

 Design of the PATHWORKS for ULTRIX File Server

By Anthony J. Rizzolo, Elizabeth A. Brewer, and Martha A. Chandler

1 Abstract

The PATHWORKS for ULTRIX product integrates personal computers with the
ULTRIX operating system on a local area network. The software supports
both the TCP/IP protocol and the DECnet transport stacks. The design
and implementation of the PATHWORKS for ULTRIX file server is based on
a client-server model. The server provides file, print, mail, and time
services to client PCs on the network. Network file service management is
accessed through a PC-style menu interface. The file server's performance
was optimized to allow parallelism to occur when the client is generating
data at the same time the server is writing the data to disk.
2 Introduction

The PATHWORKS for ULTRIX file server connects industry-standard personal
computers running Microsoft's server message block (SMB) protocol to
Digital computers running the ULTRIX operating system. The server provides
a network operating system for PC integration among users of the ULTRIX,
DOS, and OS/2 operating systems.

The PATHWORKS for ULTRIX server provides file, print, mail, and time
services to client PCs on the network. The software is layered on VAX
systems and on reduced instruction set computer (RISC) hardware. It
supports both the transmission control protocol/internet protocol (TCP/IP)
and the DECnet transport stacks. The base product also provides centralized
server-based management accessed through a PC-style menu interface.

In addition, the PATHWORKS for ULTRIX server implements a network basic
I/O system (NetBIOS) naming service that allows clients on the network
to obtain the DECnet node address of the server in the DECnet environment
or the TCP/IP address of the server in the TCP/IP environment. The DECnet
NetBIOS naming service conforms to Digital's specification for a DECnet
NetBIOS interface. The TCP/IP NetBIOS implementation conforms to the
requests for comment, RFC 1001 and RFC 1002 specifications.[1,2]

This paper discusses the considerations for designing and implementing a
PC local area network (LAN) server in an ULTRIX system environment. It
describes the multiple process model and its component processes that
coordinate management activities and server requests. It then presents
our design of a management interface and our selection of a network
interface. Finally, the paper describes the PATHWORKS file system,
printing, performance considerations, and the server configuration.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 1

 Design of the PATHWORKS for ULTRIX File Server

3 Process Model

The process model selected for the PATHWORKS for ULTRIX server differed
substantially from the process model chosen for the PATHWORKS for VMS
product. The PATHWORKS for VMS server uses a single process model in which
all client requests are processed by a single process, the VMS server. The
PATHWORKS for ULTRIX server, in contrast, uses a multiple process model, in
which one client is serviced by one server process.

Certain characteristics of the ULTRIX operating system environment
determined the choice of a multiple server process model. First, the
ULTRIX operating system constrains a process to 64 simultaneously open
files. Therefore, with multiple server processes, each client connection
is allowed access to 64 open files. In a single process model, a pool
of 64 file descriptors is provided which limits access to 64 open files,
regardless of how many clients connect. In addition, the multiple server
process model has the advantage of being able to run in a multiprocessor
environment.

Within the context of the multiple process model, we required a central
administrative entity-the administration process- that would coordinate
management activities and server requests. The administration process
communicates with server and management processes through message queues.
This process model is depicted in Figure 1 and is described in the
following sections.

Administration Process

The administration process is known as pcsaadmd. As the central
administrative entity, this process is responsible for initialization
and start-up of the server, and for data management while the server is
running. Starting the PATHWORKS for ULTRIX server is accomplished through
execution of the administration process from within the rc.local file
when the ULTRIX system is booted, or from the management menu when the
management interface is run. Initialization of the server environment is
necessary before any server management or connections can be established.

Initialization involves starting the NetBIOS process (pcsanbud), parsing
the configuration file (lanman.ini), creating and initializing a shared
memory segment, creating semaphores and a message queue, parsing the
services database, clearing statistics, defining objects on the DECnet
objects, and establishing signals. The main task of the administration
process is processing requests from the management interface (pcsamgr) and
file server processes (pcsafs). The initialization procedure occurs in the
following sequence.

To simplify server start-up, the NetBIOS process is started from the

administration process. At start-up, the NetBIOS process claims the server
name and responds to name queries from clients during establishment of a
session connection. It also provides for sending datagram and broadcast
messages on the LAN. These two tasks are initiated by the user through the
management interface by means of the Send and Broadcast Message functions.

2 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

All management requests are processed through the administration process.
Request handling is discussed in more detail later in this section.

The administration process parses the lanman.ini file to obtain server
configuration parameters such as maximum number of sessions, connections,
and open files. The administration process uses these parameters to
establish the size of the shared memory segment it creates. The shared
memory segment includes a session database, a connection database, a file
database, common variables, and a locking database. Once shared memory
is created, the administration process initializes it to a known state
that includes clearing and date stamping the server statistics portion
of the segment. The administration process creates semaphores to attain
data integrity in the shared memory segment, since multiple file server
processes read and write to memory.

The services database tracks file and print service creation from
one execution of the server to another. This database is read at
initialization, and the directories offered by the file service defined, as
well as printer information, are verified.

The last step required at initialization is the creation of a message queue
to process incoming requests from the management interface and file server
processes. As previously stated, request processing is the main task of
the administration process. Message queues are used as the interprocess
communication mechanism. Early in the process development, we investigated
other options: named pipes, sockets, and packet passing through shared
memory. Only message queues offered administrative control. Initially, we
used one response message queue for each file server process and one queue
for the management interface. This was unacceptable because the default
number of message queues on the ULTRIX system is 40 without reconfiguring
the kernel. Therefore, we chose to combine the messages on one response
queue from all the file server processes and retain a separate response
queue for the management interface. Since the number of requests from file
server processes is small, this method was acceptable. The administration
process reads requests on one message queue and replies to a message
queue defined in the message. The request queue is established with an
ID known by all processes so they can attach to the queue at start-up.
The administration process handles requests for session establishment
and connection from file server processes as well as requests for system
management/administration from the management interface.

File Server Process

The PATHWORKS for ULTRIX file server is started through one of two
mechanisms, depending on which transport is used. The dnet_spawner process
starts the file server process in a DECnet environment, and the inet_
spawner starts the server in a TCP/IP environment. The server process is

initially started as a root process, since it may need to run on behalf of
several users. When a client issues a connection request, a server process
is initiated. The server then sends a message to the administration process
message queue requesting a session connection. After the session connection

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 3

 Design of the PATHWORKS for ULTRIX File Server

is granted by the administration process, the file server completes its
initialization by connecting to shared memory and waiting for incoming
client requests.

During the design phase of the multiple server process model, it became
clear that using a slow interprocess communication mechanism has a
detrimental impact on the overall performance of the server. For this
reason, we decided to use shared memory for all time-critical shared data.
Because the amount of shared memory is somewhat limited, all data that is
not time critical is communicated across message queues. As can be seen in
Figure 1, the file server and administration processes use shared memory as
well as message queues for communication.

Since multiple processes can simultaneously update and access shared
memory, a method was needed to guarantee data integrity. The methods chosen
varied among the databases, depending on the type and speed of the access
required to the database. Obviously, the easiest and also the slowest way
was single-process management of access to shared memory. This worked well
in the case of allocating connection data blocks, since the administration
process had to be notified of connections. The open and read-write paths
for the file and locking database, however, would be significantly affected
by an incorrect decision. For this reason, we decided to protect these
databases with an ULTRIX semaphore. In effect we single threaded all the
paths through the open path as well as the locking update path. Use of this
semaphore caused little or no degradation in performance. With our system
processes and mechanisms established, we now had to consider the needs of
the system administrator.

4 Management Interface

Our primary goal in designing a management interface for the PATHWORKS for
ULTRIX server was to provide an application that could run unaltered on
any type of terminal. The management interface also had to be consistent
in presentation and manipulation of screens; and most importantly,
it had to be easy to use when managing file and print services,
workstation registration, and ULTRIX system users and groups. Other
design considerations included performance, the ability to extend the
functionality provided, and the ability to port the application to future
platforms.

The management interface was designed to incorporate X/Open Curses
software, which is a set of C library routines. X/Open Curses is provided
by the ULTRIX operating system and is used to optimize screen management.
X/Open Curses code uses the terminfo database, a collection of terminal
definitions and characteristics that enables the application writer to
perform terminal-dependent functions in a terminal-independent manner.
Through X/Open Curses software and its use of the terminfo database,

the PATHWORKS for ULTRIX management interface can support any type of
terminal.[3]

4 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

The next step was to design an easy-to-use application that requires
minimal knowledge of ULTRIX system management. We selected a PC-
style format that uses pull-down menus, input forms, scroll regions
for displaying information, and screen-sensitive help. Default input
information is displayed whenever possible to provide sample data and to
minimize the amount of input required.

The design of the management interface was structured into three layers:
screen manipulation, data validation and presentation, and application
programming interface (API).

Screen Manipulation

The first layer of the management interface is the X/Open Curses software.
All screen manipulation routines reside at this level. X/Open Curses
encompasses the implementation of reverse video attributes for highlighted
text, cursor movement, window updates, and the creation of menus, forms,
and scrolling regions. Any type of screen interaction is performed and
managed by this layer of code. As a result, the screen manipulation layer
is portable to any environment in which X/Open Curses is supported.

Data Validation and Presentation

At the data validation and presentation layer, data obtained from the
screen interface is validated. The data is then packaged and processed
by the API layer. Information returned by the API layer is unpacked and
formatted for screen presentation.

Application Programming Interface

The API layer is responsible for all communication with the administration
process. The management interface does not store or manipulate server
management data directly. Instead it makes requests of the administration
process in the form of APIs through message queues. Each request requires a
response and does not complete until a response is received.

5 Network Interface

When designing an application that must communicate on a network, one
of the important decisions is how to control access to the network. The
Berkeley Software Development version 4.3 of the UNIX kernel, upon which
the ULTRIX operating system is based, provides two network interfaces.

The first network interface is known as the socket interface. It uses a
socket structure to identify the endpoint of an ULTRIX network connection.
Under the ULTRIX system, the socket interface is the primary interface to
the network.

The second network interface in the ULTRIX system is the X/Open transport
interface (XTI). This transport service interface is not restricted to
either the DECnet or the TCP/IP transport. A common interface to the
network allows either transport to be accessed transparently. With XTI

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 5

 Design of the PATHWORKS for ULTRIX File Server

the communication endpoint is identified by a local file descriptor. On
the ULTRIX system, the XTI interface is provided through a library that
converts the XTI calls into socket calls. Since performance was one of
our primary concerns, we decided to use the socket interface because it
connects directly to the ULTRIX operating system.

Multiple Transport Support

In order to support both the TCP/IP and the DECnet transports, we needed to
overcome the differences between a message-based protocol (DECnet) and
a stream-based protocol (TCP/IP). With a message-based protocol, data
received from the network arrives in compact packets. With a stream-
based protocol, message boundaries are not preserved; the data flows in
a stream. Since Microsoft's SMB protocol is a message-based protocol,
the server needs to re-create these message boundaries. As a result,
the server must identify the transport provider. This information is
provided by the socket layer when the server process is started. The server
can re-create the message boundaries by combining this information with
message size information provided in the TCP/IP NetBIOS header. With the
message boundary information, the server can re-create the message. The C
pseudocode fragment in Figure 2 shows the instructions to re-create message
boundaries.

6 PATHWORKS File System

The PATHWORKS file system provides an application layer that attempts
to emulate the DOS file system. Several trade-offs and restrictions were
required in order to implement this file system on the ULTRIX file system.
This section describes these trade-offs and restrictions and explains our
design choices.

6 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

File Name Mapping

The file name space in the ULTRIX system is not restricted to the 8.3
naming format supported by DOS. DOS limits file names to eight characters
followed by an optional period and an optional three-character extension.
This is referred to as DOS 8.3 file name format. DOS file names are
uppercase characters and are case insensitive. Under the ULTRIX system,
the file name is a 32-character string in which the period (.) is a legal
character. The ULTRIX file system is case sensitive and supports both
uppercase and lowercase characters in the file name.

To resolve this incompatibility between operating systems, we mapped the
DOS file name space into the ULTRIX file name space. DOS, being case
insensitive, views the world of file names in uppercase, but ULTRIX
file names are typically lowercase characters. We chose to map all DOS
file names to the equivalent lowercase name. Any file on the host ULTRIX
operating system that meets our criteria, i.e., lowercase names and 8.3
format is visible to the DOS client.

This approach was suitable in all environments except International
Standards Organization (ISO) 9660 CD-ROM file systems. These file names
conform to the DOS uppercase, 8.3 file naming format. When the file server
determines that one of the services is on an ISO 9660 CD-ROM file system,
the file-name mapping algorithm is changed to allow only uppercase file
names that follow the DOS 8.3 format.

DOS Attribute Mapping

The DOS file system provides file attributes that do not necessarily map to
ULTRIX file attributes. The challenge was to preserve these DOS attributes
within the ULTRIX file system without impacting the host system user who
might also be sharing the file. The DOS attributes consist of read-only,
hidden, archive, and system.

The DOS read-only attribute maps directly to the ULTRIX directory
attributes mask. If the write attribute is turned off under the ULTRIX
system, the files change to read-only status.

The DOS hidden attribute specifies that a file should not be displayed on a
normal directory search/lookup. We mapped this bit to the ULTRIX set user
ID bit.

The DOS archive attribute specifies that a file has been changed since the
last time the archive attribute was set. It is generally used by the backup
program to determine which files have changed since the last backup. We
mapped the archive attribute to the ULTRIX set group ID bit.

The DOS system attribute specifies a special system file that is normally
not displayed on a directory listing, and in some cases is not backed up.
We mapped the DOS system attribute to the Owner eXecute bit. If this bit is
set, the server cannot include these files on a normal directory search,
unless requested.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 7

 Design of the PATHWORKS for ULTRIX File Server

Byte Range Locking

The most noticeable difference in byte range locking between the ULTRIX
operating system and the DOS operating system is that byte ranges under the
ULTRIX system are purely advisory. Advisory locking works as a mechanism to
signal that a byte range is currently in use. The ULTRIX system, however,
does not enforce the locks; therefore it is possible to read/write a byte
range that is locked simply by ignoring the lock.

On the other hand, DOS has mandatory locking. If a byte range is locked,
the user can neither read nor write a locked byte range. We needed to
convert the ULTRIX lock manager into a mandatory lock manager from the DOS
clients' point of view. To do this, the ULTRIX lock manager has to check
for a lock on a byte range on every read or write from the file server. If
any portion of the byte range is locked, the client receives a lock failure
message.

In the initial release of the server, we believed that the standard ULTRIX
lock manager would provide enough performance and granularity to allow
DOS client software to function correctly and quickly. We learned that
this was not always the case. For example, in a network file system (NFS)
environment, additional time for granting or denying the lock request
was needed to resolve a lock on the network. In addition, the ULTRIX lock
manager viewed the byte range as a signed integer, but the DOS lock manager
viewed the byte range to be locked as an unsigned integer. This disparity
led to problems with applications that used byte range locks with the sign
bit set to provide synchronization for database updates. We found that the
ULTRIX lock manager was deficient in the DOS client environments. For these
reasons, we decided to write a private lock manager for applications that
could not use the ULTRIX lock manager.

To resolve locking problems among these applications, we designed a
private lock manager for the PATHWORKS for ULTRIX server. We provided
a high-performance lock manager that could lock byte ranges used by DOS
applications. In other words, the server lock manager would treat the lock
range as an unsigned number instead of a signed number. We also provided
the option of passing the lock information to the ULTRIX lock manager for
those applications that needed this functionality.

Open File Mode Locking

The DOS client provides a mechanism for controlling access to opened files.
It allows the client who initially opens a file to control access to the
file by other clients. The DOS client allows files to be opened in one of
four modes:

o DENY_NONE mode allows all types of files to be opened by all users.

o DENY_READ mode allows other users to open the file for writing but not
 reading.

o DENY_WRITE mode allows other users to open the file for reading but not
 writing.

8 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

o DENY_READ_WRITE mode does not allow other users to open the file.

The ULTRIX operating system, on the other hand, has only two modes for a
shareable file lock. The first is SHARED_ACCESS mode, which allows multiple
readers and writers and is therefore equivalent to the DENY_NONE mode. The
other is EXCLUSIVE_ACCESS mode, which does not allow multiple accesses to
the same file and therefore is equivalent to DENY_READ_WRITE mode under
DOS.

Because of these differences, we attempted to map the two modes not covered
by the ULTRIX file lock manager, the DENY_READ and DENY_WRITE modes. After
some investigation, we decided mapping was not necessary. If a file was
opened in one of these two modes, we specified that the ULTRIX server
should open the file in ULTRIX SHARED_ACCESS mode. We reasoned that an
ULTRIX application that was cooperating with a DOS application would not
use these two modes to open the file since they are not available under
the ULTRIX system. Obviously these two modes need to be supported among
DOS-based PCs on the server. Each time a user opens a file, the list of
currently opened files is scanned to enforce the open mode and to be sure
that the ULTRIX operating system conforms to the DOS interpretations of
these modes. Therefore, only the half deny modes being passed through to
the operating system are not enforced. This design decision should pose no
danger to applications sharing data.

Directory Search Implementation

The DOS file search algorithm and the SMB messages that provide support for
directory searches were difficult to implement on the ULTRIX file server.
The core SMB protocol provides only two states for a search context, begin
new search and continue a previous search. However, the server needs to be
informed that the client has completed a directory search context. Then the
server would be able to free local data associated with the search context.
The implementation of this SMB posed two challenges: how to control the
amount of memory required and how to map a search continuation identifier.

To minimize the amount of memory required to maintain search contexts, we
designed a table of search context structures that contains a local timing
value. If the table becomes full and a block (structure and time value)
needs to be reused, the oldest block is deemed reusable. This approach
efficiently manages the unpredictable memory requirements of an SMB search.

The search continuation provides a directory information structure which
contains a four-byte field that determines the point at which the search is
to continue. This four-byte field is well suited to the ULTRIX file system.
The gnode field, a longword, can be used for the four-byte field's search
continuation ID. Given this ID, the server has the ability to parse the
contents of the directory until it finds a file with a matching gnode; it

then continues the search from that point.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 9

 Design of the PATHWORKS for ULTRIX File Server

7 PATHWORKS for ULTRIX Printing

In addition to file services for DOS and OS/2 system-based clients,
PATHWORKS for ULTRIX provides print services for these PC clients.
Our design objective was to allow the PC clients access to all the
functionality on the native ULTRIX print queue in a transparent manner. A
second objective was to implement the functionality provided by NET PRINT,
the client utility for printing, on the native ULTRIX line printer daemon
(LPD).

Although the LPD provided all the basic printing capabilities, it did
not provide timed scheduling of print jobs. To enable timed scheduling,
we added the /AFTER switch to the server through a mechanism within the
ULTRIX operating system. When a /AFTER switch is detected in one of the
extended printing SMBs, a batch job is run at the time specified in the
print request.

The ULTRIX print spooler provides spooling for all types of printers, e.g.,
those attached locally as well as network printers and reverse Local Area
Transport (LAT) printers connected to PCs. Reverse LAT printing is very
important in our environment because most PCs have printers attached and
most installations have a need to share those printers among several PCs.

The ULTRIX print spooler provides print filters which translate files to
various printers. Print filters conceptually sit between the LPD and the
actual file to be printed. During printing, the LPD reads a "printcap"
file to determine if a print filter is associated with this queue. The
print filter is started in a forked process with its standard output device
(stdout) pointing to the printer and its standard input device (stdin)
pointing to the input file stream. The print filter is responsible for
converting the file from the input stream (stdin) into a device-specific
output that is usable by the printer (stdout). This feature allows the
PATHWORKS for ULTRIX server to support printing on a wide variety of third-
party printers.

The design of the ULTRIX printing subsystem enabled the PATHWORKS for
ULTRIX server to provide an interface to many different printers and
printer configurations easily and efficiently.

8 Performance Considerations

As part of the design process, we observed the performance of the file
server during interactions with the client. We needed to compare various
conflicting alternatives and their effects on the overall performance
of the server. Some of the alternatives we studied were the advantages
of using the ULTRIX system cache versus implementing our own cache. We
also studied the issue of persistent lock requests on the network and the

server. These alternatives are discussed in this section.

10 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

File I/O

Since the ULTRIX operating system provides a kernel-based, disk cache
mechanism, we designed the operating system's cache manager to perform
all caching globally. The cache manager updates the cache buffers, performs
read ahead on data streams, and flushes the cache buffers from data written
to disk.

The file server performs disk writes as write behinds. When a request to
write data is received from a client, the server responds by acknowledging
success before the write is attempted (assuming the client has proper write
access to the file). This optimization allows parallelism to occur between
the client and the server because the client is generating more data at
the same time the server is writing the data to disk. If the write fails,
however, the server notes that the last write failed and returns the error
on any subsequent access to the file.

Heuristics

We found that certain applications would continually flood the server with
lock requests even though the lock requests kept failing. These persistent
lock requests from applications used valuable CPU time on the server system
as well as network bandwidth. For this reason, the ULTRIX server needs to
determine if a client is being persistent and continually requesting locks
which are failing. When the server detects continuous lock requests, it
delays the lock request for a random period of time and then checks if the
lock has become available. The server then either grants access if the lock
is available, or returns the error at that time. This procedure reduces
lock request traffic, since most locks are of short duration.

9 Security

Connection requests between client and server require a security check.
Since PATHWORKS for ULTRIX was designed to be layered on the ULTRIX
operating system, we were able to take advantage of its security features.
When a client attempts to connect to the server, a username and password
can be passed as part of the connect message. If these are supplied, the
user is validated through system calls to obtain the password file entry
for that user. If the user is not found in the /etc/passwd file or if the
password is invalid, the user is denied connection. If the ULTRIX system is
running in enhanced security mode, further checks are made to ensure the
account has not been disabled or the password expired. In either of these
cases, the connection would be denied. If a username is not supplied, a
default guest account may be used to establish privileges.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 11

 Design of the PATHWORKS for ULTRIX File Server

10 VAX Versus RISC Considerations

During the development of the PATHWORKS for ULTRIX file server, we did not
anticipate that our code would have to differentiate between VAX and RISC
architectures. We expected that code written for an ULTRIX system in a RISC
environment would be recompiled on a VAX system. For the most part, our
assumptions were correct, except in the areas of memory allocation. On the
VAX system, shared memory maps directly after the data segment in memory.
This implementation prohibits the allocation of memory above a shared
memory segment. In the RISC implementation, shared memory is allocated
at the very top of the memory image; therefore a great deal more memory can
be allocated before the bottom of the shared memory segment is reached. The
difference in shared memory allocation between the RISC and VAX systems is
shown in Figure 3.

To increase the data segment size in the VAX system, we replaced all
malloc()with the following pseudocode:

Disconnect from shared memory malloc()
Reconnect to shared memory

Since this code is required only in a VAX environment, it is compiled when
the server is built.

11 PATHWORKS Server Configuraion

The PATHWORKS for ULTRIX file server allows the system manager to configure
the server environment to make the most efficient use of shared memory. The
following parameters included in the lanman.ini file are the determining
factors that enable shared memory to be scaled.

o maxsessions: The maximum number of PC workstations that can be
 simultaneously connected to the PATHWORKS for ULTRIX server.

o maxconnections: The maximum number of connections PC workstations can
 make to the services offered.

o maxopens: The maximum number of files the server can have open
 simultaneously.

o uniqueopenfiles: The maximum number of unique open files the server can
 have open simultaneously.

o maxserverlocks: The maximum number of byte range locks the server can
 lock simultaneously.

To help the user apply these parameters to a particular system, the "pcsa

memory" command acts as a shared memory sizing calculator. It allows
the user to input the parameters and then either indicates that the new
parameters will fit in the current system, or that the system shared memory
parameters need to be changed to support the new configuration.

12 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Design of the PATHWORKS for ULTRIX File Server

12 Information Logging

PATHWORKS for ULTRIX information logging was designed for the ULTRIX system
manager as well as writer/users of the LAN Manager application. It provides
event and error logging information in two distinct formats. The first
format uses the ULTRIX system log file: syslog. This log file is typically
monitored by ULTRIX system managers. All processes which comprise PATHWORKS
for ULTRIX submit configuration information and error conditions to this
file. The file server process also logs information regarding service
usage, sessions, and connections.

The second form of event logging is performed entirely by the server
process. The server process logs error and audit events to LAN Manager-
compatible log files: error log and audit log. These log files are
accessible through the management interface as well as through the
LAN Manager API interface provided with DOS and OS/2 LAN Manager
implementations. These files contain information on session logon/logoff,
password errors, connections started/rejected, resource access granted
/denied, and server status changes.

13 Summary

The PATHWORKS for ULTRIX file server, together with the PATHWORKS for
DOS and PATHWORKS for OS/2 products, provides a distributed computing
environment. The file server is based on a client-server model that offers
transparent access to ULTRIX system resources from PC clients. It provides
the necessary tools to integrate these two diverse computing environments
in a manner that is both efficient and easy to manage.

14 Acknowledgements

Many people were involved in the design and building of the PATHWORKS for
ULTRIX file server from its inception to its shipment. We wish to thank
all those people: Paul Messier and Jim Flaherty, who guided our efforts;
Dan Smith, who designed and implemented the NetBIOS layer; Ken Cardinale,
who wrote the product documentation; Marlene Steger, who ensured that the
product shipped on time; and the many individuals who successfully brought
this product to market.

15 References

1. Protocol Standard for NetBIOS Service on a TCP/UDP Transport: Concepts
 and Methods, Internet Engineering Task Force (IETF) RFC 1001 (March
 1987).

2. Protocol Standard for NetBIOS Service on a TCP/UDP Transport: Detailed
 Specification, Internet Engineering Task Force (IETF) RFC 1002 (March

 1987).

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 13

 Design of the PATHWORKS for ULTRIX File Server

3. ULTRIX-32 Guide to Curses Screen-Handling, ULTRIX Document Set, Software
 Development, Volume 2 (Maynard: Digital Equipment Corporation, Order No.
 AA-MF07A-TE, 1988).

16 Author Biographies

Anthony J. Rizzolo A principal software engineer in the PCIE Server
Development Group-Open Systems, Anthony Rizzolo designed and implemented
the PATHWORKS for ULTRIX file server process. He also designed the data
link and port driver layers for the PATHWORKS for DOS product. Prior to
this work, Tony was a member of the Internal Software Support Group and
the TOPS-10 Engineering Group, where he designed and implemented the data
link layer for the KLNI Ethernet adapter. Tony joined Digital in 1981. He
received a B.S.E.E. from Stevens Institute of Technology.

Elizabeth A. Brewer Beth Brewer is a supervisor in the PCIE Server
Development Group-Open Systems. Beth served as project leader for the
PATHWORKS for ULTRIX version 1.0 product as well as the principal architect
and implementor of the PATHWORKS for ULTRIX administration process. She
also worked for the PCIE Client Development Group-PC DECwindows. Beth
joined Digital in 1987 after receiving a B.S. in mathematics with a minor
in computer science from the University of Massachusetts at Lowell.

Martha A. Chandler A senior software engineer in the PCIE Server
Development Group-Open Systems, Martha Chandler was project leader for
the PATHWORKS for ULTRIX version 1.1 product. She designed and implemented
the management interface for the PATHWORKS for ULTRIX server. Prior to
this work, Martha maintained MS-Windows terminal emulation for the PCIE
Client Development Group. Before joining Digital in 1988, she received a
B.S. in mathematics with a minor in computer science from the University of
Massachusetts at Lowell.

17 Trademarks

The following are trandemarks of Digital Equipment Corporation:
ALL-IN-1, DEC, DECnet, DECwindows, Digital, the Digital logo,eXcursion,
LAT, PATHWORKS, ULTRIX, VAX, VAXcluster.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark of X/Open Company Limited.

14 Digital Technical Journal Vol. 4 No. 1, Winter 1992
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

