transaction wite

its own commt list to

di sk, one transaction
writes to disk a commt
list containing the comnrt

i nformati on for a nunber

of other transactions. This
technique is referred to
inthe literature as "group
commt." [2]

Group comit processing

is essential for achieving
hi gh throughput. If every
transaction that reached

the comrit stage had to
actually performan I/Oto
the sane disk to flush its
own comit information

t he throughput of the

dat abase system woul d be
[imted to the I/O rate of
the di sk. A magnetic disk
i s capabl e of performng
30 I/ O operations per
second. Consequently,

in the absence of group
commit, the throughput of
the systemis linmted to

Desi gning an Optim zed Transaction Commt Protoco

There are severa
vari ations of the basic

al gorithms for grouping
multiple comrit lists into
a single 1/0 The specific
group comit algorithm
chosen can significantly

i nfluence the throughput
and response tinmes of
transacti on processi ng. One
study reports throughput
gai ns of as much as 25
percent by sel ecting

an optimal group commit
algorithm [1]

At high transaction

t hroughput (hundreds of
transacti ons per second),

ef ficient comrit processing
provi des a significant

per f ormance advant age.
There is little informtion
in the database literature
about the efficiency

of different methods

of performing a group
conmit. Therefore, we

anal yzed several grouping
desi gns and eval uated their
performance benefits.

Factors Affecting G oup
Conmi t

Bef ore proceeding to
a description of the
experinments, it is

useful to have a better
under st andi ng of the
factors affecting the
behavi or of the group
conmit nechanism This
section di scusses the group
size, the use of tiners to
stall transactions, and the
rel ati onshi p between these



30 transactions per second two factors.

(TPS). Group conmt is

essential to breaking this Group Size. An inportant

performance barrier. factor affecting group
conmit is the number
of transactions that
participate in the group
conmit. There nust be
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several transactions in the
group in order to benefit
froml/O anortization. At
the sane tine, transactions
shoul d not be required

to wait too long for the
group to build up to a

| arge size, as this factor
woul d adversely affect

t hr oughput .

It is interesting to
note that the incrementa
advant age of addi ng one
nore transaction to a
group decreases as the
group size increases. The
i ncrenental savings is
equal to 1/(Gx (G + 1),
where Gis the initia
group size. For exanpl e,
if the group consists of 2
transactions, each of them
does one-half a wite. If
the group size increases
to 3, the incrementa
savings in wites wll
be (1/2 - 1/3), or 1/6
per transaction. If we do
the sane cal culation for a
group size increnmented from
10 to 11, the savings wll
be (1/10 - 1/11), or 1/110
of a wite per transaction

In general, if Grepresents
the group size, and
represents the nunber
of 1/ Cs per second for
t he di sk, the maxinmum
transaction conmit rate
is | x GTPS. For exanple,
if the group size is 45
and the rate is 30 1/GCs
per second to disk, the

transaction throughput of
the transaction processing
system

Use of Tiners to Stal
Transactions. One of the
mechani sms to i ncrease
the size of the conmt
group is the use of tiners.
[1, 2] Tiners are used
to stall the transactions

for a short period of tine
(on the order of tens of

mlliseconds) during conmt
processing. During the
stall, nore transactions

enter the comrt processing
phase and so the group size
beconmes | arger. The stalls
provi ded by the tinmers have
t he advantage of increasing
the group size, and the

di sadvant age of increasing
the response tine.
Trade-offs. This section
di scusses the trade-offs
bet ween the size of the
group and the use of tinmers
to stall transactions.

Consi der a system where
there are 50 active

dat abase prograns, each
repeatedly processing
transacti ons agai nst a

dat abase. Assune that on
average each transaction

t akes between 0.4 and

0.5 seconds. Thus, at

peak performance, the

dat abase system can

commit approximtely 100
transactions every second,
each program actual ly
conpleting two transactions



maxi mum transacti on conm t
rate is 30 x 45, or 1350
TPS. Note that a grouping
of only 10 will restrict

t he maxi mum TPS to 300 TPS,
regardl ess of how powerfu
the conputer is. Therefore,
the group size directly

af fects the maxi nmum

Digital Technica

in the one-second tinme
interval. Also, assune that
the transactions arrive

at the conmt point in a
steady stream at different
tines.
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If transaction commt is
stalled for 0.2 seconds
to allow the commit group
to build up, the group
t hen consists of about 20
transactions (0.2 seconds X
100 TPS). In this case,
each transaction only
incurs a small delay at
commit tinme, averaging
0. 10 seconds, and the
dat abase system shoul d
be able to approach its
peak throughput of 100 TPS.
However, if the mechani sm
del ays conmit processing
for one second, an
entirely different behavior
sequence occurs. Since the
transactions conplete in
approximately 0.5 seconds,
they accumul ate at the
conmit stall and are forced
to wait until the one-
second stall conpletes. The
group size then consists
of 50 transactions,

t hereby maxi m zing the
|/ O anortization. However,
t hroughput is also limted
to 50 TPS, since a group
commt is occurring only
once per second.

Thus, it is necessary to
bal ance response tine and
the size of the commt
group. The | onger the
stall, the larger the
group size; the larger
the group size, the better
the 1/0O anortization that
is achi eved. However, if
the stall tine is too |ong,
it is possible to limt
transacti on throughput
because of wasted CPU
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The concept of using commt
timers is discussed in
great detail by Reuter.

[1] However, there are
significant differences

bet ween his group comnt
schenme and our schene.
These differences pronpted
the work we present in this
paper.

In Reuter's schene, the
timer expiration triggers
the group commit for
everyone. In our schene, no
single process is in charge
of conmt processing based
on a tinmer. Qur conmit
processing is perfornmed
by one of the processes
desiring to wite a commt
record. Qur designs involve
coordi nati on between the
processes in order to el ect
the group conmitter (a
process).

Reuter's analysis to
deternine the optinmum
val ue of the timer based
on system | oad assunes
that the total transaction
duration, the time taken
for comrit processing,
and the time taken for
perform ng the other
phases are the sane for
all transactions. In
contrast, we do not nmke
t hat assunption. Qur
designs strive to adapt
to the execution of nmany
di fferent transaction types
under different system

| oads. Because of the
conpl exity introduced by
allowing variations in



cycl es.
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transaction cl asses, we do
not attenpt to calcul ate
the optimal tiner values as
does Reuter.
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Cooperative Comrit Processing The Commit-Lock Design uses

In this section, we present
the stages in perforning
the group comrit with
cooperating processes, and
we describe, in detail, the

groupi ng design currently
used in KODA, the Conmit-
Lock Desi gn.

Group Committer

Assume that a nunber of
transacti ons have conpl et ed
all data mani pul ati on and
| oggi ng activity and are
ready to execute the conmit
processi ng phase. To group
the comrit requests, the
foll owi ng steps nust be
performed i n KODA:

1. Each transaction
must nmake its conmit
i nformation available to
the group conmitter

2. One of the processes
nmust be selected as the
"group conmtter."

3. The ot her nenbers
of the group need
to be inforned that
their commt work
will be conpleted by
the group conmtter
These processes nust
wait until the commit
information is witten
to di sk by the group
commtter.

4. Once the group conmtter
has witten the commit
information to stable

a VMs lock to generate
groups of commtting
transactions; the | ock

is al so used to choose the
group comitter

Once a process conpl etes
all its updates and
wants to conmit its
transaction, the procedure
is as follows. Each
transaction nust first
declare its intent to
join a group conmt. In
KODA, each process uses
the interl ocked queue
i nstructions of the VAX
system runni ng VMS software
to enqueue a bl ock of
conmit information, known
as a conmt packet, onto a
gl obal Iy accessible comnt
gqueue. The commt queue
and the comit packets
are |located in a shared,
writeabl e gl obal section
Each process then issues a
| ock request for the conmt

| ock. At this point, a
nunber of other processes
are assuned to be going

t hrough the sane sequence;
that is, they are posting
their comrit packets and
maki ng | ock requests for
the commt |ock. One of

t hese processes is granted
the commt |ock. For the
time being, assune the
process that currently
acquires the lock acts as
the group conmitter



storage, it nust inform
t he ot her menbers that
commit processing is
conpl et ed.

Commi t - Lock Desi gn

Digital Technica

The group conmitter
first, counts the numnber
of entries on the commit
queue, providing the
nunber of transactions
that will be part of the
group comit. Because of
the VAX interl ocked queue
i nstructions, scanning
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to obtain a count and
concurrent queue operations
by ot her processes can
proceed simultaneously.

The group conmmitter uses
the information in each
commit packet to format

the comrit block which

will be witten to disk. In
KODA, the commit bl ock

is used as a conmit

list, recording which
transacti ons have conmtted
and which ones are active.
In order to conmt for a
transaction, the group
commtter nust mark each
current transaction as
conpleted. In addition,

as an optim zation, the
group comitter assigns a
new transaction identifier
for each process's next
transaction. Figure 4
illustrates a comit bl ock

ready to be flushed to
di sk.

Desi gning an Optim zed Transaction Commt Protoco

Once the commt bl ock

is modified, the group
committer wites it to
disk in one atomc I/0O.
This is the nonent of
commit for all transactions
in the group. Thus, al
transactions that were
active and took part in
this group commit are now
stably marked as committed.
In addition, as explained
above, these transactions
now have new transaction
identifiers. Next, the
group conmitter sets a
commit flag in each commt
packet for all recently
commtted transactions,
renmoves all commit packets
fromthe commit queue,

and, finally, releases
the comrit |ock. Figure

5 illustrates a comrtted
group with new transaction

identifiers and with commit
flags set.
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At this point, the
remai ni ng processes that
were part of the group
conmit are, in turn
granted the comrt |ock
Because their comit flags
are already set, these
processes realize they
do not need to performa
conmit and, thus, release
the comrit |ock and proceed
to the next transaction.
After all these comitted
processes rel ease the
commt | ock, a process
that did not take part in
the group conmit acquires
the lock, notices it has
not been committed, and,
therefore, initiates the
next group conmt.

There are severa

i nteresting points about
using the VMs | ock as the
groupi ng nechani sm Even

t hough all the transactions
are effectively commtted
after the conmmt bl ock

I/ O has conpl eted, the
transactions are stil
forced to proceed serially;
that is, each process is
granted the | ock, notices
that it is conrmtted, and
then rel eases the | ock

So there is a seria
processi on of | ock enqueues
/ dequeues before the next
group can start.

This serial procession can
be made nore concurrent

by, first, requesting the
lock in a shared node
hopi ng that all processes

| ock request is mastered

on a different node in a
VAXcl uster system the |ock
enqueue/ dequeues are very
expensi ve.

Also, there is no explicit
stall time built into the
al gorithm The | atency
associated with the | ock
enqueue/ dequeue requests
allows the commt queue
to build up. This stall is
entirely dependent on the
contention for the |ock
which in turn depends on
t he throughput.

Group Comit Mechani sms- Qur
New Desi gns

To i nprove on the

transaction throughput
provi ded by the Commit -
Lock Design, we devel oped
three different grouping
desi gns, and we conpared
their performances at

hi gh throughput. Note

that the basic paradi gm of
group commit for all these
designs is described in the
Group Comitter section.
Qur designs are as foll ows:
Commit-Stall Design

In the Cormit-Stall Design,
the use of the commit | ock
as the groupi ng mechani sm
is elimnated. Instead, a
process inserts its comrt
packet onto the commit
gueue and, then, checks
to see if it is the first
process on the queue. |f



committed are granted the so, the process acts as

| ock in unison. However, in the group conmitter. If
practice, some processes not, the process schedul es
that are granted the its own wake-up call, then
| ock are not conmitted. sl eeps. Upon waki ng, the
These processes nust then process checks to see if it
request the lock in an has been committed. If so,
exclusive nmode. If this the process proceeds to its
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next transaction. If not,
the process again checks to
see if it is first on the
commit queue. The algorithm
then repeats, as described
above.

This nmethod attenpts to

elimnate the serial wake-
up behavi or displ ayed

by using the conmit

| ock. Also, the duration
for which each process
stalls can be varied

per transaction to allow
explicit control of the
group size. Note that

if the stall time is too
smal |, a process may wake
up and stall many tines
before it is comitted.

W Illing-to-Wait Design

As we have seen before,
a delay in the commit
sequence i s a conveni ent
means of converting a
response tine advant age
into a throughput gain.
If we increase the stal
time, the transaction
duration increases, which
is undesirable. At the
same tinme, the grouping
size for group commit
i ncreases, which is
desirabl e. The chal |l enge
is to determine the
optimal stall tinme. Reuter
presented an anal ytical way
of determ ning the optinal
stall tinme for a system
with transactions of the
same type. [1]

Ideally, we would like to

Desi gning an Optim zed Transaction Commt Protoco

automatically, because the
dat abase managenment system
cannot judge which is nore
i mportant to the user in a
general custoner situation-
the transaction response
time or the throughput.

The WIling-to-Wit

Desi gn provides a user
paraneter called WIWtine.
Thi s paranmeter represents

t he anmount of tine the

user is willing to wait

for the transaction to
conplete, given this wait
wi |l benefit the conplete
system by increasing

t hroughput. WIWtine may

be specified by the user
for each transaction. G ven
such a user specification,
it is easy to calculate the
conmit stall to increase
the group size. This stal
equals the WIWtinme m nus
the tine taken by the
transaction thus far, but
only if the transaction

has not al ready exceeded
the WIWtine. For exanple,
if a transaction comes to
commit processing in 0.5
second and the WIWtinme

is 2.0 seconds, the stal
time is then 1.5 seconds.
In addition, we can meke

a further inprovenment by
reducing the stall tinme

by the amount of tine
needed for group conmit
processing. This delta tine
is constant, on the order
of 50 mlliseconds (one 1/0
pl us sone conputation).



devi se a flexible schene

t hat nakes the trade-off
we have just described in
real tinme and determ nes
the opti mum conmit stal
time dynamcally. However,
we cannot detern ne

the optimumstall tine

10 Digital Technical Journa

The WI'W par aneter gives
t he user control over

how nmuch of the response
time advantage (if any)
may be used by the system
to i nprove transaction

t hroughput. The choice of
an abnormal ly high val ue
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of WI'W by one process only
affects its own transaction
response tine; it does not
have any adverse effect on
the total throughput of the
system A |ow val ue of WIW
woul d cause small commit
groups, which in turn would
limt the throughput.
However, this can be

avoi ded by administrative
controls on the database
that specify a mni rum WIw
time.

Hi ber Design

The Hi ber Design is sinmlar
to the Commt-Stall Design,
but, instead of each

process scheduling its

own wake-up call, the group
comitter wakes up al
processes in the conmtted
group. In addition, the

group comritter nust wake
up the process that will be
the next group committer

Note, this design exhibits
a serial wake-up behavi or

like the Commit-Lock

Desi gn, however, the
mechanismis | ess costly
than the VMS | ock used by
the Comnmit-Lock Design

In the Hi ber Design, if a
process is not the group
committer, it sinply

sl eeps; it does not
schedule its own wake-

up call. Therefore, each
process i s guaranteed

actual ly schedul e the wake-
up call after a delay.

Such a delay allows the
next group size to becone

| ar ger.

Experi ments

We i npl enented and tested
the Conmmit-Lock, the
Conmmit-Stall, and the
WIlling-to-Wait designs
in KODA. The objectives of
our experinments were

o To find out which
design would yield
t he maxi mum t hr oughput
under response tine
constraints

o To understand
t he performance
characteristics of the
desi gns

In the foll owi ng sections,
we present the details
of our experinments, the

results we obtained, and
some observations.

Details of the Experinents

The hardware used for

all of the follow ng
tests was a VAX 6340
with four processors,
each rated at 3.6 VAX
units of perfornmance
(VUP). The total possible
CPU utilization was 400
percent and the tota
processi ng power of the



11

to sl eep and wake up at
nost once per comit, in
contrast to the Conmmit-
Stall Design. Another
interesting characteristic
of the Hiber Design is that
the group conmitter can
choose to either wake up
the next group comitter

i medi ately, or it can

Digital Technica

conputer was 14.4 VUPs.
As the commit processing
beconmes nore significant
in a transaction (in
relation to the other
phases), the inpact of

t he groupi ng mechani sm on
the transaction throughput
i ncreases. Therefore, in
order to accentuate the
performance differences

Journal Vol. 3 No. 1 Wnter 1991
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bet ween t he vari ous

desi gns, we perforned

our experinments using a
transaction that involved
no database activity except
to follow the comnit
sequence. So, for al
practical purposes, the
TPS data presented in this
paper can be interpreted

as "comit sequences per
second." Also, note that
our system i nposed an upper
limt of 50 on the grouping
si ze.

Results

Usi ng the Commit-Lock
Desi gn, transaction
processi ng bottl enecked
at 300 TPS. Performance
greatly inproved with
the Comrit-Stall Design;
t he maxi mum t hr oughput
was 464 TPS. The Wi ng-

to-Wait Design provided

t he hi ghest throughput,

500 TPS. Using this |ast
design, it was possible to
achieve up to a 66 percent

i mprovenent over the | ess-
efficient Commt-Lock

Desi gn. Al though both tiner
schenes, i.e., the Commit-
Stall and WIling-to-Wit
desi gns, needed tuning

to set the paranmeters and
the Commit-Lock Design did
not, we observed that the
maxi mum t hr oughput obt ai ned
using timers is nmuch better
than that obtained with the
| ock. These results were
simlar to those of Reuter

by the formula: nunber

of servers x 1000/ WIW =
maxi mum TPS. For exanpl e,
our maxi mum TPS for the
WI'W desi gn was obt ai ned
with 50 servers and 90
mlliseconds WIWtine.
Using the formula, 50 X
1000/ 90 = 555. The actua
TPS achi eved was 500,
which is 90 percent of
the maxi num TPS. This
ratio is also a neasure
of the effectiveness of the
experi ment.

During our experinents, the
maxi mum group si ze observed
was 45 (with the WIIing-
to-Wait Design). This is
close to the systemi nposed
[imt of 50 and, so, we
may be able to get better
grouping with higher linmts
on the size of the group

Cbservati ons

In the Conmmt- Stal
and the WIlling-to-Wit
desi gns, given a constant
stall, if the nunmber of
servers is increased, the
TPS i ncreases and then
decreases. The rate of
decrease is slower than
the rate of increase. The
TPS decrease is due to
CPU overl oadi ng. The TPS
increase is due to nore
servers trying to execute
transactions and better
CPU utilization. Figure 6
illustrates how TPS varies
with the nunber of servers,
given a constant stall WW



For our WIling-to- tinme.

Wait Design, the m ninum Again, in the stalling
transaction duration is designs, for a constant

the WIWtine. Therefore, nunmber of servers, if the

t he maxi num TPS, the nunber stall is increased, the

of servers, and the WIW TPS i ncreases and then
stall tinme, neasured in decreases. The TPS i ncrease
mlliseconds, are related is due to better grouping

12 Digital Technical Journal Vol. 3 No. 1 Wnter 1991
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and the decrease is due

to CPU underutilization.
Figures 7 and 8 show t he
effects on TPS when you
vary the comrit-stall tine
or the WIWtinme, while
keepi ng the nunber of
servers constant.

To maxi m ze TPS with

the Comrit-Stall Design,
the foll owi ng "nmountain-
clinmbing" al gorithm was
useful. This algorithmis
based on the previous two
observations. Start with
a reasonabl e value of the
stall and the nunmber of
servers, such that the
CPU is underutilized. Then
i ncrease the nunber of
servers. CPU utilization
and the TPS increase.
Continue until the CPU

i s overl oaded; then,

i ncrease the stall tine.
CPU utilization decreases,
but the TPS increases due
to the | arger group size.

Thi s al gorithm denonstrates
t hat increasing the nunber
of servers and the stal
by small amounts at a
time increases the TPS,
but only up to alimt.
After this point, the TPS
drops. When close to the
limt, the two factors
may be varied alternately
in order to find the true
maxi rum Table 1 shows the
per f or mance neasurenments
of the Conmit-Stall Design.
Comments are included in
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the table to highlight the
per f ormance behavi or the
data supports.
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Table 1
Commit-Stall Design Performance Data
Commi t
St al | CPU Uti -

Nunmber (M - lization

of lisec- ( Per -

Servers_onds) cent)*  TPS_ Comments

50 20 360 425 Starting point

55 20 375 454 | ncreased nunmber of servers,
t herefore, higher TPS

60 20 378 457 I ncreased nunber of servers,
t heref ore, CPU saturated

60 30 340 461 Increased stall, therefore, CPU
|l ess utilized

65 30 350 464 | ncreased nunber of servers,
maxi mum TPS

70 30 360 456 "Over-the-hill" situation, sane
strategy of further increasing
t he nunber of servers does not
i ncrease TPS

70 40 330 451 No benefit fromincreasi ng nunber
of servers and stal

65 40 329 448 No benefit fromjust increasing

st al

* Four_processors_were_used_in_the_experinents. _Thus, the total

possible CPU utilization is 400 percent.

The sanme nount ai n-
clinmbing algorithmis
nodi fied slightly to
obtai n the maxi num TPS
with the WIling-to-Wit

TPS with this design is

i nversely proportional to
the WiwWtinme, while CPU
is not fully utilized.
The first four rows of



Desi gn. The performance

measurenennts of this Table 2 illustrate this
design are presented behavi or. The rest of the
in Table 2. As we have table foll ows the sane
seen before, the maxi mum pattern as Table 1.

Table 2

W Illing-to-Wait Performance Data
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WIlling-to-Wait

Table 2 (Cont.)

Per f or mance Dat a

Wl ling-
to-Wait
St al | CPU Uti -
Nunmber (M - lization
of lisec- ( Per -
Servers_onds) cent)*  TPS_ Comments
45 100 285 426 Starting point, CPU not saturated
45 90 295 466 Decreased stall to | oad CPU, CPU
still not saturated
45 80 344 498 Decreased stall again
45 70 363 471 Further decreased stall, CPU
al nrost saturated
50 80 372 485 I ncreased nunber of servers, CPU
nor e sat ur at ed
50 90 340 500 Increased stall to | ower CPU
usage, maxi mum TPS
55 90 349 465 "Over-the-hill"situation, sane
strategy of further increasing
nunber of servers does not
i ncrease TPS
50 100 324 468 No benefit fromjust increasing

st al

* Four_processors_were_used_in_the_experinents. _Thus, the total

possible CPU utilization is 400 percent.

The WIling-to-Wit

than the Conmm t- St al

Design by adjusting to the

Desi gn
performs slightly better

we expect the WIling-to-
Wait Design to perform nuch
better than the Conmmit-
Stall Design.
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variations in the speed at
whi ch different servers
arrive at the commt

poi nt. Such variations

are conpensated for by

the variable stalls in the
Wl ling-to-Wait Design
Therefore, if the variation
is high and the commit
sequence is a significant
portion of the transaction,

Digital Technica

Future Work

There is scope for nore
interesting work to further
optim ze conmit processing
in the KODA dat abase
kernel. First, we would
like to perform experinents
on the Hi ber Design and
conpare it to the other

Journal Vol. 3 No. 1 Wnter 1991



desi gns. Next, we would
like to explore ways of
combi ni ng the Hi ber Design
with either of the two
timer designs, Commit-Stal

or WIlling-to-Wait. This
may be the best design

of all the above, with a
good mi xture of automatic
stall, | ow overhead, and
explicit control over

the total stall time. In
addition, we would like
to investigate the use

of tiners to ease system
managenent. For exanpl e,
a system adni ni strator may
increase the stalls for
all transactions on the
systemin order to ease
CPU contention, thereby

i ncreasing the overal

ef fecti veness of the
system

Concl usi ons

We have presented the

concept of group commit
processing as well as a
general analysis of various
options avail abl e, sone
trade-offs invol ved, and
some performance results
i ndi cating areas for
possi bl e i nprovenent. It
is clear that the choice
of the algorithm can
significantly influence
per formance at high
transaction throughput.
We are optimstic that with
some further investigation
an optimal conmt sequence
can be incorporated into

Desi gning an Optim zed Transaction Commt Protoco

consi derable gains in
transacti on processing
per f or mance.
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