The Al pha Denonstration Unit: A H gh-perfornmance
Mul ti processor for Software and Chi p Devel opnent

1 Abstract

Digital's first RISC systembuilt using the 64-bit Al pha AXP architecture
is the prototype known as the Al pha denonstration unit or ADU. It consists
of a backpl ane containing 14 slots, each of which can hold a CPU nodul e,

a 64MB storage nodul e, or a nodule containing two 50MB/s |1/0O channels. A
new cache coherence protocol provides each processor and I/ O channel with a
consi stent view of shared nenory. Thirty-five ADU systens were built within
Digital to accelerate software devel opnent and early chip testing.

There is nothing nore difficult to take in hand, nore perilous to
conduct, or nore uncertain in its success, than to take the lead in
the introduction of a new order of things.

- Niccolo Machiavelli, The Prince

I ntroduci ng a new, 64-bit conputer architecture posed a nunber of
challenges for Digital. In addition to devel oping the architecture and the
first integrated inplenentations, an enornous anount of software had to be
moved fromthe VAX and MPS (M PS Conputer Systems, Inc.) architectures to
the Al pha AXP architecture. Some software was originally witten in higher-
| evel |anguages and could be reconmpiled with a few changes. Sonme coul d be
converted using binary translation tools.[1l] Al software, however, was
subj ect to testing and debuggi ng.

It becanme clear in the early stages of the programthat building an Al pha
denmonstration unit (ADU) would be of great benefit to software devel opers.
Havi ng a functioning hardware system woul d notivate software devel opers

and reduce the overall tinme to market considerably. Software devel opnent,
even in the nost disciplined organizations, proceeds nuch nore rapidly

when real hardware is available for programers. |In addition, hardware

engi neers coul d exercise early inplenmentations of the processor on the ADU,
since a part as conplex as the DECchip 21064 CPU is difficult to test using
conventional integrated circuit testers.

For these reasons, a project was started in early 1989 to build a nunber of
prototype systens as rapidly as possible. These systens did not require the
high levels of reliability and availability typical of Digital products,

nor did they need to have | ow cost, since only a few would be built. They
did need to be ready at the sane tinme as the first chips, and they had to
be sufficiently robust that their presence would accel erate the overal
program

Digital's Systens Research Center (SRC) in Palo Alto, CA had had experience

in building simlar prototype systens. SRC had designed and built much
of its conputing equipnent.[2] Being located in Silicon Valley, SRC could
enpl oy the services of a nunmber of |ocal nediumvolunme fabrication and

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

assenbly conpani es wi thout inpeding the mainstream Digital engineering and
manuf act uri ng groups, which were devel opi ng AXP product systens.

The project team was deliberately kept small. Two designers were |ocated
at SRC, one was with the Sem conductor Engi neering G oup's Advanced

Devel opnent Group in Hudson, MA, and one was a nenber of Digital's

Canbri dge Research Laboratory in Canbridge, MA. Although the project team
was separated both geographically and organi zati onally, conmunication

fl owed snoothly because the individuals had coll aborated on sinilar
projects in the past. The team used a conmon set of design tools, and
Digital's global network made it possible to exchange design information
between sites easily. As the project noved fromthe design phase to
production of the systens, the group grew, but at no point did the entire
t eam exceed ten peopl e.

Since nmultiprocessing capability is central to the Al pha AXP architecture,
we deci ded that the ADU had to be a nultiprocessor. W chose to inplenent
a bus-based nmenmory coherence protocol. A high-speed bus connects three
types of nodul es: The CPU nodul e contains one m croprocessor chip, its
external cache, and an interface to the bus. A storage nodul e contains two
32-negabyte (MB) interleaved banks of dynam c random access nmenory (DRAM .
The I/ O nodul e contains two 50MB per second (MB/s) I/0O channels that are
connected to one or two DECstation 5000 workstations, which provide disk
and network I/O as well as a high-performance debuggi ng environment. Most
of the logic, with the exception of the CPU chip, is emtter-coupled |ogic
(ECL), which we selected for its high speed and predictable electrica
characteristics. Mddules plug into a 14-slot card cage. The card cage and
power supplies are housed in a 0.5-nmeter (nm) by 1.1-mcabinet. A fully

| oaded cabi net dissipates approximately 4,000 watts and is cooled by forced
air. Figures 1 and 2 are photographs of the system and the nodul es.

NOTE

Figure 1 (The Al pha Denpnstration Unit) is a photograph and is
unavai |l abl e.

NOTE

Figure 2 (ADU Modul es (a) CPU Mbdul e (b) Storage Mddule (c) 1/0
Modul e) is a photograph and is unavail abl e.

In the remaining sections of this paper, we discuss the backpl ane

i nt erconnect and cache coherence protocol used in the ADU. W then describe
the system nodul es and di scuss the design choices. W al so present sone of
the uses we have found for the ADU in addition to its original purpose as a
sof tware devel opnent vehicle. We conclude with an assessnent of the project

and its inpact on the overall Al pha AXP program

2 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

2 Backpl ane I nterconnect

The choi ce of a backpl ane interconnect has nore inpact on the overal

design of a multiprocessor than any other decision. Conplexity, cost, and
performance are the factors that nust be bal anced to produce a design that
is adequate for the intended use. G ven the overall purpose of the project,
we chose to nminimze conplexity and maxi m ze performance. System cost is

i mportant in a high-volume product, but is not inportant when only a few
systenms are produced.

To minimze conplexity, we chose a pipelined bus design in which al
operations take place at fixed tinmes relative to the tinme at which a
request is issued. To maxim ze performance, we defined the operations so
that two i ndependent transactions can be in progress at once, which fully
utilizes the bus.

We designed the bus to provide high bandwi dth, which is suitable for a

nmul ti processor system and to offer mininmal |atency. As the CPU cycle tine
beconmes very small, 5 nanoseconds (ns) for the DECchip 21064 chip, the nain
menory | atency becones an inportant conponent of system performance. The
ADU bus can supply 320MB/s of user data, but still is able to satisfy a
cache read mss in just 200 ns.

Bus Signal s

The ADU backpl ane bus uses ECL 100K voltage levels. Fifty-ohmcontroll ed-
i npedance traces, ternminated at both ends, provide a well-characterized
el ectrical environnent, free fromthe reflections and noi se often present
i n high-speed systens.

Table 1 lists the signals that nmake up the bus. The data portion consists
of 64 data signals, 14 error correction code (ECC) signals, and 2 parity
bits. The ECC signals are stored in the nenory nodul es, but no checking

or correction is done by the nenories. Instead, the ECC bits are generated
and checked only by the ultinate producers and consuners of data, the I/O
system and the CPU chip. Secondary caches, the bus, and nain nmenory treat
the ECC as uninterpreted data. This arrangenent increases perfornmance,
since the nenories do not have to check data before delivering it. The
menory nodul es woul d have been | ess expensive had we used an ECC code that
protected a | arger block. Since the CPU caches are | arge enough to require
ECC and since the CPU requires ECC over 32-bit words, we chose to conbine
the two correction nechanisns into one. This decision was consistent with
our goal of sinplifying the design and inproving perfornmance at the expense
of increased cost. The parity bits are provided to detect bus errors during
address and data transfers. All nodul es generate and check bus parity.

The nmodul e identification signals are used only during system

initialization. Each npodule type is assigned an 8-bit type code, and

each backplane slot is wired to provide the slot nunber to the nodule it
contains. Each nodule in the systemreports its type code serially on the
nType line during the 8 x slot number nTypeCl k cycles after the deassertion
of systemreset. A configuration process running on the consol e processor

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 3

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

toggl es nTypeCl k cycl es and observes the nType line to deternine the type
of nodule in each backpl ane slot.

The 100-negahertz (MHz) systemclock is distributed radially to each nodul e
froma clock generator on the backpl ane. Constant-length wiring and a
strictly specified fan-out path on each nodule controls clock skew. Since a
bus cycle takes two cl ocks, the phase signal is used to identify the first
cl ock peri od.

Addr essi ng

The bus supports a physical address space of 64 gi gabytes (2[36] bytes).
The resolution of a bus address is a 32-byte cache bl ock, which is the

only unit of transfer supported; consequently, 31 address bits suffice.
One-quarter of the address space is reserved for control registers rather
than storage. Accesses to this region are treated specially: CPUs do not
store data fromthis region in their caches, and the target need not supply
correct ECC bits.

The nethod used to select the target nodule of a bus operation is
geographic. The initiator sends the target nodule's slot nunber with the
address during a request cycle. In addition to the 4-bit slot nunber, the
initiator supplies a 3-bit subnode identifier with the address. Subnodes
are the unit of nmenory interleaving. The 64MB storage nodul e, for exanple,
contains two i ndependent 32MB subnodes that can operate concurrently.

The geographic selection of the target neans that a particul ar subnode only
needs to conpare the requested slot and subnode bits with its own slot and
subnode nunbers to decide whether it is the target. This reduces the tine
required for the decision conpared to a schenme in which the target inspects
the address field, but it nmeans that each initiator nust maintain a nmapping
bet ween physi cal addresses and sl ot and subnode numbers. This mapping is
performed by a RAMin each initiator. For CPU nodul es, the RAM | ookup

does not reduce performance, since the access is done in parallel with

the access of the nodule's secondary cache. The sl ot-nmappi ng RAMs in each
initiator are |loaded at systeminitialization tinme by the configuration
process described previously.

Bus Operation

The tim ng of addresses and data is shown in Figure 3. Al data transfers
take place at fixed tinmes relative to the start of an operation. Eight of
t he backpl ane slots can contain nmodul es capable of initiating requests.
These slots are nunmbered fromO to 7, but are located at the center of the
backpl ane to reduce the transit tine between initiators and targets.

A bus cycle starts when one of the initiators arbitrates for the bus.
The arbitration nethod guarantees that no initiator can be starved.
Each initiator nonitors all bus operations and nust request only those
cycles that it knows the target can accept. Initiators are all owed

to arbitrate for a particular target nine or nore cycles after that
target has started a read, or ten or nore cycles after the target has

4 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

started a wite. To arbitrate, an initiator asserts the ArbRequest line
corresponding to its current priority. Priorities range fromO (Il owest)

to 7 (highest). If a nmodule is the highest priority requester (i.e., no

hi gher priority ArbRequest line than its own is asserted), that nodule
wins the arbitration, and it transmts an address and a conmand in the next
cycle. The winning nmodule sets its priority to zero, and all initiators
with priority less than the initial priority of the winner increment their
priority regardl ess of whether they nade a request during the arbitration
cycle. Initially, each initiator's priority is set to its slot numnber.
Priorities are thus distinct initially and remain so over tinme. This
algorithm favors initiators that have not nmade a recent request, since the
priority of such an initiator increases even if it does not meke requests.
If all initiators make continuous requests, the algorithm provides round-
robin servicing, but the inplenentation is sinpler than round robin.

An arbitration cycle is followed by a request cycle. The initiator places
an address, node and subnode nunbers, and a command on the bus. There are
only three commnds. A read conmand requests a 32-byte cache bl ock from
menory. The target nenory or a cache that contains a nore recent copy
supplies the data after a five-cycle delay. A wite command transmits a
32-byte block to menmory, using the same cycles for the data transfer as
the read command. Ot her caches may al so take the block and update their
contents. Avictimwite is issued by a CPU nodul e when a bl ock is evicted
fromthe secondary cache. Wen such an eviction occurs, any other caches
that contain the block are guaranteed to contain the same val ue, so they
need not participate in the transfer at all. The block is stored in nenory,
as in a normal wite.

3 Cache Coherence

In a nmultiprocessor systemwith caches, it is essential that wites done
by one processor be made available to the other processors in the system
in atinely fashion. A nunber of approaches to the cache coherence probl em
have appeared in the literature. These approaches fall into two categories,
dependi ng on the way in which they handl e processor wites. Invalidation

or ownership protocols require that a processor's cache nmust acquire an
excl usive copy of the block before the wite can be done.[3] If another
cache contains a copy of the block, that copy is invalidated. On the other
hand, update protocols nmaintain coherence by perform ng wite-through
operations to other caches that share the block.[2] Each cache nmintains
enough state to determ ne whether any other cache shares the block. If the
data is not present in another cache, then wite through is unnecessary and
i s not done.

The two protocols have quite different performances, depending on system
activity.[4] An update protocol perfornms better than an invalidation
protocol in an application in which data is shared (and witten) by

nmul tiple processors (e.g., a parallel algorithmexecuting on severa
processors). In an invalidation protocol, each tine a processor wites
a location, the block is invalidated in all other caches that share it.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

All caches require an expensive mss to retrieve the block when it is next
referenced. On the other hand, an update protocol perforns poorly in a
systemin which processes can migrate between processors. Wth mgration
data appears in both caches, and each tinme a processor wites a |location

a wite-through operation updates the other cache, even though its CPU is
no longer interested in the block. Larger caches with |long block lifetines
exacerbate this problem

Coher ence Protoco

The coherence protocol used in the ADU is a hybrid of an update and

an invalidation protocol, and |ike many hybrids, it conbines the good
features of both parents. The protocol depends on the fact that the CPU
chi ps contain an on-chip cache backed by a nuch | arger secondary cache
that nmonitors all bus operations. Initially, the secondary caches use an
updat e protocol. Caches that contain shared data performa wite-through
operation to update the bl ocks in other caches whenever the associ ated
CPU performs a wite. If no other cache shares a block, this wite through
is unnecessary and is not done. Wen a secondary cache receives an update
(i.e., it observes a wite on the bus directed to a block it contains),

it has two options. It can invalidate the block and report to the witer
that it has done so. If it is the only cache sharing the block, subsequent
write-through operations will not occur. Alternatively, it can accept the
update and report that it did so, in which case the cache that perforned
the wite-through operation continues to send updates whenever its CPU
wites the bl ock

The actions taken by a cache that receives an update are deterni ned by
whet her the block is in the CPU s on-chip cache. The secondary cache
contains a table that allows it to determine this without interfering with
the CPU. If the block is in the on-chip cache, the secondary cache accepts
the update and invalidates the block in the on-chip cache. If the block is
not in the on-chip cache, the secondary cache block is invalidated. If the
bl ock is being actively shared, it will be reloaded by the CPU before the
next update arrives, and the block will continue to be shared. If not, the
bl ock will be invalidated when the second update arrives.

| mpl ement ation of the Protocol

The inpl ementation of the coherence protocol is not conplex. The five
possi bl e states of a secondary cache bl ock are shown in Figure 4.
Initially, all blocks in the cache are marked invalid. Msses in the CPU s
on-chi p cache cause a bus read to be issued if the block is not in the
secondary cache. |f the cache block is assigned to another nmenory | ocation
and is dirty (i.e., has been witten since it was read from nenory), a
victimwite is issued to evict the block, then a read is issued. Oher

caches nonitor operations on the bus and assert the bl ock-shared (B-shared)
signal if they contain the block. If a cache contains a dirty block and

it observes a bus read, it asserts B-shared and B-dirty, and supplies the
data. B-dirty inhibits the nmenory's delivery of data.

6 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

The CPU s on-chip cache uses a wite-through strategy. A CPUwite to a
shared block in the secondary cache initiates a bus wite to update the
contents of other caches that share the block. Menory is witten, so

the bl ock becones clean. |f another cache takes the update, it asserts
B-shared, and the initiator's state becones Shared not (~) Dirty. If no

ot her cache takes the update, either because it does not contain the bl ock
or because it decides to invalidate it, then the B-shared signal is not
asserted, and the initiator's state becomes ~Shared ~Dirty. The B-shared
and B-dirty signals my be asserted by several nodules during cycle five of
bus operations. The responses are ORed by the open-enitter ECL backpl ane
drivers. Mdre than one cache can contain a block with Shared = true, but
only one cache at a tine can contain a block with Dirty = true

Desi gning the bus interconnect and coherence protocol was an experinent

in specification. The informal description required approxi mately 15 pages
of prose to describe the bus. The real specification was a nultithreaded
programthat represented the various interfaces at a | evel of detai
sufficient to describe every signal, but, when executed, sinulated the
conponents at a higher level. By running this programw th sequences of
simul ated nenory requests, we were able to refine the design rapidly and
nmeasure the performance of the system before designing any |ogic. Mst
design errors were discovered at this time, and prototype system debuggi ng
took nmuch less tine than usual

4 System Mdul es

In this section, we describe the system nodul es and the packagi ng of the
ADU. We di scuss the design choices nmade to produce the CPU nodul e, storage
nodul es, and I/ O nodul e on schedul e. We al so discuss applications of the
ADU beyond its intended use as a vehicle for software devel oprment.

5 CPU Modul e

The ADU CPU nodul e consists of a single CPU chip, a 256-kil obyte (KB)
secondary cache, and an interface to the systembus. Al CPU nodules in the
system are identical. The CPU nodul es are not self-sufficient; they nmust be
initialized by the consol e workstation before the CPU can be enabl ed.

The CPU nodul e contai ns extensive test access logic that allows other

bus agents to read and wite nost of the nodule's internal state. W

i mpl emented this | ogic because we knew t hese nodul es woul d be used to debug
CPU chi ps. Test access logic wuld hel p us determ ne the cause of a CPU
chip mal function and woul d nmake it possible for us to introduce errors into
the secondary cache to test the error detection and correction capabilities
of the CPU chip. This logic was used to performalnost all initialization
of the CPU nodul e and was al so used to troubl eshoot CPU nodul es after they
were fabricated.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 7

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software

and Chi p Devel opnent

The central feature of the CPU nodule (shown in Figure 5) is the secondary
cache, built using 16K by 4 Bi CMOS static RAMs. Each of the 16K hal f-bl ocks
in the data store is 156 bits wide (4 | ongwords of data, each protected by
7 ECC bits). Each of the 8K entries in the tag store is an 18-bit address

(protected by parity) and a 3-bit control field (valid/shared/dirty, also

protected by parity). In addition, a secondary cache duplicate tag store,

consisting of an 18-bit address and a valid bit (protected by parity), is

used as a hint to speed processing of reads and wites encountered on the

system bus. Finally, a CPU chip data cache duplicate tag store (protected

by parity) functions as an invalidation filter and sel ects between update

and invalidation strategies.

8 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

The system bus interface watches for reads and wites on the bus, and

| ooks up each address in the secondary cache. On read hits, it asserts
B-shared on the bus, and, if the block is dirty in the secondary cache,

it asserts B-dirty and supplies read data to the bus. On wite hits, it
sel ects between the invalidate and update strategies, nodifies the contro
field in the secondary cache tag store appropriately, and, if the update
strategy is selected, it accepts data fromthe system bus

Unli ke npst bus devices, the CPU nodul e's system bus interface nust
accept a new address every five cycles. To do this, it is inplenmented as
two i ndependent finite state machi nes connected together in a pipelined
f ashi on.

The tag state nachine, which operates during bus cycles 1 through 5,

wat ches for addresses, perforns all tag store reads (in bus cycle 4,

just in tinme to assert B-shared and B-dirty in bus cycle 5), and perforns
any needed tag store wites (in bus cycle 5). If the tag state machi ne
deternines that bus data nust be supplied or accepted, it enables the
data state nmachine, and, at the sane tinme, begins processing the next bus
request.

The data state machi ne, which operates during bus cycles 6 through 10,
noves data to and fromthe bus and handl es the reading and witing of the
secondary cache data store. The highly pipelined nature of the system

bus makes reading and witing the data store somewhat tricky. Figure

6a shows a wite hit that has selected the update strategy i medi ately
foll owed by a read hit that must supply data to the bus. Hi gh performance
mandat es the use of clocked transceivers, which neans the secondary cache
data store nust read one cycle ahead of the bus and nust write one cycle
behi nd the bus, resulting in a conflict in bus cycle 11. However, the bus
transfers data in a fixed order, so the read will always access quadword

0 of the block, and the wite will always access quadword 3 of the bl ock
By impl ementing the data store as two 64-bit-wi de banks, it is possible to
handl e these back-to-back transacti ons w thout creating any special cases,
as shown in Figure 6b. This exanple is typical of the style of design used
in the ADU, which elininates extra mechani sms wherever possible.

The CPU interface handles the arbitration for the secondary cache and
generates the necessary reads and wites on the system bus when the CPU
secondary cache mi sses.

The CPU chip is supplied with a clock that is not related to the system
clock in frequency or phase. This factor nade it easier to use both the
100- MHz frequency of the DC227 prototype chip and the 200- MHz frequency of
the DECchip 21064 CPU. It also allowed us to vary the operating frequency
during CPU chip debuggi ng. However, the data buses connecting the CPU
chip to the rest of the CPU nodul e nmust cross a cl ock-domai n boundary.

Per haps nmore significant, the secondary cache tag and data stores have two
asynchronous sources of control, since the CPU chip contains an integrated
secondary cache controller

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

The bidirectional data bus of the CPU chip is converted into the

uni directional data buses used by the rest of the CPU nodul e by transparent
cutoff | atches. These | atches, which are located in a ring surrounding the
CPU, also convert the quasi-ECL | evels generated by the CPU chip into true
ECL | evels for the rest of the CPU nodule. These | atches are normally held
open, so the CPU chip is, in effect, connected directly to the secondary
cache tag and data RAMs. Control signals fromthe CPU chip's integrated
secondary cache controller are sinply ORed into the appropriate secondary
cache RAM drivers.

These | atches are also used to pass data across the two-cl ock-donain
boundary. Normally all | atches are open. On reads, logic in the CPU chip
clock domain closes all the |atches and sends a read request into the bus
clock domain. Logic in the bus clock domain obtains the data, wites both
the secondary cache and the read | atches, and sends an acknow edgnment back
into the CPU chip clock domain. Logic in the CPU chip clock domain accepts
the first half-block of the data, opens the first read |latch, accepts the
second half-line of the data, and opens all remaining |atches. Wites are
simlar. Logic in the CPU chip clock domain wites the first half-line into
the wite latch, makes the second half-line valid (behind the [atch), and
sends a wite request into the bus clock domain. Logic in the bus clock
domai n accepts the first half-line of data, opens the wite |atch, accepts
the second hal f-block of data, and sends an acknow edgnent back into the
CPU chip clock domai n.

Logic in the CPU chip clock domain controls all latches. Only two signals
pass through synchroni zers: a single request signal passes fromthe CPU
chip clock domain to the bus clock domain, and a single acknow edge signa
passes fromthe bus clock domain to the CPU chip clock donain.

The secondary cache arbitration schenme is unconventional because the system
bus has no stall nechanism If a read or a wite appears on the system

bus, the bus interface nmust have unconditional access to the secondary
cache; it cannot wait for the CPUto finish its current cycle. In fact,

the bus interface cannot detect if a cycle is in progress in the CPU chip's
i ntegrated cache controller

Neverthel ess, all events in the system bus interface occur at fixed

times with respect to bus arbitration cycles. As a result, the system bus
interface can supply a busy signal to the CPU interface, which allows it

to predict the bus interface's use of the secondary cache in the inmediate
future. The CPU interface, therefore, waits until the secondary cache can
be accessed without conflict and then perforns its cycle without additiona
checking. This waiting is perfornmed by the CPU chip's integrated secondary
cache controller for some cycles, and by logic in the CPU interface running
in the bus clock donain for other cycles. To reduce | atency, the CPU reads

the secondary cache while waiting, and ignores the data if it is not yet
valid.

10 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

Al'l operations use ownership of the system bus as an interlock. For
exanple, if the CPU wites to a location in the secondary cache that

is marked as shared, the CPU interface acquires the system bus, and

then updates the secondary cache at the sanme tinme as it broadcasts the
write. This does not elimnate all race conditions; in particular, it
allows a dirty secondary cache block to be invalidated by a system bus
wite while the CPU interface is waiting to acquire the bus to wite

the block to menory. This is easily handl ed, however, by having the CPU
interface generate a signal (always_update) that insists that the system
bus interface select the update strategy.

The conbination of arbitration by predicting future events and the

use of the system bus as an interlock nakes the CPU nodule's contro

| ogic extrenely sinple. The bus interface and the CPU i nterface have no
know edge of one another beyond the busy and al ways_update signals. Since
no conplicated interactions between the CPU and the bus exist, no tinme-
consunmi ng sinmulations of the interactions needed to be perfornmed, and we
had none of the difficult-to-track-down bugs that are usually associ ated
with rmultiprocessor systens.

The CPU nodul e contains a nunber of control registers. The bus cycl es that
read and wite these registers are processed by the system bus interface as
ordi nary, but sonmewhat degenerate, cases. The | ocal CPU accesses its |oca
regi sters over the system bus, using ordinary system bus reads and writes,
so no special logic is needed to resolve race conditions.

To keep pace with our schedule, we arranged for nost of the systemto be
debugged before the CPU chip arrived. By using a suitably wired integrated
circuit test clip, we could place commands onto the CPU chip's command bus
and verify the control signals with an oscilloscope. The results of these
tests left us fairly confident that the system worked before the first chip
arrived.

We resuned testing the CPU nodule after the CPU chip was installed. W

pl aced short (three to five instructions) prograns into nmain nenory,
enabl ed the CPU chip for a short tinme, then inspected the secondary cache
(using the CPU nodul e's test access logic) to exanine the results.

Eventual |y we connected an external pulse generator to the CPU chip's

clock and an external power supply to the CPU chip. These nodifications
permtted us to vary both the operating frequency and the operating voltage
of the CPU chip. By using a pul se generator and a power supply that could
be remotely controlled by another conputer, we were able to wite sinple
programnms that could run CPU chip diagnostics, w thout manual intervention
over a wide range of operating conditions. This greatly sinplified the

task of collecting the raw data needed by the chip designers to verify the
critical paths in the chip.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 11

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

St or age Modul es

The ADU s storage nodul es must provide high bandwi dth, both to service
cache m sses and to support demanding I/O devices. Mre inportant, they
nmust provide |low | atency, since in the case of a cache m ss, the processor
is stalled until the mss is satisfied. It is also inportant to provide a
nodest amount of nenory interleaving. Although the bus protocol allows only
two nenory subnodes to be active at once, higher interleave increases the
probability that a nodule will be free when a nmenory request is issued.

Each storage nodule is organized as two i ndependent bus subnodes, so that
even in a systemwith one nodule, nenory is two-way interleaved. Each of

t he subnodes consists of four banks, each of which stores two | ongwords of
data and their associated error correction bits. Wth 1-nmegabit (M) RAM
chips, the capacity of each nodule is 64MB. Figure 7 shows the organization
of the storage nmodul e. The nodul e consists of two i ndependent subnodes,
each with four banks of storage. Control signals are pipelined through
the banks so that the nodul e can deliver or accept a 64-bit data word
(plus ECC) every 20 ns. Wth the exception of the DRAM i nterface signals,
all signals are ECL | evels. The G014 gallium arseni de (GaAs) driver chip

i mproves performance by allowi ng parallel termnation of the DRAM address
l'ines.

A nmenory cycle consists of a five-bus-cycle access period followed by four
bus cycles of data transfer. Each data transfer cycle noves two 39-bit

| ongwor ds between the nmodul e and the backpl ane bus, for a total of 32 data
bytes per nmenory cycle. This is the size of a CPU nodul e cache bl ock. A
read operation takes 10 bus cycles to conplete, but a wite requires 11
cycl es.

Since a data rate of 1 word every 20 ns is beyond the capabilities of even
the fastest nibble-nmode RAMs, we needed an approach that did not require
each RAMto provide nore than 1 bit per access. W chose to pipeline the
four banks of each subnode. Each of the four banks contributes only one 78-
bit word to the block. The banks are started sequentially, with a one-cycle
del ay between each bank.

The high performance of the storage nodule is achi eved by nmintaining ECL

| evel s and using ECL 100K conponents wherever possible. The RAM I/ O pin

| evel s are converted to ECL levels by latching transceivers associated with
each bank. Fortunately, the tinm ng of accesses to the two subnodes of a
nodul e makes it possible to share these transceivers between the sanme banks
of the nodule's two subnodes.

The DRAM chi ps are packaged on snall| daughter cards that plug into
connectors on both sides of the nain array nodule. There are 2 daughter

cards for each bank within a subnode, for a total of 16 daughter cards

per nmodul e. The DRAM address and control lines are carried on controlled

i npedance traces. Since each of the 39 DRAMs on an address |ine represents
a capacitive | oad of approximately 8 picofarads, the | oaded inpedance of
the Iine is about 30 ohnms.

12 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

The usual approach to driving the address and control |lines of a RAM array
uses series term nation, as shown in Figure 8a. This arrangement has the
advantage that the driver current is reduced, since the |oad inpedance
seen by the driver (R(s) + Z(0)) is twice that of the | oaded transni ssion
line (Z(o)). Unfortunately, the RAM access tinme is increased, because the
signal fromthe driver (V(b)) must propagate to the far end of the line,
be reflected, and return to the driver before the first RAMon the line
sees a full-anplitude signal. Since the capacitive | oading added by the
RAM pins | owers the signal propagation velocity in addition to reducing

t he i npedance, the added delay can be a significant fraction of the overal
cycle tine.

Since low |l atency was a primary design goal, we chose parallel term nation
of the RAM address and control lines, as shown in Figure 8b. Each address
line is termnated to +3 volts with a series resistor (R(s)) of 33 ohns,
slightly higher than the line inpedance. In this configuration, each line's
driver nust sink a current of alnpst 0.1 anmpere. Since no comrercia

chip could neet this requirenent at the needed speed, we conm ssioned a
sem cust om GaAs chi p. [5]

As shown in Figure 9, each GaAs chip contains a register for eight address
bits, row colum address nultiplexing and high current drivers for the RAM
address lines, and a driver for one of the three RAM control signals (RAS
CAS, Wite). To reduce the current switched by each chip, each address

bit drives two output pins. One pin carries true data, and the other is
conpl emented. The total current is therefore constant. Each pin drives one
of the two RAM nodul es of a bank. A total of three GaAs chips is required
per bank. In the present nodule, with 1M by 1-bit RAM chips, only 10 of
the 12 address drivers are used, so the system can be easily expanded to
make use of 16M RAMs.

The storage nodul e contains only a small amount of control |ogic.

This | ogic generates the control signals for the RAMs and the various
transceivers that route data fromthe backplane to each bank. This logic
al so generates the signals needed to refresh the RAMs and to assert the
retry signal if another node attenpts to access the nmodule while it is
refreshing itself.

I/ O Modul e

The 1/ 0O nodul e for the ADU contains two 50MB/s |/O channels and a | oca
CPU subsystem The |1/0O channels connect to one or two DECstation 5000
wor kst ations, which act as I1/0O front-end processors and al so provide
consol e and di agnostic functions. The | ocal CPU subsystemis used to
provide interval tinmer and tinme-of-day clock services to ADU processors.

The original specification for the ADU I/ O system required support only for

serial line, small conmputer systens interface (SCSI) disk, and Ethernet 1/0
devices. W knew that the ADU woul d be used to exercise new CPU chi ps and
untested software. Wth this in mnd, we organized the I/O system around a
DECst ati on 5000 workstation as a front-end and consol e processor. This
reduced our work considerably, as all I/Ois done by the workstation

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 13

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

A TURBCchannel nodul e connects the DECstation 5000 over a 50MB/s cable

to the 1/O nodule in the ADU. We selected 50MB/s in order to support

t he sinmultaneous, peak-bandw dth operation of two SCSI disk strings, an

Et hernet, and a fiber distributed data interface (FDDI) network adapter.
The I/ O nodul e contains two of these channels, which allows two DECstation
5000 workstations to be attached.

At the hardware |l evel, the I/O system supports block transfers of data from
the main nmenory of the workstation to and from ADU nmenory. |In addition, the
I/ O nodul e includes command and doorbell registers, which are used by ADU
processors to attract the attention of the I/O system

In software, |/O requests are placed by ADU processors into command rings
in ADU nenory. The nenory address of a command ring is placed into an I/0O
control register, and the associated doorbell is rung. The doorbell causes
a hardware interrupt on the front-end DECstation 5000, which alerts the
I/ O server process that action is needed. The I/ O server reads the command
ring from ADU nenory and performs the requested 1/0O. I/0O conpletion status
is stored into ADU nenory, and an interrupt is sent to the requesting ADU
processor.

In addition to its role as an I/ O front-end processor, the DECstation
5000 workstation acts as a diagnostic and consol e processor. Wen an ADU
is powered on, diagnostic software is run fromthe workstation. First,
the correct functioning of the I/O nodule is tested. Then the ADU nodul e
i dentification process determ nes the types and | ocations of all CPU and
storage nodules in the system Diagnhostics are then run for each nodul e.

Once di agnostic software has run, the console software is given control
This software is responsible for |oading privileged architecture library
(PAL) and operating system software. Once the operating systemis running,
t he workstati on becomes an I/ 0O server.

The presence of the DECstation 5000 gave the chip team and operating system
devel opers a stable place to stand while checking out their own conponents.
In addition, the conplete diagnostic capability and error checki ng coverage
of the ADU hardware hel ped to isolate faults.

The central features of the 1/0O nmodule, shown in Figure 10, are two 1K-

by 80-bit register files built from5-ns ECL RAMs. These nenories are
cycled every 10 ns to sinulate dual -ported nenories at the 20-ns bus cycle
rate. One menory is used as a staging RAM for block transfers fromthe 1/0
processors to ADU nenory. The other nenory is shared between use as comand
regi ster space for the 1/0 system and a staging RAM for transfers from ADU
menory to the 1/0 system

On the bus side, the register files are connected directly to the backpl ane
bus transceivers. On the 1/O side, the register files are connected to a
shared 40-ns bus that connects to the two I/ O channels.

14 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

The buses are tine-slotted to elimnate the need for arbitration |ogic.

As a consequence, the I/O nodule control logic is contained in a snall
nunber of programuable array | ogic chips that inplenment the 1/0O channe
controllers and a bl ock-transfer state machine that handl es bus transfers.

Each |/ O channel carries 32 bits of data plus 7 bits of ECC in parallel on
a 50-pair cable. Each data word also carries a 3-bit tag that specifies the
destination of the data. The cable is half-duplex, with the direction of
data flow under the control of software on the DECstation. Data arriving
fromthe DECstation is buffered in 1K FIFGCs. These FIFGCs carry data across
t he cl ock-domai n boundary between the |/ O system and the ADU and permit
both I/0O channels to run at full speed sinultaneously.

Each |/ O channel interface al so has an address counter and a sl ot-nmapping
RAM which are | oaded fromthe workstation. The sl ot-mpping function
sets the correspondence between ADU bus addresses and the geographically
addressed storage and CPU nodul es. The address and slot map for each
channel are connected to a comopn address bus. This bus bypasses the
register files and directly drives the backpl ane transcei vers during bus
address cycl es.

The far end of the I/ O cable connects to a single-w dth TURBCchanne
nodul e in the DECstation 5000. This nodul e contai ns ECC generation and
checking I ogic, and FI FO queues for buffering data between the cable and
t he TURBCchannel . The FI FO queues al so carry data across the cl ock-domain
boundary between the 1/0 channel and the TURBOCchannel nodul es.

The I/O nodul e has a | ocal CPU subsystem containing a 12-MHz Mtorola 68302
processor, 128KB of erasabl e programmable read-only nmenmory (EPROM), and
128KB of RAM The CPU subsystem al so i ncludes an Ethernet interface, two
serial ports, an SCSI interface, an Integrated Services Digital Network
(I'SDN) interface, and audi o input and output ports. Wen in use, the |oca
CPU subsystem uses one of the I/0O channels otherw se available for the
connection of a DECstation 5000. Although the local CPU on the |I/O nodule
is capable of running the full ADU I/O system in practice we use it for
supplying interval timer and real-tinme clock service for the ADU.

The I/ O nodul e was sonmewhat overdesigned for its original purpose of
suppl yi ng di sk, network, and console I/O service for ADU processors. This
capability was put to use in md-1991 when the demand for ADUs becanme so

i ntense that we considered building additional systens. |nstead, by using
the excess |1/O resources, the slot-mapping features of the hardware, and
the capabilities of PALcode, we were able to use a three-processor ADU

as three independent virtual conputers. |ndependent copies of the console
program shared the 1/ O hardware through software | ocking and were allocated
one CPU and one storage nodul e each. Miltiprocessor ADUs now routinely run
both OpenVMS AXP and DEC OSF/ 1 AXP operating systens at the sane tine.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 15

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

Packagi ng

Sinplicity was the primary goal in the design of the ADU package. Qur short
schedul e denmanded that we avoid i nnovati on and use standard parts wherever
possi bl e.

The ADU s nodul es and card cage are standard 9U (280 millineter by 367
mllimeter) Eurocard conponents, which are available froma nunber

of vendors. The cabinet is a standard Digital unit, usually used to

hol d di sks. Power supplies are off-the-shelf units. Three supplies are
required to provide the 4,000 watts consuned by a system containing a ful
conpl emrent of nmodul es. A standard power conditioner provides line filtering
and distributes primary AC to the power supplies. This unit allows the
systemto operate on 110-volt ACin the United States, or 220-volt AC in
Eur ope.

Cooling was the nost difficult part of the packaging effort. The use of ECL
t hroughout the system neant that we had to provide an airflow of at |east
2.5 ms over the nmodul es. After studying several alternatives, we selected
a reverse inpeller blower used on Digital's VAX 6000 series machi nes. Two
of these blowers provide the required airflow, while generating much |ess
acoustic noise than conventional fans.

Since blower failure would result in a catastrophic neltdown, airflow

and tenperature sensors are provided. A snmall nodule containing a

m crocontrol l er nonitors these paraneters as well as all power supply

vol tages. In the event of failure, the autononmous controller can shut down
t he power supplies. This nmodul e al so generates the system cl ock

6 Concl usions

Sonetinmes it is better to have twenty million instructions by Friday
than twenty million instructions per second. - Wesley Cark

One hundred CPU and storage nodul es and 35 I/ O nodul es have been built,
packaged as 35 ADU systens, and delivered to software devel opnent groups
t hroughout Digital. Not just |aboratory curiosities, these systens have
beconme part of the nminstream AXP devel oprment environnent. They are in
regul ar use by conpiler devel opment groups, operating system devel opers,
and applications groups.

The ADU al so provided a full-speed, in-system exerciser for the chips.
By using the ADU, the chip devel opers were able to detect several subtle
problenms in early chip inplenentations.

The ADU project was quite successful. ADU systens were in the hands of

devel opers approximtely ten nonths before the first product prototypes.
The systens exceeded our initial expectations for reliability, and provided
a rugged, stable platformfor software devel opnment and chip test. The
project denmonstrated that a small team with focused objectives, can
produce systens of substantial conplexity in a short tine.

16 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Unit: A High-performance Miltiprocessor for Software and Chip Devel opnent

7 Acknow edgnents

John Dillon designed the power control subsystem and the package. Steve
Morris wote the ADU consol e software. Andrew Payne contributed to ADU
di agnostics. Tom Levergood assisted with the physical design of the I/0O
nodul es. Herb Yeary, Scott Kreider, and Steve Lloyd did nodul e debuggi ng
and testing at Hudson and at SRC. Ted Equi handl ed project |ogistics

at Hudson, and Dick Parle was responsible for material acquisition and
supervi sion of outside vendors at SRC.

8 References

1. R Sites, A Chernoff, M Kirk, M Mrks, and S. Robi nson, "Binary
Transl ation," Digital Technical Journal, vol. 4, no. 4 (1992, this
i ssue).

2. C. Thacker, L. Stewart, and E. Satterthwaite, Jr., "Firefly: A
Mul ti processor Workstation," | EEE Transactions on Conputers, vol. 37,
no. 8 (August 1988): 909-920.

3. R Katz, S. Eggers, D. Wod, C. Perkins, and R Sheldon, "Inplenenting
a Cache Consistency Protocol," in Proceedings of the 12th Internationa
Synposi um on Conmputer Architecture (IEEE, 1985).

4. J. Archibald and L. Baer, "Cache Coherence Protocols: Evaluation Using a
Mul ti processor Sinulation Mddel," ACM Transactions on Conputer Systens,
vol. 4 (Novenber 1986): 273-298.

5. 1991 GaAs | C Data Book and Designer's CGuide (G gaBit Logic, Newbury
Park, CA, 1991): 2-309.

9 Trademarks
The following are trademarks of Digital Equi prent Corporation

Al pha AXP, AXP, DEC OSF/ 1 AXP, DECstation 5000, Digital, OpenVMS AXP,
TURBCchannel , and VAX 6000.

Motorola is a registered trademark of Mdtorola, Inc.
10 Biographies

Charles P. Thacker Chuck Thacker has been with Digital's Systens Research
Center since 1983. Before joining Digital, he was a senior research fell ow
at the Xerox Palo Alto Research Center, which he joined in 1970. Hs
research interests include computer architecture, computer networking, and
conput er - ai ded design. He hol ds several patents in the area of conputer

organi zation and is coinventor of the Ethernet |ocal area network. In
1984, Chuck was the recipient (with B. Lanpson and R Taylor) of the ACM
Software System Award. He received an A.B. in physics fromthe University
of California and is a nenber of ACM and | EEE

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 17

The Al pha Denonstration Unit: A Hi gh-perfornmance Multiprocessor for Software
and Chi p Devel opnent

David G Conroy Dave Conroy received a B.A Sc. degree in electrica

engi neering fromthe University of Waterl oo, Canada, in 1977. After working
briefly in industrial automation, Dave noved to the United States in 1980.
He cof ounded the Mark Wl Ilianms Conpany and built a successful copy of the
UNI X operating system 1In 1983 he joined Digital to work on the DECtal k
speech synthesis system and rel ated products. In 1987 he becane a nenber of
Digital's Semi conductor Engi neering G oup, where and has been involved with
system | evel aspects of RISC m croprocessors.

Lawrence C. Stewart Larry Stewart received an S.B. in electrica

engi neering fromMT in 1976, followed by MS. (1977) and Ph.D. (1981)
degrees from Stanford University, both in electrical engineering. Hs

Ph.D. thesis work was on data conpression of speech waveforns using trellis
codi ng. Upon graduation, he joined the Conputer Science Lab at the Xerox
Pal o Alto Research Center. In 1984 he joined Digital's Systens Research
Center to work on the Firefly nultiprocessor workstation. In 1989 he noved
to Digital's Canbridge Research Lab, where he is currently involved with
projects relating to nultimedia and AXP products.

18 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

