DECnet Transport Architecture
By Mtchell P. Lichtenberg and Jeffrey R Curless
1 Abstract

The PATHWORKS fanily of software products includes an inplenentation of

the DECnet transport protocol to allow Intel-based personal conputers
access to network resources. This inplenentation, the DECnet Network
Process (DNP) transport conponent, provides basic file and print services,
term nal enul ation, and application services. The new DNP conponent for the
version 4.1 rel ease of the PATHWORKS for DOS client software is witten in
assenbly | anguage to i nprove performance and reduce nenory usage. The DOS
and OS/ 2 versions of the conmponent contain the sane base source code, thus
decreasi ng the devel opnent and mai nt enance costs.

2 Introduction

Digital's PATHWORKS fam |y of software products provides the neans to

i ntegrate personal conputers into the Digital network environnent.

The PATHWORKS for DOS client software includes device drivers, network
transports, utility progranms, and applications that allow PCs full access
to the resources available in |Iocal and wi de area networks (LANs and WANs).
Transparent file sharing, electronic mail, and term nal emulation are
exanpl es of services supported by PATHWORKS client software.

The DECnet protocol suite is inplenmented in Digital's standard set of
software for interconnecting VAX and reduced instruction set conputer
(RI'SC) systens. DECnet software, which is included in the PATHAORKS cli ent
software, enables PC integration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing Digital networks and to
provi de common utility progranms and network nmanagenment capabilities.

However, integrating PCs into a network system presents many design
chal l enges to software devel opers. They must provide network access
without Iimting the functionality of the PCs and without conpronising
the conpatibility of the existing PC software and peripherals. Since the
PC architecture has limted nenory resources and few built-in features
for networking, PC network software architectures nmust be as transparent
as possible, reducing nenory usage and enul ating | ocal peripherals and
software interfaces.

To inplenent this transparent architecture, the PATHWORKS products conply
with PC-related industry standards. Mst such standards result from popul ar
vendor software applications or hardware. For exanple, Mcrosoft's LAN
Manager software product influenced the acceptance of the industry-
standard server nessage bl ock (SMB) protocol. This session |ayer protocol

i mpl emented over a variety of transports, is used in the LAN Manager

redirector for transparent file sharing and peripheral emulation. Digita
licenses the LAN Manager software in order to provide these services as
features of the PATHWORKS product family. Digital extended the LAN Manager

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 1

DECnet Transport Architecture

across a LAN or a WAN system by using the DECnet transport protocol as the
transport layer in its PATHWORKS products.

In this paper we first present our rationale behind the design of the
DECnet transport conponent in PATHWORKS for DOS version 4.1, as well as

in PATHWORKS for OS/2 version 2.0. We then describe the new conponent's
internal structure, follow a typical network operation through the
conmponent, and conpare this version of the software conponent with previous
versi ons.

3 PATHWORKS Client Software and the DNP Conponent

Since its initial rel ease, the PATHWORKS product fanmily has inplenmented

the DECnet transport protocol to provide access to basic file services

and printer sharing, term nal erulation, and application services. This
network software inplenmentation is called the DECnet Network Process (DNP)
transport conponent. Figure 1 illustrates the relationship between the DNP
transport conponent and the other nmenory-resident PATHWORKS client software
conmponents.

Goal s for PATHWORKS Client Software

PC network software products are judged primarily on two criteria:
performance, usually neasured with popul ar benchmark prograns, and resident
menory usage, a limted resource that may restrict other applications.

I ncreasi ng performnce and decreasi ng nenory usage are mjor goals for al
new rel eases of the PATHWORKS client software. In the PATHWORKS version
4.1 client software, Digital sought to double the perfornmance of the

DNP transport conponent for small data transfers, while decreasing the
size of the code by 50 percent. Another goal was to significantly reduce
mai nt enance costs in order to free engineering resources for future project
devel opnent .

Bef ore descri bi ng how we went about achieving these performance, nenory,
and devel opnent cost goals in PATHWORKS version 4.1, we review of the
functionality of the DECnet DNP inpl enentation. W al so discuss the
conmponent in relation to other PATHWORKS client conponents to give the
context in which our design decisions were nade.

The DNP Conponent Functionality

Application prograns can use DNP transport services through one of two
software interfaces: the network basic I/O system (NetBIOS) interface
and the I/0O control block (10OCB) interface. The wi dely accepted NetBI OS
interface is used by applications and drivers that conply with industry-
standard specifications to provide peer-to-peer transport services on

a LAN. The 10CB interface is specific to Digital's DECnet transport

i mpl ementation of the DECnet protocols. |IOCB provides a socket interface
simlar to the one used by the ULTRI X operating system This |IOCB interface
is used by DECnet-specific application prograns.

2 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

To communi cate with the network, the DNP transport component calls the
data link layer (DLL) software interface. The DLL conponent is used by

al |l PATHWORKS client conponents to send and receive packets on the LAN
Thi s conmponent derul tipl exes incom ng packets based on their protocol type
(e.g., local area transport [LAT], local area systemtransport [LAST], or
DECnet transport) and delivers these packets to the correspondi ng PATHWORKS
client conponent. The DLL conponent also transmits packets on the LAN,
either directly or indirectly by calling standards-based network drivers.
To reduce nenory consunption, the DLL conponent provides a gl obal buffer
pool that the DNP and other transport conponents can use for building
networ k packets or for storing unacknow edged dat a.

To provide timng and background process services, the DNP conponent calls
t he PATHWORKS real -time Schedul er (SCH) conponent. The SCH comuni cat es
directly with the DOS operating systemand the PC s tinmer and interrupt
hardware to create a sinple cooperative process environnent. This

envi ronnent includes sleep and wake calls, and periodic interval timers.
The functions of the SCH conponent are sinilar to those perforned by

true multitasking operating systens, such as the OS/2 system which use
preenpti ve schedul i ng.

Consi derations for a New DNP Conponent Design

In previous PATHWORKS client software, separate teans inplenmented and

mai nt ai ned the DOS and OS/2 versions of the DNP transport conponent. We
decided to use the same base source code for both versions and thus reduce
devel opnent and mai nt enance costs. W then proceeded to consider our design
options.

Oiginally, the DNP conponent was witten in the C progranm ng | anguage.
The internal architecture remai ned basically unchanged during the five
years following its release. This stable code shoul d have been easy to port
bet ween operating systens. However, the internal architecture of the OS/2
system was never considered in the original design because this system

was not available until 1988. Retrofitting the DOS version of the DNP
conmponent for the OS/2 operating systemwas difficult, and we were not

able to maintain a common source code base.

To achi eve the performance, menory, and devel opnent cost goal s descri bed
earlier in this section, we considered the follow ng three approaches:

1. Rewite the current DNP transport conponent
2. Wite a new DNP transport conponent in C

3. Wite a new DNP transport conponent in assenbly |anguage

Rewriting the current DNP conponent would not have produced a desirable
amount of code common to the DOS and OS/2 versions. In addition,

this approach would have resulted in only mnimally inproving the

mai ntai nability of the code. Witing a new transport conponent in C would
have yi el ded a nore portable code, but the performance and nenory usage
woul d not have conpared favorably with other vendors' transports. W

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 3

DECnet Transport Architecture

decided to wite the new transport conponent in assenbly |anguage to neke
optimal use of the limted nmenory avail able on today's personal conputers.

4 PATHWORKS Version 4.1 DNP Transport Conponent Design

Internally, the DNP transport conmponent conprises various nodul es that
correspond approximtely to the | ayers of the DECnhet protocol suite, as
shown in Figure 2. Later in this section, we describe the major DNP nodul es
and how t hey cooperate.

4 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

Three types of events can cause the DNP conponent to respond or to "wake
up": user requests, received packets, and tiner ticks. Al of these events
are asynchronous, since they are generated by hardware interrupts or user
actions that are not nmanaged by the operating system Each tinme the DNP
conmponent processes an event, variables and data structures internal to

t he conponent change. In designing the conponent, we had to ensure that the
events would not interrupt one another

To protect the data structures in a generic way, all versions of the
PATHWORKS DNP conponent use a queuing system called the executive.
Asynchronous events are queued to the executive nodul e, where a semaphore
guards the dispatching and processing routines. The queue and the semaphore
guarantee the followi ng: the receipt of a new event does not interrupt
ongoi ng processing, and events are processed in the order in which they
arrive.

Under the DOS operating system the main |oop of the executive nodul e

uses the PATHWORKS SCH conponent to "sleep," process pending events,

and sl eep again. Events that arrive while the main |oop is executing are
sinmply placed on the queue. Operating under the DOS system on which no
background processing services exist, the DNP conponent uses the PATHWORKS
SCH conponent. Since the OS/ 2 operating system does provide a background
processi ng environment, the correspondi ng version of the DNP conponent
uses the native background processing and scheduling functions of the OS/2
operating systemto performthe sanme tasks.

Data Structures

The DNP transport conponent uses three primary data structures to namnage
network links and to transfer data: the request (REQ data structure, the
link status block (LSB) data structure, and the |arge data buffer (LDB)
data structure

To queue events for processing, the REQ data structure is allocated froma
gl obal pool. Pointers to a user request or to network data are stored in
the REQ structure and then placed on the executive di spatcher queue. The
REQ structure is also used to descri be unacknow edged data and to store
events in the event log. Using the same pool for different purposes saved
menory and decreased the overall conplexity of the conponent. Figure 3
illustrates a typical request queue to the executive dispatcher

The executive nodul e reads each event, i.e., collection of nmessages

or user requests, fromthe request queue and di spatches the event to
the appropriate handler routine, according to event type. The routine
then further dispatches the event to specific subroutines to handle the
i ndi vi dual nessages or requests. The | owest-Ilevel routines keep network
links active and transfer data to and fromthe renpte system

In previous versions of the DNP conponent, the REQ data structure consuned
48 bytes of nenory. We reduced its size to 22 bytes by creating vari ant
records that contained only those data fields necessary to identify the

type of request.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 5

DECnet Transport Architecture

The LSB data structure maintains the current status of a l|ogical link.
In addition to the network services protocol (NSP) variables, the LSB
structure stores other data, including the queue of unacknow edged data
and the queue of outstanding transnmt and receive requests. Figure 4
illustrates the contents of the LSB and associ ated data structures for
an active logical link.

6 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

The user requests are attached to queues on the logical |ink. For storage
of unsent or unacknow edged data, the DNP conponent uses a REQ data
structure to point to an LDB data structure. The LDB structures bel ong

to the Ethernet or token ring data |ink conponent and are shared by other
protocols. Before transmtting data, the DNP conponent allocates first

an LDB data structure and then a REQ data structure that points to the
LDB. The REQ structure is placed on the outgoing nmessage queue of the LSB
structure, and the NSP | ayer eventually transnmts the REQ data.

I nternal DNP Mbdul es

The DNP transport conponent consists of various nmodul es. W now descri be
the data link control (DLC) modul e, the NSP nmodul e, and the NetBlI OS and
| OCB nodul es.

The DLC nodul e is responsible for communication with the Ethernet or token
ring data |link conponent. Only the DLC nodule calls the data |ink, and

the differences between the DOS and OS/ 2 versions are hidden in the DLC
nodul e to present a consistent software interface to the rest of the DNP
component .

To make the NSP and DECnet Phase IV routing nodul es as operating-system

i ndependent as possible, we developed a sinplified software interface to
comuni cate with the Ethernet or token ring DLC nodul e. The DLC nodul e
calls the data link that is specific to the operating system Providing

the software interface allowed us to use conmon code for all of the nodul es
that do not directly access the data |ink.

The NSP nodul e manages the transport protocol, including the buffering,
flow control, and error recovery nechanisns. |In PATHAORKS version 4.1, we
changed the buffering and flow control algorithns to nmatch nore closely the
types of traffic that PC network applications are likely to generate.

Most users of the NetBIOS interface post receive requests before
transmitting a request for data froma server. Sone inplenmentations of
the NetBIOS interface do not buffer received or transmtted data inside
the transport conponent, so applications nust prepare to receive before
requesting data fromthe server. To best manage the incoming data, the
DNP component of PATHWORKS version 4.1 uses XON XOFF fl ow control for
Net BI OS | ogi cal links and segnment flow control for logical |inks that use
the IOCB interface. The previous version used segment flow control for
both the NetBI OS and |1 OCB interfaces. XON XOFF fl ow control causes fewer
nmessages to be transmitted on the wire, especially in request/response
session | ayer protocols, and is nmost successful when the receiving node
has a buffer ready to accommodate the incom ng data. Segnment flow contro
is more robust and allows the DNP conponent to better regulate the rate

of incoming data. This nmethod of flow control can be especially usefu
for non-request/response protocols such as those used in the DECw ndows
sof t war e.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 7

DECnet Transport Architecture

The NetBI OS and |1 OCB nmodul es form the session |ayers for the DNP conponent.
In previous versions of the DNP conmponent, the NetBlI OS nodul e was | ayered
on top of the IOCB interface. However, as we nentioned earlier in the
paper, nost popul ar network applications use the NetBIOS interface. W
decided to increase the perfornmance of those applications by designing the
new DNP conmponent in such a way that the NetBlI OS nodule directly calls the
NSP nodul e.

We recogni zed anot her el enent of the DNP design that could be inproved.
Earlier DNP versions copied the user's NetBlIOS request into a local data
structure for easy access. The extra resources required to store and copy
the user requests dininished the overall performance of the DNP conponent.
To i nprove performance, the DNP conmponent now stores a pointer to the
original user's request and nani pul ates the request directly.

Net BI OS conpatibility is one problemthat nmany vendors face when writing
network transport conponents. The NetBI OS software interface is defined in
several different specifications, and many applications depend on quirks
and bugs in the design. The PATHWORKS NetBI OS i nterface nust enul ate these
bugs conpletely for certain applications to work properly. W paid carefu
attention to the bug reports fromcustoners in previous versions of the
PATHWORKS software when rewiting the NetBIOS | ayer to provide conplete
conmpatibility.

5 A Typical Network Opeation

To illustrate the sequence of events through the DNP conmponent for a

typi cal network operation, consider the transnission of 64 kil obytes

(KB) of data through the NetBI OGS interface. The application that w shes to
send the data constructs a NetBIOS control block (NCB) data structure and
submits it to the NetBI OS software interface. The DNP conponent receives
control, creates a queue entry for the NCB structure, and then wakes the
SCH conponent. Waki ng the SCH conponent causes the nain | oop of the DNP
conmponent to begin execution. The executive nmodul e checks the request type
and di spatches the entry to the NetBl OS nodul e where the transmt request
is placed on the logical link's transmit request queue. The transmt
request initially points to the user's NCB and the begi nning of the user's
data buffer.

The NSP nodul e copies data into the LDB data structures and queues these
LDBs onto the unacknow edged data queue. The anpunt of data copied depends
on the size of the transnit pipeline, which is a network managenent
paranmeter. Each tinme data is copied into an LDB data structure, the pointer
advances in the transmt request queue. Wen all of the data is copied
into the LDBs, the user's transmit request is conpleted, allow ng the
application to conti nue execution while the DNP conponent transmits the
gueued dat a.

8 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

If the flow control mechanism pernits sending data, the NSP nodul e

calls the routing layer to add routing headers. The data link contro

nodul e then transnits the packets on the LAN. The renpte network system
responds wi th acknow edgnment nessages, which are placed on the request
gueue and processed when the DNP conponent returns to the main | oop. An
acknow edgrment nessage causes the LDBs to be returned to the data |ink
control nodul e and nmekes space avail able on the transnmt pipeline. The NSP
nmodul e can then refill the transmt pipeline by copying nore user data into
the LDB data structures and restart the transnit process.

6 Results

We achi eved our project goals for the DNP transport conponent in PATHWORKS
version 4.1 client software. As a result of the new design, we reduced
menory usage, inproved performance, and reduced nmintenance cost.

Menory Usage

We reduced the resident size of the DNP conponent from 53KB to 33KB. The
reduction in the size of the internal data structures freed up enough
menory resources to allow the DNP conponent to handl e over 200 concurrent
network |inks. Previously, the DNP conponent was limted to 64 |inks.

Per f or mance

By coding in assenbly |anguage, and optinmizing the path for sending data
nmessages to the network, performance was nearly doubled for snall data
transfers. Small data transfers account for the majority of transfers in
dat abase applicati ons.

The graph shown in Figure 5 represents DECnet performance, neasured in
nmessages transferred per second, as a function of nessage size, ranging
from64 to 65,500 bytes. We include data for versions 4.0 and 4.1 of

the DNP conponent. As the nessage size increases, the curves converge
because the Ethernet adapter's performance beconmes the limting factor

for throughput. Smaller nmessage sizes are typical in many industry-standard
PC benchmar k prograns and applications.

The benchmark program used to cal cul ate DECnet performance transfers data
fromone PC to another as fast as possible, using fixed nessage sizes.
The hardware used in these tests consisted of 20-negahertz Intel 80386

m croprocessors with 16-bit DEC Et her WORKS Turbo (DE200) adapters running
on a private Ethernet segment.

Mai nt enance Costs

Debuggi ng the comopn source code base for the DOS and OS/2 versions is

much sinpler than for the previous version of the DNP conmponent. Since
the OS/ 2 version uses the nmenory protection features of the PC s Inte
m croprocessor, invalid nmenmory references under the OS/2 version cause
systemtraps that woul d not have been detected under the DOS version
Nearly 90 percent of the code is commpn to the DOS and OS/ 2 versions of

Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

the DNP conponent. The nunmber of source lines was reduced from 73, 000 (the
DOS version only) in PATHWORKS version 4.0 to 53,000 (the DOS and OS/ 2
versions conbi ned) in PATHWORKS version 4.1. Rewiting the conponent also
i mproved its conpatibility with third-party NetBlI OS applicati ons.

Debuggi ng features were added to the DNP conponent in PATHWORKS version
4.1 that allow custoners to adjust their DECnet configuration easily and
preci sely. The DNP conponent now collects statistics on the maxi mum nunber
of REQ LSB, and LDB structures allocated, and on the size of each pool
Using this feature, we found that the version 4.0 DNP conmponent all ocated
nearly twice as many REQ data structures as it needed under normal client
wor kl oads. As a result, we |lowered the default allocations to further
reduce nenory consunption.

7 Concl usi on

The DECnet transport conponent project for the version 4.1 rel ease of

t he PATHWORKS client software was a success; we cane very close to our
original goals for nmenory, performance, and software devel opnent costs. In
addition, many of the techniques, algorithnms, and data structures used for
this effort can be applied to future network transport devel opnent.

8 General References

| BM Net BI OS Application Devel opnent CGuide (Arnmonk, NY: Internationa
Busi ness Machi nes Corporation, 1987).

M crosoft/3Com Network Driver Interface Specification, version 2.0.1
(Rednmond, WA: M crosoft Corporation, 1990).

PATHWORKS Programmer's Reference, version 4.1 (Maynard, MA: Digita
Equi pment Corporation, 1991).

DECnet Phase |V CGeneral Description (Maynard, MA: Digital Equipnent
Corporation, Order No. AA-N149A-TC, 1983).

M crosoft MS-DOS Programmer's Reference (Rednond, WA: M crosoft
Cor poration, 1990).

M crosoft OS/2 Device Driver Reference (Rednmond, WA: M crosoft Corporation
1989).

9 Trademarks
The foll owing are trandemarks of Digital Equi pment Corporation

ALL-IN-1, DEC, DECnet, DECw ndows, Digital, the Digital |ogo, eXcursion
LAT, PATHWORKS, ULTRI X, VAX, VAXcl uster.

0OS/2 is a registered tradenmark of International Business Machi nes
Cor poration.

10 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

DECnet Transport Architecture

10 Author Biographies

Mtchell P. Lichtenberg Mtch Lichtenberg is a principal software engineer
in the Personal Conputing Systems Group. He is responsible for the design
and i npl enentation of the PATHWORKS network client transport architecture
and for various other aspects of Digital's PATHWORKS PC integration
products. Before joining Digital in 1986, he was enpl oyed by the Xerox
Pal o Alto Research Center as a software engineer in the Xerox Artificia
Intelligence Systenms Division. Mtch holds a B.S. (1986) from Worcester
Pol ytechnic Institute.

Jeffrey R Curless As a principal software engineer in the Persona
Computing Systenms G oup, Jeff Curless worked on the OS/2 data |ink driver
and on the PATHWORKS token ring inplenentation. He is currently devel opi ng
a new configuration utility to support the future direction of the
PATHWORKS product set. Since joining Digital in 1986, he has contributed to
t he devel opnment of PATHWORKS software under both the DOS and OS/ 2 operating
systenms. Jeff holds a B.S. in conmputer science fromthe University of New
Hanpshire.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 11

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

