DECnet for OpenVMS AXP: A Case History

1 Abstract

The DECnet for OpenVMS AXP networking software facilitates the integration
of OpenVMS AXP systens into existing DECnet computing environnents.

Thi s new software product supports application migration by providing

the foll owing networking capabilities: support of conpatible libraries,
consi stent application programming interfaces, and the assurance of a
common senmantic operation with the OpenVMS VAX system The team i npl enmented
a phased porting process and executed the project cooperatively. The effort
resulted in a solid know edge base with which to approach future porting
undert aki ngs. Using comon code where possible and avoi ding architecture-
speci fic code were | essons | earned during the project.

The DECnet for OpenVMS AXP networ ki ng software product plays an inportant
role in the integration of OpenVMsS AXP systens into existing DECnet
conmputing environments. The availability of DECnhet software on the Al pha
AXP hardware platformfacilitates application mgration. The networKking
capabilities needed to support this nmigration activity include support

of conpatible libraries, consistent application programrng interfaces
(API's), and the assurance of a common semantic operation with the OpenVMS
VAX system The network features such as network file transfer, renote
file access, renote | ogin, downline |oad, and |ocal and renote network
managenment all ow t he OpenVMsS AXP systemto participate fully in a DECnet
net wor k.

The purpose of this paper is to describe the process of porting the
DECnet - VAX product to the OpenVMS AXP operating system The DECnet - VAX
product consists of networking software written in the MACRO 32 and BLI SS-
32 progranm ng | anguages. The software contains privileged system code,
device drivers, and user-node utilities.

This paper is divided into two major sections. The first section presents
an overview of the project, including discussions about the DECnet features
supported in the OpenVMS AXP operating system the project schedule, and
the maj or DECnet for OpenVMS AXP conponents. The second nmjor section
details the process of porting DECnet-VAX software to the OpenVMS AXP
operating system including testing and debuggi ng. This section provides

i nformati on on nonportable coding practices and identifies specific problem
areas. It concludes with a summary of the | essons |earned during the course
of the project.

2 Project Overview

In addition to presenting the DECnet for OpenVMs AXP features, this section



details how we derived a project schedul e and gives an overvi ew of the
sof twar e conponents.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1



DECnet for OpenVMS AXP: A Case History

Sof t war e Code Base

Prior to the formation of a teamto port a DECnet product from VAX to

the Al pha AXP architecture, the DECnet-VAX devel opnment group conpl eted

a feasibility study of porting DECnet-VAX Phase |V to the Al pha AXP
architecture. This effort was necessary because the DECnet-VAX software was
not designed with porting in mnd. The study concluded that it would take
four engineers twelve nonths (i.e., 48 person-nonths) to port DECnet - VAX
to the OpenVMS AXP operating system After exam ning the proposal and
investigating the alternatives, we decided that the best approach woul d be
to start by porting DECnet-VAX V5-4.3, a Digital Network Architecture (DNA)
Phase 1V inplenmentation.[1l] One of the nost inportant factors in naking
this decision was that this software version was in external field test

and was nearly ready for shipnment to custonmers. Another consideration was
that some very inportant fixes had been made in that rel ease, and we wanted
to offer our custoners the highest quality possible in the first version

of DECnet for OpenVMS AXP software. Since that tine, we have continued to

i mprove our DECnet software for the OpenVMS AXP operating system and have
recently incorporated sonme fixes from DECnet for OpenVMS VAX V5. 5-2.



2 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

DECnet for OpenVMS AXP Feat ures

The first rel ease of the DECnet for OpenVMS AXP networ ki ng product is
packaged with the OpenVMS AXP operating system The initial offering

i ncludes the support of DECnet Phase |V protocols running over Ethernet or
fiber distributed data interface (FDDI) |ocal area networks. This rel ease
supports distributed task-to-task comuni cations using the sanme set of
docunent ed programm ng i nterfaces supported in the DECnet-VAX environment.
At this tinme, DECnet for OpenVMS AXP software does not support wi de area
comuni cati ons devi ces and host-based routing. Future rel eases of DECnet
for OpenVMS AXP nay include symmetric rultiprocessor (SMP) and cluster
al i as support.

Proj ect Schedul e

The DECnet for OpenVMS AXP project schedule was primarily driven by the
overall OpenVMS AXP operating system product schedule, with the DECnet
conmponent schedul ed for delivery in Novenmber 1991. The DECnet-VAX porting
project officially began in early January 1991, after the code base was
sel ect ed.

Porting Estinmates. After analyzing the work required to achieve the port,
we devel oped general porting guidelines and estinates based on a nunber

of factors, including the | anguage the software was witten in, the anmount
of software to port, and the nunber of software conponent nodul es. W then
combi ned these estimates to determ ne an overall project schedule. Table 1
presents the guidelines we used for the porting estinates.

We used two nethods to estinate the ampbunt of work required to conplete

the port. The Mddul e Size Method takes into account the nunber of I|ines

of code per software nodul e. The Mbdul e Count Method uses the nunber of
nodul es per software conponent to determ ne the workl oad. Both nethods

take into consideration the progranmm ng | anguage used in each nodul e.

Tabl e 2 presents details of the conponent nodul e count and sizes. W
further categorized the software being ported into three groups: privileged
code, device driver, and user-node utility. The software type was used to
estimate the amount of time needed for linking. In general, we allocated
nore tinme for privileged code and device drivers.

The estimtes were used to derive a first-pass schedule and to deterni ne
resource allocation. A nunmber of other factors affected the final schedule.
A major factor that we could not quickly estinmate was the portability of
the software. The software techni ques encountered and described in this
paper such as coroutines, up-level stack references, and condition code
usage had a direct inmpact on the schedule. Also, during the first three
nmont hs of the project, significant tinme was spent |earning howto port
code. During this |learning period, we devel oped the skills, know edge, and



techni ques used t hroughout the renai nder of our
Once we established the estimation netrics, the
estimates cal cul ated for each conponent. Tabl es
anount of time required to port each DECnet for

Digital Technical Journal Vol. 4

porting worKk.

data was conpiled and tine
3 and 4 show the average
OpenVMs AXP conponent.

No.

4 Speci al

| ssue 1992 3



DECnet for OpenVMS AXP: A Case History

Based on these calculations, we estimated that it would take 13 person-
nmont hs just to port the DECnet-VAX software. W then used project
managenment software to plan the schedule. The schedul e shown in Table

5 indicated that it would take 48 person-nonths to neet the OpenVMS AXP
schedul ed conpl etion date of Novenber 22, 1991. W mamde our first network
connection on July 25, 1991, 20 person-nmonths into the project. Although
much work renmai ned, we were well ahead of the Novenber target date.

Since we were ahead of schedule, we assisted in the porting of other
conmponents, including RTPAD, CTDRIVER, RTTDRIVER, and REMACP, all discussed
later in the paper. In addition, we were able to add support for FDDI

M | estones. The OpenVMS AXP project schedul e consisted of a series of
functional internal base l|evels nunbered one to five. In ternms of the whole
OpenVMsS AXP proj ect schedul e, DECnet for OpenVMS AXP was targeted for base
| evel five. However, it was highly desirable to provide file transfer and
renmote login capability over DECnet as early as possible. The project team
wor ked closely with the OpenVMS AXP group to deliver this support prior to
base | evel four.



4 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

Common Code

One of the nost inportant decisions that hel ped us deliver our software
ahead of schedul e was buil ding common code for the VAX and Al pha AXP
systens. During the course of porting code, we discovered two advant ages

to building conmon code. The first was having the ability to generate VAX
and Al pha AXP images from a single set of source code. The second was being
abl e to debug our ported changes in a stable OpenVMS VAX environment. W
acconplished this by rewiting code that required change so that it worked
on both platfornms. We nade architecture-specific code conditional on the
platformon which it would execute. Qur long-termgoal is to incorporate
comon code into future DECnet for OpenVMS products.

DECnet for OpenVMS AXP Conponents

This section describes the major DECnet for OpenVMS AXP conponents

and lists the porting issues relevant to each.[2] Figure 1 shows the

i nterconnection of the various conponents of the DECnet for OpenVMS AXP
software. Detailed information for each porting issue is further discussed
in this paper under the Porting |ssues heading.

NETDRI VER. NETDRI VER i s a pseudo device driver, i.e., a device driver that
does not directly control any hardware devices. It inplenments the routing,
end comuni cation, and session control |ayers of the Phase IV version of
DNA. [ 1]

The queue 1/ O request ($Q O systemservice is the interface into the
session control |ayer. The NETDRI VER routing | ayer comuni cates with

ot her device drivers that inplenment the data |ink |ayer of DNA. NETDRI VER
comuni cates with NETACP (another conponent discussed later in this
section) to perform network managenent functions, to report state and
networ k topol ogy changes, and to perform operations that require process
cont ext .

NETDRI VER is written in MACRO 32 code and presented us with many porting

i ssues, including device driver changes, coroutines, nenory managenment
changes, page size dependencies, atomicity and granularity problens,
OpenVMS AXP operating system data structure changes, unaligned references,
and up-level stack references.

MOM The nmmi nt enance operations nodule (MOM inmge processes service
operations defined by the nmaintenance operation protocol (MOP). One such
service operation is downline |oading renote systems. MOM uses NDDRI VER
(described in the next subsection) to communicate with the renpte system
over a DECnet circuit. MOM comuni cates with NETACP to gather information
about nodes requesting to be downline | oaded. NETACP creates a process
runni ng the MOM i nage when a request for a service operation is received on



a circuit enabled to perform service operations.

MOMis witten primarily in BLISS-32 code. Porting issues included renoving
dependenci es on the format of a VAX argument |ist, condition handling
changes, and Al pha AXP i mage header changes.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5



DECnet for OpenVMS AXP: A Case History

NDDRI VER. The pseudo device driver NDDRIVER inplenents an interface that
allows MOMto use a DECnet circuit to perform service operations using

DNA MOP. The MOM i mage uses the $Q O system service interface to send MOP
nmessages to and receive MOP nessages from NDDRI VER, whi ch then conmuni cates
with the data Iink device drivers to transmt and receive these nmessages.
NDDRI VER commruni cates with NETACP to perform tasks that require process
context and to receive notification of state changes to circuits enabl ed
for service operations.

NDDRI VER is witten in MACRO 32 code. Porting issues included changes to
device drivers, nenory managenent, and OpenVMS AXP operating system data
structures, as well as page size dependencies.

CTDRI VER, RTTDRI VER, and REMACP. CTDRIVER is a pseudo device driver for
remote terminals using the DNA command terninal (CTERM) protocol. CTDRIVER
and RTTDRI VER performsinmilar functions with the exception that RTTDRI VER
is used for interoperability with older inplenmentations of renpte term na
support. REMACP is an ancillary control process (ACP) that receives

i ncom ng requests for renmote term nal support. After REMACP establishes a
connection with the rempte node, either CTDRI VER or RTTDRI VER conmuni cat es
directly with NETDRIVER to send and receive renmpote term nal protoco
nmessages.

CTDRI VER, RTTDRI VER, and REMACP are written in MACRO 32 code and presented
the foll owing porting issues: device driver changes, unaligned references,
OpenVMS AXP operating system data structure changes, and for REMACP
changes in the interface with CTDRI VER

NETACP. NETACP runs as an ACP that assists NETDRI VER in performng

network operations that require process context. Exanples include creating
processes for incomng logical |inks and assigning channels to data |ink
devi ces. NETDRI VER and NETACP al so work together to maintain informtion
about the state of the network. Another mmjor function performed by NETACP
i s the managenent of the network configuration paraneters residing in
virtual nenory.

NETACP is witten in MACRO 32 code. Porting issues included coroutines,
usage of processor status |longword (PSL) condition codes, menory nmnanagenent
changes, page size dependencies, atomicity and granularity problens,
OpenVMsS AXP operating system data structure changes, and unaligned
references. In addition, the use of "poor programer's |ockdown," a nmethod
of | ocking pages into a working set, required nodification

NETSERVER. The NETSERVER image is run by server processes created to handle
incom ng logical |ink requests. NETSERVER i nvokes the i nage or command
procedure associated with the network object specified by the incom ng
logical link. To avoid the overhead of process creation, a server process



can be reused after the logical Iink it was servicing is term nated. Ildle
server processes register thenselves with NETACP so that they nay be reused

for another |ogical I|ink.

6 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

NETSERVER is written in BLISS-32 code. The only porting change necessary
was the addition of the BLISS VOLATILE attribute to several data
decl arati ons.

NCP. The network control program (NCP) is the user interface for network
managenment. NCP communi cates with other network nmanagenment conponents using
the network information and control exchange (N CE) protocol. NCP can be
used to manage the | ocal node as well as renote nodes. \Wen managi ng the
| ocal node, NCP exchanges NI CE protocol nessages with the NMLSHR shareabl e

i mmge. For renote managenment, NCP creates a logical link to the network
managenment |istener (NM.) object on the renpte node and exchanges N CE
protocol nessages over this |ogical |ink.

NCP consists primarily of BLISS-32 nodul es. The mmj or porting issue
associ ated with NCP was changing the code to use LIB$TABLE PARSE r at her
t han LI BSTPARSE

NMLSHR. NMLSHR i s a shareabl e i nage that processes N CE protocol network
managenment nessages on an OpenVMS system NM.SHR decodes NI CE nessages
received as input and perforns the requested managenent operation. NM.SHR
buil ds NI CE protocol nessages as a response to requests asking for network
managenment information to be returned. NCP and NML both link with the
NMLSHR i mage to call the routines that process the N CE protocol nessages.

NMLSHR is witten in BLISS-32 and MACRO- 32. Porting issues included
dependencies on the format of a VAX argunment |ist and changes required
to link shareabl e inmges.

NML. The network nmanagenent |istener (NM.) inmage is run when a renpote

node requests a connection to the NML object to performrenote network
managenment operations. NM. sends NI CE protocol nmessages to and receives
them fromthe renpte node. NML passes NI CE protocol nessages received from
the renpte node to NMLSHR for decodi ng and receives nessages from NMLSHR to
send to the renote node.

NML is witten in BLISS-32 code. The only porting change made to NML code
was to add the BLISS VOLATILE attribute to one data declaration.

EVL. The event |ogger (EVL) receives event nessages fromthe vari ous DNA
| ayers. EVL can also act as an event sink for nessages generated at a
renote node. EVL is started by NETACP and declares itself as a network
obj ect so that renmpte nodes can connect to the EVL object and send event
nmessages. EVL can log events to a file in binary formor format the
nmessages i nto sonething readabl e by a network nanager

EVL is witten in BLISS-32 code. Porting issues included addi ng the BLISS
VOLATI LE attribute to sonme data structure definitions and aligning data



structure fields on natural boundaries.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 7



DECnet for OpenVMS AXP: A Case History

DTS and DTR. The DECnet test sender (DTS) and the DECnet test receiver
(DTR) are cooperating prograns that can be used to test the network
connection between two nodes. DTS runs on the |ocal node and communi cat es
with DTR on the rempte node. DTS and DTR can be used to test the throughput
and reliability of a line over which DECnet is running.

DTS and DTR are witten primarily in MACRO 32 code. The two mmj or porting

i ssues associated with DTS and DTR were changing the code to use LIB$TABLE
PARSE rat her than LIB$TPARSE and addi ng sonme BLISS-32 code to support

fl oati ng- poi nt operations.

RTPAD. RTPAD provi des the connection between a |local termnal and the
renote term nal services of a rempte node. RTPAD is invoked as the result
of executing the SET HOST conmand of the Digital Conmand Language (DCL).
RTPAD conmuni cates with REMACP and CTDRI VER or RTTDRI VER on the renote
systemto provide renpte term nal support. RTPAD accepts input fromthe

| ocal term nal (which could be another renpte term nal) and sends this
data over the network to the renmote node. Qutput fromthe renpte node is
recei ved by RTPAD and di spl ayed on the |ocal termn nal

RTPAD is witten in MACRO 32 code. Porting issues included unaligned
references and aligning data structure fields on natural boundaries.

NI CONFI G NICONFI G is the Ethernet configurator that |listens to the MOP
systemidentification nessages broadcast on Ethernet circuits and nmintains
a database of configuration information for all systens heard. NCP is used
to manage and display the information nmaintained by NIl CONFI G NI CONFI G runs
as a process created by NMLSHR and comruni cates with NMLSHR over a DECnet

| ogical link using the NI CE protocol

NICONFIGis witten in BLISS-32 code. The only porting change was to renove
t he nodul e switch LANGUAGE

HLD. The host | oader (HLD) communi cates with the DECnet-RSX satellite

| oader to downline |oad tasks to an RSX-11S node. HLD is witten in MACRO
32 code. The only porting change was to update the structure definition

| anguage used to create one data structure.

M RROR. The | oopback nmirror participates in network services protoco
and routing |layer |oopback testing. MRROR is witten in MACRO 32 code.
No porting changes were required though changes were made to the |ink
procedure.

3 DECnet-VAX Port to the OpenVMs AXP Operating System

This section discusses the devel opnment environment, process, and issues
related to porting the DECnet-VAX product to the OpenVMS operating system



8 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

DECnet for OpenVMS AXP Devel opnent Environnent

DECnet for OpenVMS AXP is built with and integrated into the OpenVMs AXP
operating system Mny changes were being nmade to system data structures
that directly affected the DECnet software. These changes required the
DECnet for OpenVMS AXP software to be built with and tested on nany interim
operating system base | evels before the conmbi ned OpenVMS AXP operating
system and DECnet for OpenVMs AXP kit was shipped for |ayered product

devel opnent .

Because the devel opnent tools changed throughout the project, we used the
same tools to port the DECnet-VAX software as were used to devel op the
operating system base | evels. When we copied portions of an OpenVMS AXP
base level, we also copied the tool directories associated with the system
build. We used cross conpilers for MACRO 32 and BLI SS-32, which allowed

us to devel op Al pha AXP software on an OpenVMS VAX system [3] In addition,
we used the OpenVMs AXP linker, librarian, and system dunp anal yzer (SDA)
cross tools on the VAX system[4,5] W al so used the OpenVMs AXP debuggi ng
tools Delta and XDelta on the Al pha AXP prototype hardware. [ 6]

Initial DECnet for OpenVMS AXP testing was acconplished on a VAX system
Such testing was possible because we designed a majority of the DECnet for
OpenVMsS AXP code to run on both VAX and Al pha AXP hardware platforms.

The Al pha AXP prototype systemused for testing utilized a shared di sk

that contained the OpenVMS AXP operating systeminmages. The inmages and

test procedures were copied onto the disk froma VAX system Each tine new
DECnet for OpenVMS AXP images or test procedures had to be added to the
shared di sk during a test or debug session, the Al pha AXP test system had
to be stopped, the disk nounted on the VAX system images copied, the disk
di snount ed, and the Al pha AXP system rebooted. Providing file transfer
support by nmeans of the DECnet for OpenVMS AXP software early in the Al pha
AXP project provided increased productivity for anyone testing on Al pha AXP
pr ot ot ype systens.

Porting Process

The process of porting the DECnet software fromthe VAX hardware platform
to the Al pha AXP platform consisted of the follow ng steps: code
preparation, conpilation, linking, code review, debug, and testing. W

did not start the task of porting DECnet-VAX with a conpletely clear vision
of the total process. As we progressed and | earned nore about the tools and
porting process, we inproved our porting techniques and, as a result, our
productivity.

Qur strategy was to begin by porting the drivers and privil eged code.
These conponents were the nost conplex; they were witten conpletely in



MACRO 32 code and had the greatest potential for change. W started with
NETDRI VER and NETACP, assigning one engi neer to work on each conponent. As
our porting group grew in nunber, we began to port, in parallel, the BLISS
nmodul es that conprise NCP, NML, NMLSHR, EVL, and MOM

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9



DECnet for OpenVMS AXP: A Case History

The following is an overview of the process we used to port the DECnet-VAX
software to the Al pha AXP platform Later sections contain details of
codi ng practices that had to change.

Code Preparation. Qur first task was to create procedures that we could
use early in the porting process to conpile single nmodul es of a DECnet for
OpenVMsS AXP conponent. We al so ported the component's build procedure to
use the new Al pha AXP cross tools.

Next, we began to prepare the code for initial conpilation. MACRO 32 code
nmust have each entry point identified prior to the initial conpile. Entry
points are identified by a conmpiler directive such as .JSB ENTRY and . CALL_
ENTRY. Each directive accepts optional paranmeters that identify register
usage. However, this information is not required at this point in the
porting process. The Al pha AXP MACRO 32 conpiler will provide register
usage hints during the conpilation, if so directed. As the team becane
famliar with the porting process, we were able to conbi ne these steps and
i nclude the register usage information when declaring entry points. Also,
as our experience increased, we were able to nmake changes to nonportabl e
codi ng practices prior to the initial conpile of a nodule.

Qur experience proved, as we expected, that BLISS code is far easier to
port than MACRO 32 code. For the DECnet-VAX conponents containing BLISS
nodul es, we began the port by running the conponent's build procedure.
BLI SS routines do not require that entry points be identified. The
conpi |l er can process each nodule, identify errors, and provide warning
and i nformati onal nessages.

Conpil e Process. After we conpleted the initial code preparation and
created custom zed build procedures, the real iterative process of porting
began. At this point we conpiled one or nore nmodul es, nmade additiona
nodi fi cati ons based on the conpilation results, and reconpiled until we
were reasonably satisfied that all the errors were fixed.

The Al pha AXP cross conpilers, the MACRO 32 conpiler in particular, have
the capability of providing a vast array of informational and warning
nmessages. When conpiling a nodul e, we always requested all informationa
nmessages. The information assisted us in identifying the input and out put
registers as well as the registers that the conpiler automatically
preserved. Using this information, we verified the register usage in

each routine and added the infornation to the entry-point directives.

O her informational and warni ng nessages directed us to coding techni ques
that required change. By working with one nodule at a tine, we avoided
maki ng repetitive porting errors in nultiple nmodules prior to our conplete
under st andi ng of how to solve the nore conpl ex porting probl ens.

Some i nformati onal messages caution that certain coding techniques such



as data alignment should be nodified. We observed that attenpting to
make changes to align all data structure elenents prior to conpleting
prelim nary debug and testing caused many debug probl ens. Therefore, we
decided to establish a porting policy to change only as much code as was
absol utely necessary prior to the initial debug and test of a DECnet for

10 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

OpenVMsS AXP software conponent. Adhering to this policy required carefu
consi deration, since sonme atomicity and granularity problems that are not
resol ved/ addressed ni ght cause code failures during debug. [ 3]

NETDRI VER and NETACP cont ai ned architecture-specific code, including nenory
managenment, driver tables, and structure definitions, which had to be nade
conditional for the OpenVMsS AXP and OpenVMs VAX systens. A prefix file was
added to each MACRO 32 nodul e during the Al pha AXP conpilation step. This
file contained an Al pha AXP decl aration that allowed us to include the
directives required for conditional conpilation. To conpile the ported code
on a VAX system it was necessary to provide a VAX declaration and macros
for the various entry-point directives that when expanded contai ned no

i nstructions. These were placed in a common library file and conditionally
conpiled. The library file is included in each nodule. Figure 2 is an
exanple of a library file that contains a VAX decl arati on and macr os.

BLI SS architecture-specific code was nmade conditional using the %f
9%l i ss(bliss32v) or % f %liss(bliss32e) constructs for OpenVMs VAX and
OpenVMsS AXP, respectively.

After porting all the nodules within a conponent, the conponent's build
procedure was run to ensure that each nodul e had been ported w thout error
This was typically the first attenpt to link the conmponent. W also ran the
OpenVMS VAX procedure to ensure that the code would continue to conpile and
link on the OpenVMs VAX operating system

Li nki ng. The process of linking was difficult at tinmes. The DECnet for
OpenVMsS AXP software contains drivers, systeminmges, and shareabl e

i mges. Each conponent required changes to the link procedures. W nade

t hese procedures conditional for both the OpenVMS VAX and t he OpenVMS AXP
operating systens.

The process of linking the ported nodul es brought to Iight many unresol ved
references. I n general, these references were to external routines that

had changed for the OpenVMS AXP operating system One of the nost difficult
aspects of the porting project was determ ning which changes to the OpenVMS
operating system had an inpact on our project. Determ ning these changes
was difficult because DECnet for OpenVMs AXP is tightly integrated into the
OpenVMsS AXP operating system The process of porting applications to the
OpenVMs AXP envi ronment should not be as difficult.

Code Review. When all the known porting problens found during the conpile
and |ink phases had been corrected, we began our code review process.

The original VAX code, the ported code, and a difference listing were
available to the porting team One or nore nenbers of the team reviewed

t he changes nade and pointed out any problens that were identified to the
person responsi ble for the nodul e being reviewed. W all had previously



agreed that the reviews would be friendly and that egos would be |eft out
of the process. W found that our successful code reviews were well worth
the effort.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 11



DECnet for OpenVMS AXP: A Case History

Initial reviews turned up differing phil osophies regarding the porting
process. W discussed these differences and reached a consensus. The
reviews uncovered errors in the porting process, and correcting these
probl ems reduced the amount of debuggi ng required. The review process al so
allowed us to agree on and nmi ntain codi ng standards.

Debuggi ng. Qur approach to debuggi ng the DECnhet for OpenVMs AXP software
was to build the commn ported code for a VAX system and to repl ace the
OpenVMS VAX images with our ported version on one of our workstations. W
began by | oadi ng the ported NETDRI VER and NETACP conponents. Since nany
of the required changes were common to both OpenVMS AXP and OpenVMS VAX
systens, we were able to debug nuch of this code before we had access to
Al pha AXP hardware. We found and fixed a number of problenms using this

t echni que.

When we were reasonably confident that the ported code was working on the
OpenVMS VAX operating system we began testing on Al pha AXP prototype

har dware, which fortunately had just becone avail able. W conpleted the
driver load and ACP initialization testing. The initial test uncovered
sonme problens that required special workarounds to allow debug to conti nue.
These problens were corrected in |ater versions of the tools. Since the
user interface had not yet been ported, test code was witten to start
DECnet for QOpenVMS AXP and begin debugging the $Q O interface to the
driver.

Eventual |y NCP, NM., and NMLSHR were ported, and nore conprehensive
debuggi ng began. We used the OpenVMS AXP XDelta and Delta tools to debug

t he DECnet for OpenVMS AXP code on our Al pha AXP prototype hardware. System
failures were debugged using the SDA cross tool on a VAX system W | earned
how to trace call chains by studying the OpenVMS calling standard.[ 7]

Under standi ng the format of |inkage pairs, procedure descriptors, and

regi ster save areas made debuggi ng much easier prior to the availability of
these features in SDA. Debuggi ng on an Al pha AXP systemis nore difficult
than on a VAX system since nost VAX instructions generate nultiple Al pha
AXP instructions whose positions are optinized by the conpiler to take
advant age of Al pha AXP architecture features. Thus, it is not always easy
to follow the Al pha AXP code |line by |ine because the generated Al pha

AXP code from one | anguage statenment is interspersed with Al pha AXP code
generated from anot her | anguage statenent.

Testing. After solving the obvious problens during the debug process,

we began to test the DECnet for OpenVMS AXP code. Early versions of the
OpenVMsS AXP file system record nmanagenment services (RMS), and the file
access |listener (FAL) were nade available to us. We in turn provided the
DECnet for OpenVMS AXP code to the group porting OpenVMS RMS and FAL for
their use in debugging. W were then able to run test scripts that used
a variety of DCL commands to perform | oops of renote copies, differences,



and directory listings of renpote files. DECnet network nanagenent scripts
tested the network managenent interface. DTS and DTR were used to perform
data transfer testing. Since the DECnet for OpenVMs AXP software was

avail able early, it was used by other Al pha AXP porting groups on Al pha

12 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

AXP prototype hardware in various locations. As the code stabilized, a
ti mesharing system was set up, which provided the opportunity for nore
testing.

Porting |ssues

When we began porting the DECnet-VAX software to the Al pha AXP hardware
platform we found nany codi ng conventions could not be used. Mst of these
codi ng practices are called out by the cross conpilers, which significantly
hel ped the porting effort.[3]

The following is a discussion of sone problenms we encountered while porting
and how we sol ved them

Entry Points. Approximately four nonths into the project, the porting team
deternmined that using the .JSB _ENTRY directive in NETDRI VER was goi ng

to make porting difficult. The difficulty was due to the conplexity of

the code and the fact that sone code paths contained nmore than a dozen

| ayers of subroutine calls. W concluded that the code, which had existed
for a long tinme, already saved and restored the correct registers. W
decided that trying to communicate the correct |ist of input, output, pass-
t hrough, and preserve registers to the conpiler could be an inpossible
task, especially given our schedule. W investigated the possibility of
using the .JSB32_ENTRY directive. This directive allows the specification
of registers that nust be preserved but does not take any input, output,

or scratch paranmeters. The OpenVMS AXP MACRO 32 cross conpiler will not
automatically preserve any registers when this directive is used. A great
deal of care nmust be taken when using this entry-point directive.

Qur decision to use .JSB32_ENTRY to declare entry points led to an

i nteresting problemw th asynchronously executing code that could interrupt
ot her threads of execution. The DECnet-VAX code that we ported used PUSHR
and POPR instructions to save and restore registers that were nodified

by DECnet-VAX code interrupting another thread of execution. Wen adding
the .JSB32_ENTRY directives, we specified a register preserve paraneter
only on external entry points, assum ng that the renmai nder of the origina
DECnet - VAX code was saving the proper registers. The preserve paraneter
ensures that all 64 bits of the registers specified are saved at routine
entry and restored at routine exit. The PUSHR and POPR instructions
preserve only the loworder 32 bits of the specified registers. However, if
DECnet - VAX code in a routine wi thout the .JSB32_ENTRY preserve paraneter

i nterrupts another thread of execution that nakes use of the upper 32 bits
of a register, these upper 32 bits would not be properly restored when
control returned to the interrupted thread. The solution was to specify the
regi ster preserve paranmeter on the .JSB32_ENTRY directives used to declare
the entry points of routines in DEChet for OpenVMS AXP that are capabl e of
interrupting other threads of execution.



Whenever we changed the input or output paraneters to an interna
subroutine, we also changed the nane of that subroutine. This effort hel ped
identify all the internal calls made to subroutines whose interface had
changed.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 13



DECnet for OpenVMS AXP: A Case History

Coroutines. A feature of the VAX architecture used throughout the NETACP
and NETDRI VER conponents is called a coroutine. Coroutines used in MACRO
32 allow a subroutine to call code fragnments in other subroutines. This
techni que uses the junp-to-subroutine construct JSB @SP)+ to junp between
coroutines. The code exanple shown in Figure 3 denobnstrates the use of the
JSB construct.

The general flow of the exanple is for MAIN to call COROUTINE with RO equa
to 0 and Rl equal to 1. Usually, COROUTINE changes the value of Rl to 2

and calls back MAIN at address SAVE. |f COROUTINE is entered with Rl not
equal to 1, then RO is set to 1 and the coroutine dialogue term nates. MAI N
at address SAVE then tests RO and exits. Under normal circunstances, MAIN
at address SAVE continues, storing the returned value of RlL in DATA and

cal ling back the coroutine at address FINAL. COROUTI NE at address FI NAL
then changes the value of RL to 3, sets the return status in RO to 1, and
returns to MAIN at address TERM NATE. TERM NATE then exits MAIN via the RSB
i nstructi on.

Al entry points in MACRO 32 code on an OpenVMS AXP operating system
nmust have an entry directive. Thus, it is not possible to use the JSB
construct to junp to any randomline of code, as the previous exanple
denmonstrates. To do so, the code shown in Figure 3 would have to be split
into subroutines, each with a .JSB_ENTRY or .JSB32_ENTRY entry directive.
Al so, we had to change the inplenmentation of coroutines. Rather than use
the stack to pass return addresses, we passed each return address in a
regi ster.

Since sonme coroutines ported were nore conplex than the exanple shown in
Figure 3, we devel oped a technique to port VAX coroutines to the Al pha AXP
architecture. Wien a coroutine is split into nultiple routines, sone code,
such as that testing returned val ues, may change relative location. In

our exanple, the error processing at SAVE is no |onger necessary. |nstead,
CORQUTINE returns to MAIN if it detects an error, and MAIN sinply returns
toits caller with the status in RO. The VAX code exanple in Figure 3 was
converted to Al pha AXP code using our technique. The resulting code is
shown in Figure 4.

The use of coroutines on Al pha AXP systens shoul d be di scouraged because of
the overhead associated with storing the return address in registers and
the additional consunption of stack space. Rather than a sinple return
address on the stack, there will be a register save area on the stack

for each subroutine that makes up the coroutine. Recursive coroutines can
consune |large quantities of stack space. W have since converted coroutines
used in main code paths to straight in-line subroutine calls.

Stack Usage. MACRO 32 code uses a nunber of common codi ng techni ques that
requi re knowl edge of the state of the stack and that nust be changed for



the OpenVMS AXP operating system One such technique, referred to as an

up-l evel stack reference, occurs whenever a subroutine attenpts to access
i nformati on (address or data) stored on the stack by its caller. Paraneter
passi ng sonetinmes uses this technique. |If a routine pushes argunents onto

14 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

the stack prior to junping to a subroutine, the called subroutine does
up-l evel stack references to retrieve the argunents. O her techniques

i nclude using the stack as a commpn data area or attenpting to nmanipul ate
the caller's return address in order to alter the programfl ow.

All these techniques require re-coding. Wien we encountered code that
passed paraneters on the stack, we nodified the code to pass paraneters in
registers. If a structure was being passed, separate nenory was allocated
and the address of the structure passed in a register. In one case, NETACP
used coroutines to performspecific functions to update a common data

area allocated on the stack. This code was redesigned to elimnate the
coroutines and up-level stack references. Another alternative would have
been to pass the address of the data area on the stack to the called
routine.

Altering the programfl ow when error conditions were encountered was al so a
comon techni que used in the DECnet-VAX MACRO 32 code. Subroutines renoved
the return address fromthe stack and returned to the caller's caller

We nodified the code to renove the up-level stack reference (the caller's
return address) and return a flag in a register to signal the caller that a
change in the programfl ow was desired.

Condition Codes. The Al pha AXP architecture does not support gl oba
condition codes in the processor status word. Some routines set condition
codes and returned to the caller, which proceeded to performa conditiona
branch on the results of the called routine. Al occurrences of this
techni que were changed; routines now pass the result of any conditiona
test to the caller in a register

Granularity and Atomicity Issues.[8] The NETACP and NETDRI VER conponents
access shared data structures. Since NETDRI VER can interrupt NETACP, the
DECnet - VAX code relies on the atomicity of VAX instructions to provide
synchroni zed access to shared fields in the data structures. The DECnet - VAX
code also relies on byte (8-bit) and word (16-bit) granularity for menory
writes. Since the granularity of Al pha AXP nenory wites is either |ongword
(32-bit) or quadword (64-bit), DECnet-VAX code that required atom c access
to word fields had to be nmodified to protect against wites to neighboring
byte and word fields sharing the sanme | ongword or quadword. |In DECnet for
OpenVMsS AXP, word data structure fields shared by NETACP and NETDRI VER t hat
required atomic access were noved to their own aligned quadwords to prevent
interference from sinmultaneous wites to other byte and word fields sharing
the sane quadword. After the word fields were placed in their own aligned
guadwords, the code generated by the MACRO 32 cross conpiler for the ADAW
instruction was sufficient to provide atom c access to the word fields. W
could al so have used conpiler directives to specify that VAX granularity
and atonmicity rules be preserved.



BLI SS-32 Code. The BLI SS-32 code in the DECnet-VAX software was relatively
sinple to port. W made minor changes to add the VOLATILE paraneter to

data itenms that should not be cached in registers, to conditionally conpile
t he exception handlers for VAX or Al pha AXP, and to renobve unsupported

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 15



DECnet for OpenVMS AXP: A Case History

built-ins. OQther nodifications were nore extensive, such as the changes to
accommodat e the new LI BSTABLE PARSE

LI BSTPARSE Changes. LI B$TPARSE and

LI BSTABLE_PARSE are the interface routines to a general -purpose, table-
driven parser for the OpenVMS VAX and OpenVMsS AXP operating systens,
respectively. The call to these routines was made conditional for the VAX
and Al pha AXP architectures. Other changes were required because LI B$TPARSE
and LI B$TABLE PARSE differ in the way argument |ists are passed. The nethod
used by LIB$TPARSE to pass argunents is inconpatible with the OpenVMs AXP
cal ling standard. The LI B$TPARSE action routines required nodification

as a result of the required change to LI B$TABLE_PARSE for the OpenVMs AXP
operating system The LIB$TPARSE action routines received all or a subset
of the argunent block as paraneters. LIB$TABLE_PARSE passes the address

of the argunment bl ock to the action routines. The solution we used was

to make the routine declaration conditional so that on the OpenVMS VAX
operating systemthe action routines continued to receive the argunent

bl ock parameters, and on the OpenVMs AXP operating systemthe action

routi nes received the address of the argunment block. Next, for the OpenVMs
AXP operating system the paranmeter nanes used by the commopn code were
bound to the argunent bl ock. These changes are shown in Figure 5.

As a result of this relatively sinple though repetitive change, no other
changes had to be nmade in the action routines. If at sonme future tinme the
OpenVMS VAX operating system uses LI B$TABLE PARSE, there will be no need
for conditionals.

4 Concl usion

This porting effort not only provided a solid base of know edge with
which to begin the port of the DECnet/OSI for OpenVMs VAX software and
the associ ated products, but al so gave us an appreciation of comopn code
and the avoi dance of architecture-specific code.

More and nore software is being ported to new hardware platfornms. The
porting process is often carried out by individuals who did not devel op
the original software and who may not even be famliar with it. Qur
experience porting the DECnet-VAX code |eads us to believe that new

sof tware devel opnent should take into account the possibility that the
code will be ported to new hardware platforns at sone future date. As we
continue to port the DECnet/COSI for OpenVMs VAX software, it is becom ng
i ncreasingly obvious that certain coding practices are difficult to port.
As a general suggestion, if the code has know edge of the architecture
but can be witten using systemroutines, system services, or run-tine
library functions, wite the code in that nmanner. These systemroutines
will be ported with the operating system and in a nmajority of the cases,
the application code will not require nodification.



16 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

Also, if architecture-specific functions are required, provide only a

m ni mum anount of code to performthese required functions and segregate
the code. Docunent how the code works, why it had to be done that way, what
the alternatives were, and why they were not taken. In addition to hel ping

mai ntain the code, this information may provi de val uabl e assi stance to a
person porting the code in the future.



Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 17



DECnet for OpenVMS AXP: A Case History

If aroutine is witten in assenbly | anguage for the sol e purpose of
performance i nprovenent, consider rewiting it in a high-level |anguage. It
is possible that the assenbly | anguage codi ng conventions that nay have

been optiml for one hardware platformw Il be slower on a different
har dware platform Using high-1evel |anguage conpilers, which generate
optim zed hardware-specific code, will elimnate additional porting effort

and may very likely be the best performance sol ution.

As we discovered during the process of porting the DECnet-VAX software,
MACRO 32 code is significantly nmore difficult to port than code witten in
hi gher-1 evel |anguages. However, certain architecture-specific functions
may have to be written in assenbly | anguage. W recommend that these
functions be isolated. In addition, we reconmend that any other code
written in MACRO-32 be rewritten, over time, in a higher-Ilevel |anguage.

We deternmined that the fastest approach to porting was to nake the m ni mum
nunber of changes required to get the DECnet for OpenVMS AXP software
runni ng. The porting process was acconplished in phases. The first phase
included the initial port and addressed any errors that occurred unti

we successfully conmpleted linking the image. This phase al so included

the initial debug, which was first perforned on VAX systens because of

our common code approach and, subsequently, done on Al pha AXP prototype
har dwar e. When t he product was stable, we proceeded to the second phase in
whi ch we began to methodically align data structures and fix granularity
and atonmicity problens. Small changes could then be nmade and tested, and
any new problems were generally easy to identify.

Qur team approach to the project worked extrenely well. Each team nenber
was initially responsible for porting specific portions of the code. As
the project progressed, individuals worked on any part of the product that
needed attention. This flexibility was al so used when we began to debug
the ported code and again when we began to respond to problemreports.
Priorities were used to assign resources in order to solve problens as

qui ckly as possible. Throughout the project, team nmenbers worked together
to share knowl edge and to solve problens efficiently. This effective
teamwrk allowed us to deliver the DECnet for OpenVMS AXP product ahead

of schedul e.

5 Acknow edgnent s

The authors would like to thank the other menmbers of the software

devel opnent team Ken Roberts, Cathy Wi ght, our nanager John Heron

and the group engi neering nanager Morea Martocchi o, whose hard work
made this project a success. In addition, we would |like to thank al

the individuals of the Al pha AXP project who hel ped us al ong the way.
In particular, we would like to recognize certain individuals for their
i mportant contributions to the success of this project: Paul Wiss, our



porting consultant; Lenny Scubowi tz, David Gagne, and Ben Thonas of the I/O
team Karen Noel and M ke Harvey of the executive group; and Steve Dipirro
of the XDelta team

18 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

The DECnet for OpenVMS AXP project was only part of the Al pha AXP team
effort. We feel fortunate to have experienced the synergy that this team
created.

6 References

1. A Lauck, D. Oran, and R Perlman, "Digital Network Architecture
Overview," Digital Technical Journal, vol. 1, no. 3 (Septenber 1986):
10- 24.

2. P. Beck and J. Krycka, "The DECnet-VAX Product - An Integrated Approach
to Networking," Digital Technical Journal, vol. 1, no. 3 (Septenber
1986): 88-99.

3. Mgrating to an OpenVMs Al pha System Porting VAX MACRO Code (Maynard:
Di gital Equi pnent Corporation, Oder No. AA-PQYEA-TE, 1992).

4. OpenVMs Linker Manual (Maynard: Digital Equi pnent Corporation, Order No.
AA- POXYA- TK, 1992).

5. OpenVMS Al pha System Dunp Analyzer Utility Manual (Maynard: Digital
Equi pment Corporation, Oder No. AA-PQYCA-TE, 1992).

6. OpenVMs Deltal/ XDelta Utility Manual (Maynard: Digital Equi pnment
Corporation, Oder No. AA-PQYPA-TK, 1992).

7. OpenVMs Calling Standard (Maynard: Digital Equi pnent Corporation, Oder
No. AA- PQY2A-TK, 1992).

8. N. Kronenberg et al., "Porting OpenVMs from VAX to Al pha AXP," Digital
Techni cal Journal, vol. 4, no. 4 (1992, this issue): 111-120.



Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 19



DECnet for OpenVMS AXP: A Case History

7 General References

DECnet for OpenVMS Network Managenent Utilities (Maynard: Digital
Equi pmrent Corporation, Oder No. AA-PQYAA-TK, 1992).

DECnet for OpenVMS Guide to Networking (Maynard: Digital Equi prment
Corporation, Order No. AA-PQYBA-TK, 1992).

DECnet for OpenVMS Networ ki ng Manual (Maynard: Digital Equi pment
Corporation, Oder No. AA-PQY9A-TK, 1992).

M grating to an OpenVMS Al pha System Planning for Mgration (Maynard:
Di gital Equi pnent Corporation, Oder No. AA-PQY7A-TE, 1992).

8 Trademar ks
The following are trademarks of Digital Equi pnent Corporation:

Al pha AXP, AXP, DECnet, DECnet for OpenVMs AXP, DECnet for OpenVMS VAX,
DECnet/ OSI, DECnet-VAX, DNA, OpenVMS AXP, OpenVMS RMS, OpenVMs VAX, and
VAX.

No third-party trademarks.
9 Biographies

James V. Col onmbo Project/technical |eader Janmes Colonbo is currently
responsi bl e for the next rel ease of DECnet/OSlI for OpenVMS for the VAX

and Al pha AXP conputing environments. Prior to this, he led the port of
DECnet - VAX Phase IV to the OpenVMs AXP operating system the teamreceived
an Al pha Achi evenment Award for early conpletion of the project. Jimalso

|l ed the DECnet for OS/2 V1.0 and various PATHWORKS product efforts. Before
coming to Digital in 1983, Jimworked at Prime Conputer, Inc. and Conputer
Devices, Inc. He holds a B.S.C.S. from Boston University and is a nmenber of
| EEE.

Panmel a J. Rickard Principal software engi neer Pam Ri ckard is a nenber of
the team porting DECnet/OSlI for OpenVMsS to the Al pha AXP platform As
the initial nenber of the DECnet for OpenVMS AXP porting team Pam took
responsibility for creating an effective team ported NETDRI VER and ot her
MACRO- 32 code, and debugged major portions of the ported product. Since
joining Digital in 1978, she has contributed to PATHWORKS for OS/ 2 and

I ed the console, microcode, and systemtest activities of the VAX-11/785
project. Pamreceived a B.S. (1970) in mathematics and conputer science
fromthe University of Denver.



20 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



DECnet for OpenVMS AXP: A Case History

Paul Benoit Paul Benoit is a principal software engineer in the Networks
and Comuni cations Group. He is the project/technical |eader for the DECnet
for OpenVMS AXP project; the teamreceived an Al pha Achi evenent Award

for early conpletion of project commtnments. Previous to this, Paul |ed

t he DECnet-VAX Phase |V effort. He holds an MS.S.E. (1991) from Boston
University and a B.S.C.S. (1986) fromthe University of Lowell. Paul is a
menber of ACM and | EEE Conputer Society.



Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 21

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.



