The GEM Optim zing Conpiler System

1 Abstract

The GEM conpiler systemis the technology Digital is using to build
state-of-the-art conpiler products for a variety of |anguages and hardware
/software platforns. Portable, nodular software conponents with carefully
specified interfaces sinplify the engineering of diverse conpilers. A
single optim zer, independent of the | anguage and the target platform
transforns the internedi ate | anguage generated by the front end into a
semantical ly equivalent formthat executes faster on the target nachine.
The GEM system supports a range of | anguages and has been successfully
retargeted and rehosted for the Al pha AXP and M PS architectures and for
several operating environnents.

In the past, Digital has nade major investnents in optimzing conpilers
that were specifically directed at one hardware platform nanely VAX
conmput ers. When Digital began broadening its hardware offerings to include
reduced instruction set conmputer (RISC) architectures, it becane clear
that new optim zation technol ogy was needed, as well as a new strategy for
| everagi ng i nvestnents in conpiler technology across an increasing nunber
of hardware pl atforns.

Thi s paper presents a technical description of the GEM compil er technol ogy
that Digital uses to generate conpiler products for a w de range of

har dware and software conbi nati ons. W begin with an expl anation of the
GEM strategy of |everaging i nvestnments by using portable, nodular software
conmponents to build conpiler products. The bul k of the paper describes the
GEM optim zer and code generator technologies, with a focus on how t hey
address chal |l enges posed by the Al pha AXP architecture.[1] W then nove to
a discussion of conpiler engineering and conclude with an overvi ew of sone
pl anned enhancenents to the software.

2 GCEM Conpiler Architecture

Because of the nmany hardware platforns available, often with nultiple
operating systenms and a variety of |anguages offered on those pl atforns,
buil ding a conpiler fromscratch for each conbination is no |onger
feasible. To sinplify the engineering of diverse conpilers, GEM conpiler
products share a basic architecture. The conpiler is divided into severa
maj or components, in effect, the fundanental building bl ocks from which

a conpiler is constructed. The interfaces anbpng these conponents are
carefully specified. The mmjor conponents of a GEM conpiler are the front
end, the optim zer, the code generator, and the conpiler shell. The |ogica
di vi si on of GEM conponents and the range of GEM support is shown in Figure
1. Note that the host is the computer on which the conpiler runs, and the



target is the conputer on which the generated object runs.
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The front end perforns | exical analysis and parsing of the source program
The primary outputs are internediate | anguage (IL) graphs and synbol

tabl es, which are both standardized. In an IL graph, each node, referred to
as a tuple, represents an operation. Front ends for all source |anguages
translate to the single standard IL. All |anguage-specific code is
encapsulated in the front end. Al know edge of the source |anguage is
comunicated in the IL or through callbacks to the front end. Know edge

of the target hardware is represented in tables and in a mininml anount of
condi ti onal code.

The optim zer transfornms the IL generated by the front end into a

semantically equivalent formthat will execute faster on the target
machi ne. A significant technical achievenent is that a single optimzer
is used for all |anguages and target platforns.

The code generator translates the IL into a list of code cells, each of

whi ch represents one nmachine instruction for the target hardware. Virtually
all the target machine instruction-specific code is encapsulated in the
code generator.

The shell is a collection of commn conpiler functions such as listing
generators, object file emtters, and command |ine processors. Basically,
the shell is a portable interface to the external environnment in which

the conpiler is used. This interface allows the other conponents to renmin
i ndependent of the operating system

There are nunerous benefits to this nodul ar approach
o0 Adding a new feature to a commopn conponent enhances nany products.

o Source |language conmpatibility is ensured anpbng all conpilers that use
the sane front end.

o Standardized interfaces enable us to plug in a new front end to build a
conpiler for a new | anguage, or a new shell to allow the conpiler to run
on a new host.

o Wen a new | anguage is added, it can be offered quickly on many
pl at f orns.

o When a new target CPU or operating systemis supported, nmany | anguages
are inmedi ately available to that target.

3 Oder of Processing

When conpiling a program the overall order of processing nmust be carefully
arranged so that each conponent of the conpiler can see a |arge portion of



the program at one tinme. \When processing one portion of a program certain
i nformati on about other relevant parts of the source program can be useful
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Figure 2 illustrates the overall process of conpiling a program Since GEM
conpilers include interprocedural optimnzations, as nmuch of the program as
possi bl e should be presented to the optinizer at the sane tinme. For this
reason, GEM conpilers allow the user to process nultiple source files in a
single conpilation. The front end parses these source files and constructs
the synbol table and a conpact formof IL in nenory before invoking the
GEM back end. The portion of the user's programthus conpiled is called a
conpilation unit.

The GEM back-end interprocedural optinization phase is the first to operate
on the program This phase analyzes the routines within a conpilation unit
to develop a call graph that shows which routines m ght call which other
routines. Interprocedural optimzations are applied to the routines as a

group.

Next, the global optinizer and the code generator process each routine

in a bottomup order, resulting in a translation of the programto code
cells that represent operations at machine level. This bottomup order is
convenient for certain optimzations, as discussed in the Optim zation
section. The first action of the global optimzer is to translate the
routine's IL fromthe conpact form provided by the front end to an expanded
formused by the optimzer and the code generator. Since only one routine
at atine is stored in expanded form a much |arger data structure can be
used to store the results of the optim zer analysis. The expansion from
conpact form al so expands certain shorthand forns, which are convenient for
a front end, into explicit operations in the expanded IL, rmuch like a nmacro
expansion facility in a source |anguage.

Once all the routines have been processed by the global optimzer and

the code generator, a conplete description of the programis avail able

at the machine instruction level. Certain nmachi ne-specific optinzations,
such as peephol e optim zations and instruction scheduling, are perforned

on this programdescription. Finally, the optim zed machi ne instructions

are converted to the appropriate object |anguage for the target operating
system

4 Optimzation

The GEM conpiler systenm s optimzer is state-of-the-art and i ndependent

of the | anguage and the target platform The input to the optimzer is the
IL and synbol table for multiple routines; the output is the semantically
equivalent IL and synbol table, both nmodified to run faster on the target
pl at f orm

GEM optim zations include interprocedural optimnzations, nodern
optim zations for superscalar RI SC architectures such as the Al pha
AXP architecture, plus a robust inplementation of the classical globa



optim zations. In addition, GEM s code generator includes a nunber of
optim zation features that help it produce extrenely high |ocal code
quality.
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Desi gn Principles

Certain general design approaches or principles were applied throughout the
optim zer. For instance, choices had to be made in the design of the IL;

the front end could either provide a higher-1level description of program
features or rely on the back end to derive the higher-|evel description
froman analysis of a |ower-level description. In cases where accurate,

wel | -defined algorithns for deriving those higher-|evel features exist, GEM
chooses to derive the descriptions.

Descri bing source code | oops is a key exanple of the inplenentation of

this design principle. Mst source | anguages have explicit syntax for
writing | oops, and the front end could translate these | anguages into a

hi gher-1level IL that designates those | oops. Instead, GEM uses a | ower-
level IL with prinmitives such as conditional branch and | abel operators.
The advantage of this approach is that GEM recogni zes all |oops, even those
constructed with GOTO statenents.

A general design approach that enmerged from experience gained during the
GEM project is the use of enabling or expanding transformations to support
fundamental optinmizations. Often, representing operations in the IL in

a way that hides certain inplicit operations is a conpact and efficient
approach. However at tinmes, naking these inplicit operations explicit
allows a particular optimization routine to operate on them A good
solution to this problemis to initially represent the operations in the IL
in the conpact form Then, before applying optimzations that could benefit
fromseeing the inplicit operations, apply expanding transformations to
convert the IL into a longer formin which all operations are explicit.

Qut of concern for the tinme required to conpile |arge programs, GEM al so
established the design principle that the order of conplexity as a function
of the nunber of IL operations should be as close to |inear as possible.

Dat a Access Model and Side Effects Interface

Since GEM conpilers translate all source | anguages to a commn |IL and
synmbol table fornmat, the semantics of these | anguages nust be specified
precisely. Many optim zations require an exact understandi ng of which
synmbols are being witten or read by operations in the IL, and which
operations might affect the results conputed by other operations.

The GEM team devel oped a detail ed specification known as the data access
nodel , which defines those operations that can wite to nmenory and those
that can read from nmenory. Each of these nenory-accessing operations can
explicitly designate the synbol being accessed when it is known. The node
also requires the front end to specify when synbols may be aliased with
paraneters and when they nmay be pointer aliased. A pointer-aliased synbol



may be accessed through pointers or other operations that do not specify
the synbol that they access.
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The nodel can indicate that the pointer-aliased property is derivable,
i.e., a synbol is pointer aliased only if an operation that stores its
address is present in the IL. A special IL operator marks such operations.
When the derivation of this property is deferred, the optimnzer can avoid
mar ki ng synmbol s pointer aliased.

The data access nodel provides a standard way for a front end to indicate
how I L operations affect or depend upon synbols. However, some front ends
can provide additional |anguage-specific discrinmnation of operations that
cannot be allowed to interfere with one another. For exanple, a strongly
typed | anguage |ike Pascal may stipulate that an assignnment to a floating-
poi nt target nust refer to different storage than an integer read, even
when the assignnment target is accessed indirectly through a pointer.

To represent | anguage-specific rules while adhering to the phil osophy that
t he back end should have no know edge of the source | anguage, GEM conpilers
enpl oy a unique interface with the front end, called the side effects
interface. The front end provides a set of procedures that GEM can cal
during optim zation to ask which IL operations have side effects and which
I L operations depend upon those side effects.
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I nterprocedural Optimn zation

GEM s interprocedural optimzation phase starts by wal king over the IL
for all routines to build the call graph. The call graph is a directed
nmul ti graph in which the nodes are routines, and the edges are calls from
one routine to another. The graph is not a tree because recursion is

al l omed. A special virtual routine node represents all unknown routines
that might call or be called by a routine in this conpilation

GEM wal ks the graph to deternine which |ocal synbols that are potentia
targets of up-level access are actually referenced in a called routine.
When up-Ilevel references do occur, GEM can al so determ ne the nost
efficient way to pass that context fromthe routine that declares the
variable to the routine that references it.

On the sane wal k, GEM anal yzes the use of synbols whose pointer-aliased
property is derivable. If operations that store the address of such a
synmbol are present, then the synbol is narked as pointer aliased. The front
end's indication is also retained so that this analysis can be repeated
after address storing operations are elimnated.

The nost significant interprocedural optimnmization that GEM perforns is
procedure inlining. Inlining is a well-known nmethod for reducing procedure
call overhead and for increasing the effectiveness of gl obal optinzations
by enl arging the scope of the operations seen at one tine. Inlining has
addi ti onal benefits on superscalar RI SC architectures, |ike the Al pha

AXP system because the optim zation allows the conpiler to schedule the

i nstructions of the two routines together.

GEM s inliner reviews all calls in the call graph and uses heuristic
algorithnms to determine which calls should be inlined for maxi num speed
Wi t hout unreasonabl e increases in code size or conpilation tine. The
heuri stics consider the nunmber and kind of IL operations, the nunber of
symbol s referenced, and the kinds of optinization that would likely be
enabl ed or di sabled by inlining.

When cal l ers pass constants as actual paraneters, better optimzation is
likely to result frominlining because the correspondi ng formal paraneter
wi Il have a known constant value. On the other hand, when two sections

of the sane array are passed as argunments, and the correspondi ng fornmals
are described as not aliased with one another, elimnating the fornal
paranmeters through inlining discards valuable alias information.[2, 3]

Al so, the order in which inlining decisions are nade can be inportant.
In a chain of calls in which Acalls Band Bcalls C, the call fromA to
B m ght be the nobst desirable inlining candi date. However, if the cal
fromBto Cis inlined first, the size of B may increase, naking it a



| ess attractive candidate for inlining into A Consequently, GEM uses

its heuristics to preevaluate all calls and then orders the calls by
desirability. GEMinlines the npost desirable candidate first, and then
reeval uates the caller's properties, possibly adjusting its position in the
ordered list.
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In many C progranms, the address of a variable (especially a struct) is
passed to a called routine that refers to the variable through a pointer
formal paranmeter. After inlining, a synbol's address is stored in a

poi nter and indirect references are nmade through the pointer. Later

while optim zing the routine, GEM s val ue propagation often elim nates

the pointer variable. Finally, when one or nore pointer-storing operations
have been elim nated, GEM reeval uates the pointer-aliased property of
derivabl e local synbols, and the variable that was once passed by address
is no | onger pointer aliased.

After interprocedural analysis, the routines of the user's program

pass through the optinm zer and code generator one at a tine. GEM s

i nterprocedural phase chooses a bottomup routine order in the call graph
Except for recursive cycles, this order causes GEMto generate the code for
a called routine before generating the caller's code. GEMtakes advant age
of this property by recording the scratch registers that were actually
used in a called routine and adjusting register usage at its call sites.[4]
GEM al so determ nes whether or not the called routine requires an argunent
count .

I nt er redi at e Language Peephol es

GEM uses a peephole optinmizer to inprove the IL. In addition to perforning
t he many obvious sinplifications such as nultiplying by one or adding

zero, the optimzer perforns other transformations. |Integer division by

a constant is expanded into a nultiply by a reciprocal operation, which
can be efficiently inplenented with a UMJULH i nstruction. String operations
on short fixed-length strings are converted into integer operations, to
benefit from various optim zations performed only on scalars. Also, integer
mul tiply operations by a constant are converted into an equival ent set of
shift and add or subtract operations.

I L peephol es sonetinmes expose new optim zati on opportunities by expanding
conpl ex operations into nore explicit conponents. Also, other optimzations
such as val ue propagation may create new opportunities to apply peephol es.
To take advantage of these opportunities, GEM conpilers apply these IL
peepholes multiple tinmes during the optinization of a routine.

Dat a- fl ow Anal ysi s

In previous Digital conpilers, the use of data-flow analysis was |limted
largely to the elimnation of common subexpressions (CSEs), value
propagati ons, and code notions. W generalized the data-flow anal ysis
technique to performa wi der variety of optimzations including field
mer gi ng, induction variable detection, dead store elimnation, base

bi ndi ng, and strength reduction.



The process of detecting CSEs is divided into the tasks of

o Knowi ng when two expressions would conpute the sanme results given
i dentical inputs. Wthin GEM conpil ers, such expressions are said to
be formally equival ent.
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o Verifying that the inputs to formally equival ent subexpressi ons are
al ways identical. Such expressions are said to be value equivalent. This
verification is acconplished by using the side effects nmechani sm

o Determ ning when an expression dom nates a val ue equi val ent
expression.[5] This information guarantees that GEM wi ||l have conputed
the dom nati ng expressi on whenever the doni nated expression is needed.

Code notions introduce the additional task of finding those places in the
fl ow graph to which an expression could be legally nmoved such that

o The noved expression woul d be val ue equivalent to the origina
expression, and

o The noved expression would execute | ess often than the origina
expressi on.

The foll owi ng sections describe how GEM detects base-bi ndi ng and strength-
reducti on candi dates by substituting slightly different equival ence
functions.

Base Bi ndi ng

On RI SC machines, a variable in nenory is referenced by |oading the address
into a base register and then using indirect addressing through the base
regi ster. To reduce the nunber of address |oads, sets of variables that

are closely allocated share base registers. GEM considers two address
expressions formally equivalent if they differ by an amount | ess than

the range of the hardware instruction offset field. The CSE detection

al gorithm determ nes whi ch address expressions are formally equival ent

and thus can share a base register, and the code notion al gorithm noves the
base regi ster |oads out of | oops.

| nducti on Vari abl es

Some of CGEM s npbst val uable optinizations require the identification of

i nductive expressions and induction variables, which is done during data-
fl ow anal ysis. An expression in a loop is inductive if its value on a
particular iteration is a linear function of the trip count. The sinplest
forms of inductive expressions are the control variables of counted | oops.
Expressions that are linear functions of induction variables are also

i nducti ve.

GEM s inplenentation of data-flow analysis uses a technique for deternining
what vari ables are nodified between basic blocks in the flow graph.[6, 7]
The vari abl es nodified between a basic block and its dom nator are
represented as a set called the IDEF set. The mapping fromvariables to



set elements is done using the side effects interface.

The al gorithm for detecting induction variables starts by presum ng that
all variables modified in the | oop are induction variable candi dates.

It then disqualifies variables not redefined as a |inear function of
thenmsel ves with a coefficient equal to one. The |oops that GEM chooses
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to anal yze have a | oop top that dominates all nodes within the |oop. The

| DEF set for a loop top is exactly those variables that are nodified within
the loop and thus serves as the starting value for the induction variable
candi date set, again using the side effects mapping of variables to set

el ements. During the wal k of the | oop, whenever a disqualifying store is
encountered, the contents of the candidate set are updated. Thus, at the
end of the walk, the remmining variables in the set are known to be true

i nduction vari abl es.

Strength Reduction of Induction Variables

Strength reduction is the process of replacing an expensive operation with
a | ess expensive operation. The npst basic exanple of strength reduction on
i nduction is as foll ows:

If the original source program was

DO 201 = 1,10
20 PRINT | *4

strength reduction woul d reduce the multiply to an add as fol |l ows:

1" =4
DO 20 | = 1,10
PRINT I' 20
1" =1+ 4

Note that the npst conmon array references are of the formA(l), which
inmplies a multiplication of | by the stride of the array. Thus, strength
reduction yields a significant performance inprovenent in array-intensive
conput ati ons.

To detect strength-reduction candi dates, we redefine formal and val ue
equi val ence as foll ows:

o Two inductive expressions are formally equivalent if, given identica
i nputs, they differ only by a constant.

o Two formally equival ent inductive expressions are val ue equivalent if
their inputs are value equivalent or are direct references to induction
vari abl es.

Thus, strength-reduction candi dates appear | oop invariant, and two
expressions that are val ue equival ent can share a single strength
reduction. Code notion yields the initial value of the strength reduction

Split Lifetime Analysis



The GEM optim zer analyzes the usage of certain variables to deternmine if
the stores and fetches of a variable can be partitioned, i.e., split, into
di sjoint variables or lifetines.
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For exanpl e, consider the foll owi ng program segment:

1 V=X*Y
22 z=2z*V
3 V=R+S
4 T=T+V

The references to V can be divided into two disjoint lifetinmes V' and V'
wi t hout changing the semantics of the programas in:

1. V = X*Y
2.z =z*V
33 V =R+S
40 T =T+ VWV

V' and V' can be treated as two conpletely independent variables. This has
several useful applications.

o V and V' can be assigned to different registers, each with shorter
lifetimes than the original variable V. The allocator can thus pack
regi sters and nmenory nore tightly.

o V and V' can be schedul ed i ndependently. For exanple, the conputation
of Zinline 2 could be scheduled after the redefinition of Vin line 3.

o Alifetinme that begins with a fetch is an uninitialized variable. GEM
i ssues a diagnhostic in such cases.

o Any lifetime with only stores is effectively "dead," and thus, the
stores can be elininated.

o Wien a lifetinme of an induction variable contains an equal nunber of
stores and fetches, the variable is used only to conmpute itself. Thus,
the whole lifetime can be elimnated. This is called induction variable
el i mnation.

0 GCGEMuses split lifetine information to optim ze the flushing and
rel oadi ng of register variables around routine calls.

0 GCGEMuses split lifetinme information to determ ne what variables are
potentially referenced by exception handl ers.

o Lifetines often need to be extended around | oop tops and | oop bottons.
Split lifetime analysis has full information in many cases in which the
code generator's lifetinme conputation nmust nake pessinistic assunptions.



Thus, anal yzed variables are allocated nore efficiently inside |oops.

The techni que GEM uses for split lifetine analysis is based on the VAX
Fortran SPLIT phase.[8] The techni que includes several extensions in the
areas of induction variables, unselected variables (the original algorithm
anal yzed only a fixed nunber of variables), and exception handling.
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5 Code Generation

The GEM code generator matches code tenplates to sections of IL trees.[9]
The code generator has a set of approximtely 600 code patterns and uses
dynam ¢ programring to gui de the selection of a | east-cost covering for
each statenment tree in the IL graph produced by the gl obal optin zer

Each code pattern specifies a set of interpretive code-generation actions
to be applied if the tenplate is selected. The code-generati on actions
create tenporaries, determine their lifetinmes, allocate registers and stack
| ocations, and actually emt sequences of instructions. These actions are
applied during the follow ng four separate code-generation passes over the
IL graph for a procedure:

o Context. During the context pass, the code generator creates data
structures that describe each tenmporary variable. The information
conmputed includes the |ifetine, usage counts, and a wei ght scal ed by
| oop dept h.

0 Register history. During the register history pass, the code generator
does a dominator-order wal k of the flow graph to identify potentia
redundant | oads of values that could be available in registers.

o Tenp nanme. During the tenp nane pass, the code generator performs
regi ster allocation using the lifetine and wei ght information conputed
during the context pass. The code generator al so uses register history
to allocate tenporaries that hold the sanme value in the sane register
I f successful, this action elimnates | oad and nove instructions.

o0 Code. During the code pass, the code generator enmts instructions and
code | abels. The resulting code cells are an internal representation at
the assenbly code | evel. Each code cell contains a single target machine
i nstruction. The code cells have specific registers and bound of fsets
frombase registers. References to |abels in the code streamare in a
symbolic form pending further optimization and final offset assignnment
after instruction peephole optim zation and instruction scheduling.

Tenpl ate Matching and Result Mbdes

Code tenplate enumeration and sel ecti on occurs during the context pass. The
enuneration phase scans IL nodes in execution order (bottomup) and | abels
each node with alternative patterns and costs. Wen a root node such as a
store or branch tuple is reached, the | owest-cost tenplate for that node is
sel ected. The selection process is then applied recursively to the |eaves
for the entire tree.[10]

The IL tree pattern of a code-generation tenplate consists of four pieces



of information:

o A pattern tree that describes the arrangement of |IL nodes that can be
coded by this tenplate. The interior nodes of the pattern tree are IL
operators; the leaves are either result node sets or IL operators with
no operands.
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0o A predicate on the tree nodes of the pattern. The predicate nmust be true
in order for the pattern to be applicable.

o A result node that encodes the representation of a value conputed by the
tenpl ate' s generated code.

o0 An integer that represents the cost of the code generated by this
tenpl ate.

The result nodes are an enuneration of the different ways the conpiler
can represent a value in the machine.[11] GEM conpilers use the follow ng
result nodes:

o Scalar, for a value, negated value, and conpl enented val ue

o Boolean, for lowbit, high-bit, and nonzero val ues

o Flow, for a Boolean represented as control flow

0 Result nmodes for different sizes of integer literals

0 Result nmodes for del ayed generation of addressing cal cul ati ons

0 Result nodes indicating that only a part of a value has been
materialized, i.e., the low byte, or that the materialized val ue has
used a | ower-cost sol ution

As tenplates are matched to portions of the IL tree, each node is |abeled
with a vector of possible solutions. The vector is indexed by result

node, and the | owest-cost solution for each result node is recorded on
the forward bottom up wal k. When a root node is encountered, the |owest-
cost tenplate in its vector of solutions is chosen. This choice then
deternmines the required result nmode and solution for each |eaf of the
pattern, recursively.

GEM Code Generator Action Language

The GEM code generator uses and extends nethods devel oped in the BLISS
conpilers, the Carnegie-Mellon University Production-Quality
Conpi | er-Conpiler Project, and Digital's VAX Pascal conpiler.[12,13]

One key CGEM innovation is the use of a formalized action | anguage to
give a unified description of all actions performed in the four code-
generation passes. The same formal action descriptions are interpreted
by four different interpreters. For exanple, the Allocate TN action is
used to allocate long-lived tenporaries that may be in a register or in
menory. This action creates a data structure describing the tenporary

in the context pass, allocates a register during the tenp nanme pass, and



provi des the actual tenporary l|ocation for code em ssion.

Tree-mat chi ng code generators were originally devel oped for conpl ex

i nstruction set conputer (ClISC) machines, |ike the PDP-11 and VAX
conputers. The technique is also an effective way to build a retargetable
conpil er systemfor current RI SC architectures. The overall code-generation
structure and nany of the actions are target independent. Sone IL trees
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use sinple, general code patterns, whereas special cases use nore el aborate
patterns and result nodes.
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Regi ster Allocation

GEM conpilers use a sinple linear nodel to characterize register lifetines.
The context, tenp nane, and code passes process the basic blocks and the
IL nodes of each block in execution order. Each code pattern has a certain
nunber of lifetinme ticks to represent points at which a tenporary value is
created or used. The lifetinme of a tenporary is then the interval defined
by its starting lifetime tick and ending lifetine tick

Si npl e expression tenporaries have a linear lifetinme contained within a
basi ¢ bl ock. User variables and CSEs nmay require that |ifetinmes be extended
to cover | oop tops and | oop bottons. The optinizer inserts special begin
and end markers to delimit the precise lifetinmes of variables created by
the split lifetine phase.

The code generator uses a nunmber of heuristics to allocate registers

to avoid copying. If a newlifetine begins at exactly the sane tick as
another lifetime ends, this nay indicate that they should share a register
Ot herwi se, the allocator uses a round-robin allocation to avoid packing
registers too tightly, which would inhibit scheduling. The Myve_Val ue
action is used to copy one register to another and provides a hint that
the source and destination should be allocated to the sane register

Actual allocation of registers and stack temporaries occurs in the tenp
nanme pass. The allocator uses a bin-packing technique to allocate each
conpil er and user variable to a register or to nenory.[14] The all ocator
first attenpts to assign variables to registers; lifetimes that conflict
cannot be assigned to the sane register. The allocator uses a density
function to control the process. A new candi date can di spl ace a previous
variable that has a conflicting lifetime if this action increases the
density nmeasure. After the allocation of tenporaries to registers is
conpl eted, any unallocated or spilled tenporaries are allocated to stack
| ocati ons.

Schedul i ng

To take advantage of high instruction-issue rates in Al pha AXP systens,
conpil ers nmust carefully schedul e the object code, interleaving

i nstructions fromseveral parts of the program being conpiled. Perforning

i nstruction scheduling only once after registers have been allocated pl aces
artificial constraints on the ordering, as illustrated in the follow ng
code exanpl e:

| dq ro, a(sp) ; Copy a to b
stq ro, b(sp)
| dq ro, c(sp) ; Copy c to d

stq ro, d(sp)
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If the load of ¢ and store of d were to use sone other register, the code
could be reschedul ed to save three cycles on the DECchip 21064 processor
as shown in the foll owi ng code:

| dq ro, a(sp) ; Copy a to b
| dq ri, c(sp) ; Copy c to d
stq ro, b(sp)
stq rl, d(sp)

On the other hand, scheduling only before register allocation does not

i ncorporate decisions made by the code generator. Therefore, instruction
scheduling in GEM conpilers occurs twi ce, before and after registers are
all ocated. This practice is fairly comon in contenporary RI SC conpiler

systenms. |In nost other systens, scheduling is performed only on nmachine

code. CEM has two different schedulers - one that schedul es machi ne code
and one that schedules IL.

I nt er redi at e Language Schedul i ng

IL scheduling is perforned one basic block at a tine. First, a forward

pass over the block gathers information needed to control the scheduling,
and then a backward pass builds the new ordered |list of tuples. During

the forward pass, the conpiler builds dependence edges to represent the
necessary ordering rel ationships between pairs of tuples. Tuples that would
requi re an excessive nunber of edges, such as CALL tuples, are considered
mar kers. No tuples can be reordered across a marker

The conpiler uses the data access nodel to determ ne whether two nmenory-
access tuples conflict. Also, if two tuples have address operands with the
same val ue (using data-flow information) but different offset attributes,
the tupl es nmust access different nenory. Thus, no dependence edge is
needed, and nore rescheduling is possible.

The general code for an expression tuple places the result into a conpiler-
generated tenporary, and the general code for a store into a register

vari abl e noves the value froma tenporary into the variable. Many GEM code
patterns for expression tuples allow targeting, where the expression is
conputed directly into the variable instead of into a tenporary. These code
patterns are valid only if there are no fetches of the variable between the
expression tuple and the store operation. Simlarly, a fetch tuple need not
generate any code (called virtual), if no stores exist between the fetch
and its consuner. For exanpl e,

T=A1, A=B+l;, C=T,;

m ght generate the GEM IL
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1$: FETCH(A)
2$: SUB(1$, [1])
3$: FETCH(B)

4%: ADD(3$, [1])
5$: STORE(A, 4$)
6$: STORE(C, 2%)

In this exanple, SUB operates directly on the register allocated for A,

and ADD targets its result to the register allocated for A The obvi ous
dependence edge is from FETCH(A) to STORE(A,...). However, IL scheduling
nmust be careful not to invalidate the code patterns, which would happen

if it moved FETCH(A) between ADD and STORE(A) or STORE(A) between FETCH(A)
and SUB. To ensure valid code patterns, the first pass noves the head of
dependence edges backward fromtargeted stores to the expression tuple that
does the targeting. Simlarly, the first pass nmoves the tail of dependence
edges forward fromvirtual fetches to their consuners. In this exanple, the
edge runs from2$ to 4% and prevents either of the illegal reorderings.

In addition to building dependence edges, the first pass conputes
heuristics for each tuple, to be used by the second, i.e., scheduling,
pass. One heuristic, the anticipated execution tinme (AET), estimtes the
earliest time at which the tuple could execute. The AET for tuple T is

ei ther the maxi mum AET of any tuple that nust precede T, or the maxi mum
AET plus the latency of T s operands. |f some of the tuples that nust
precede T require the same hardware resources, the AET may be optimstic.
Neverthel ess, the AET is a useful guide to the scheduling pass.

The first pass al so conputes the m ni mum nunber of registers (separately
for integer and floating-point registers) needed to evaluate the
subexpression rooted at a particular tuple. The value of this heuristic is
the Sethi-U | man nunber, i.e., the nunber of registers needed to eval uate
the subexpressions in the optinmal order, keeping their internedi ate val ues,
plus the additional registers to evaluate the tuple itself.[15] If the
second pass schedules tuples with a |lower count later in the program

the register usage will be kept Iow. Wthout such a nechanism scheduling
before register allocation tends to cause excessive regi ster pressure.

CSEs can be treated simlarly to subexpressions in this conputation, but
with two conplications. The first pass cannot predict the |ast use of the
CSE and therefore treats each use as the | ast one. The schedul er ignores
any register usage associated with CSEs that are not both created and used
wi thin the bl ock being scheduled. This action allows the register allocator
to place the CSEs in nmenmory, if the schedul ed code has better uses for

regi sters.

The second pass of the IL schedul er works backward over the basic bl ock
The schedul er renopves all the tuples up to the | ast marker and nekes



avail abl e those that have no dependence edges to tuples that mnmust follow
The schedul er then selects an available tuple and places it in the

schedul ed out put, updates the state of each nodel ed functional unit, and
makes avail abl e new tupl es whose dependences are now satisfied. Wen the
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mar ker is schedul ed, the schedul er continues to renmove the precedi ng group
of tuples fromthe block until the entire block has been schedul ed.

The schedul er keeps track of the nunber of schedul ed cycles and the
estimated nunmber of |ive registers. When choosi ng anong tuples, the
schedul er prefers one whose subtree can be evaluated within the avail abl e
registers, or, failing that, one whose subtree can be evaluated with the
fewest registers. Wien several tuples qualify, the schedul er chooses the
one with the greatest AET.

Limting register pressure, while not inmportant for all programs, is
important in blocks with a |ot of available parallelism Wth this feature,
IL scheduling is a significant contributor to the high performnce of CGEM
conpi | ed prograns.

I nstruction Peepholing

After code has been generated or code cells have been created directly, the
i nstruction processing phases are run as a group. Instruction peepholing
performs a variety of localized transformations, typically by matching
patterns of adjacent instructions and replacing themw th better patterns.
From the perspective of instruction scheduling, the nobst interesting
function of the instruction peepholer is to performa set of branch

reducti ons. The peepholer also replicates short sequences of code to
facilitate instruction scheduling and to elimnate the instruction pipeline
ef fects of branches.

A control flow processing phase follows the instruction peepholing phase.
Currently, this phase determ nes |abels that are backward branch targets
for alignment purposes. This action occurs before instruction scheduling,
because instruction alignment is inportant for the DECchip 21064 Al pha AXP
processor, in which instructions nmust be aligned on quadword boundari es

to exploit dual instruction issue. In the near future, the control flow
processi ng phase will collect register information for each basic block to
al I ow addi ti onal scheduling transfornmations.



Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 17



The GEM Optim zing Conpiler System

I nstruction Scheduling

The instruction scheduler is the next phase. At this point, all register
bi ndi ng and code nodifications other than branch/junp resol ution have
occurred. The schedul er does a forward wal k over the basic blocks in each
code section to determine the alignment of the first instruction in each
bl ock.

For each basic block, the instruction schedul er does two passes that are
effectively the inverse of the passes that the IL schedul er perfornms,
nanmely a backward wal k to determine instruction-ordering requirenents

and path length to the end of the block, and a forward pass that actually
schedul es the code.

The backward ordering pass uses an AET conputation simlar to the one

used by the IL scheduler. The instruction schedul er knows the actua
instructions to be schedul ed and has a nore detail ed machi ne nodel . For

t he DECchi p 21064 processor, for exanple, the instruction schedul er has
detail ed asymetric bypassing information and i nformati on about multiple

i ssue. For architectures that have branch delay slots, the AET conputation
is biased so that instructions likely to be able to fill branch delay slots
wi |l occur inmmediately before branch operations.

The forward scheduling pass does a cycle-by-cycle nmodel of the machine,

i ncluding modeling nultiple issue. The reasons for choosing this approach
rather than an approach that just selects an ordering of the instructions
are as foll ows:

o For nmachines with significant issue limtations, e.g., nonpipelined
functional units or nultiple issue pairing rules, packing the linmting
resource well is often preferable to obtaining a good schedule. A cycle
nodel allows other instructions to "float" into the no-issue slots,
while allowing the critical resource to be schedul ed wel |l

o0 Mdeling the machine all ows easy determ nation of where stalls are
occurring, which in turn allows instructions fromthe current bl ock
or from successor blocks to be noved into no-issue slots.

o0 Mdeling the machine in a forward direction captures the fact that
processors are typically "greedy" and issue all the instructions that
they can issue at a given tine.

o0 The cycle nodel allows a variety of dunps, which can be useful both to
users of the conpiler systemand to devel opers who are trying to inprove
the performance of generated code.

The forward pass does a topol ogical sort of the instructions. The



schedul er noves instructions that have either
an antidependence (e.g., register
issuing ring for future issue.

a direct dependence or
reuse) to a data structure called the

18 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992



The GEM Optim zing Conpiler System

The schedul er represents the instructions available for issuing as a |i st
of data structures known as heaps, which are priority queues. Each heap
on the list contains instructions with a simlar "signature." For exanple,
a heap might contain all store instructions. Wen |ooking for the next
instruction to issue, the schedul er exam nes the top instruction in each
heap. Wthin each heap, instructions are typically ordered by their AET
val ues, with occasional snall biases for different instruction properties,
such as | oads that may have a variabl e execution tinme |onger than the
projected tine.

The heaps are, in turn, ordered in the list according to how desirable it
is that a particular heap's top instruction be issued. Al nonpipelined

i nstruction heaps are first on the list, followed by all senipipelined
heaps and, last, all fully pipelined ones. A sem pipelined resource may
prevent particular instructions fromissuing in certain future cycles but
can issue every cycle. For exanple, stores on some nachines interact with
| ater | oads.

Instructions that use multiple resources are represented in the heap
ordering. For example, floating-point nmultiplies on the MPS R3000 machi ne
use both the nultiplier and sone of the sane resources as additions. As

a result, the heap that holds nultiplies is always kept ahead of the heap
that hol ds adds. This ordering schene works well for both machines with a
signi fi cant nunber of nonpipelined units, such as the MPS processors, and
machi nes that have largely pipelined functional units with only particul ar
combi nations of nmultiple issue allowed, |ike the DECchip 21064 processors.

Note that, other than the architecture-specific conputation for AET and

per - processor inplenentation data tables, the scheduler is conpletely
target independent. For exanple, currently, processor inplenmentation tables
exi st for the MPS R3000 and R4000 processors, the DECchip 21064 processor
and Al pha AXP processors that are under devel opnent.

6 Field Merging Exanpl e

Generating efficient code for the extraction and insertion of fields within
records is particularly challenging on RISC architectures, |ike Al pha AXP,
that provide only 32-bit (longword) or 64-bit (quadword) nenory operations.

Often, a programw ||l fetch or store several fields that are contained in
the sane | ongword. Wthout optimzation, each fetch would | oad the | ongword
from menory, and each store would both | oad and store the | ongword.

However, it is possible to performa collection of field fetches and stores
with a single load and store to nmenory. As anot her exanple, two bit tests
within the same | ongword could be done in parallel as a nask operation.

In the IL generated by the front end, each field operation is generated as



a separate |IL operation. Thus, the real task of optimzing field accesses
is to identify IL operations that can be conbi ned.
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In the initial IL, a field fetch or store is represented as an |IL operator
The underlying problemis that the redundant | oads and stores are not
visible in this representation. The first part of the solution involves
expanding the field fetch or store into | ower-1level operators. The IL
generated by the front end for two field extractions as shown in (a) of
Figure 3 is expanded into the IL shown in (b) of Figure 3. Wth the | oads
exposed as fetches, data-flow analysis is now capable of finding the commopn
subexpressions of 1$ and 3$.

Simlarly, each field store expands into a fetch of the background

| ongword, an insertion of the new data into the proper position, and a
store back. Gven two field stores, value propagation can elininate the
second fetch, and then dead-store elimnation can elimnate the first
store.

In some cases, a programoperates on the field and thus elim nates the
extract and insert operations. For exanple, the follow ng exanpl e generates
t he machi ne code shown in Figure 4.

typedef struct node {
char n_kind;
char n_fl ags;
struct node *xl| _car;
struct node *xl| _cdr;
} NODE;

#define MARK 1
#define LEFT 2

voi d denmo(ptr)

NODE *ptr;
{
while (ptr) {
if (ptr->n_kind == 0) {
ptr->n_flags | = MARK;
ptr->n_flags &= ~LEFT,;
}
ptr = ptr->xl_cdr;
}
}

The unoptim zed code woul d contain a | oad and an extract for each reference
to n_kind or n_flags, plus an insert and a store for the latter two
references. The optim zer has elinmnated two of the three | oads, two of

the three extracts, both inserts, and one of the two stores.
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7 Branch Optim zation Exanpl es

Branch instructions can hurt the performance of high-perfornmance systens
in several ways. In addition to consuming space and causing tinme to be
expended while issuing the instruction, branches can disrupt the hardware
pi peline. Also, branches can inhibit optim zations such as code scheduling.
Therefore, the GEM conpiler system uses several strategies to avoid
branches in the IL and generated code or to elimnate sonme bad effects

of branch instructions.

Some branches appear as part of a well-defined pattern that need not

inhibit optinizations. GEM uses special operators for these cases. A sinple
exanple is the MAX function. For Al pha AXP systens, MAX can be inpl enented
usi ng the CMOVxx instructions, avoiding branch instructions entirely. For
other architectures, the nmain benefit is that the branch does not appear in
the L. A nore conplicated exanple involves the so-called "fl ow Bool ean”
operators. Consider the C code exanple,

X = (p & *p) ? *y : *z
whi ch generates the following GEMIL:

1$:  FETCH(P)

2$:  NONZERO( 1%$)
3$:  ANDSKI P(2%$)
4$: FETCH(1$)

5$:  NONZERQO( 4%$)
6$: LANDC(3$, 5%)
7$:  SELTHEN(6$)
8$: FETCH(Y)

9$: FETCH(8%$)
10$: SELELSE(9%$)
11$: FETCH(2)

12$: FETCH(11%$)
13$: SELC(7$, 10%, 12%)
14$: STORE(X, 13%)

The ANDSKI P and LANDC tupl es inplenment the conditional-AND operator. |If
tuple 2% is false, tuples 4% and 5% are skipped, and the result of the
LANDC is false. Oherwi se, the LANDC uses the result of tuple 5$.

Simlarly, the SELTHEN, SELELSE, and SELC tuples inplenment the select
operator. If tuple 6% is true, then tuples 8% and 9% conpute the result,
and tuples 11% and 12% are skipped. If tuple 6% is false, then tuples 8%
and 9% are skipped, and tuples 11% and 12$ conpute the result.

These operators allow prograns to represent branching code within the



st andard basi c-bl ock framework but require branches in the generated code,
to avoi d undesired side effects of the skipped tuples. In sone cases,

t hough, GEM can determ ne that the skipped tuples have no side effects
and then converts the operators to an unconditional form allow ng the
generated code to be free of branches.
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GEM perfornms other transformations on the IL to elimnate branches and thus
enabl e further optimn zations. For exanple, GEM transforns

if (expr) var = 1; else var = 0;
into
var = ((expr) !'=0)

Al pha AXP inplenentations typically include a branch prediction
mechani sm Correctly predicted branches take several cycles less tine
than mi spredicted branches. The fastest conditional branch is one that
is correctly predicted not to be taken. GEM uses several strategies to
arrange branches for best perfornmance.

GEM sel ects an order for the basic blocks of a programthat may differ from
the order in the source program For each basic block that ends with an
uncondi ti onal branch, CGEM places the target block next, unless that bl ock
has al ready been placed. Simlarly, if a basic block within a | oop ends

wi th an unconditional branch, a target block within that loop is placed
next, if possible. For exanple,

while (--i > 0) {
if (a[i] !'=Db[i]) return a[i]-b[i];
a[i] = 0;
}
To elimnate the unconditional branch when the loop iterates, GEM

transforns the pretested loop into a posttested |oop. Since the return
statement is outside the |oop, the generated code | ooks |ike

if (--i >0
do {
if (a[i] !'=Db[i]) goto I|abel;
a[i] = 0;

} while (--i > 0);

| abel: return a[i]-b[i];

GEM can al so unroll |oops and thus reduce the nunmber of tinmes the branch
back must be executed. More inportant, GEM often allows operations from
different iterations to be schedul ed together. Unrolling by four transforns
the above loop into a cleanup | oop and the nain |loop into code that
resenbl es
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do {
if (a[i] !'=Db[i]) goto I|abel;
a[i] = 0;
if (a[i-1] !'=Db[i-1]) goto I|abel;
a[i-1] = 0;
if (a[i-2] !'=Db[i-2]) goto I|abel
a[i-2] = 0;
if (a[i-3] !'=Db[i-3]) goto I|abel
a[i-3] = 0;

} while (i -= 4);

This code executes four fall-through branches and one taken branch, whereas
the original code executed four fall-through branches and four taken
branches.

Certain code patterns generate code that is likely not to be executed. For
exanpl e, when the conpiler believes that a 16-bit value in nmenory is apt to
be naturally aligned, but may be unaligned, it generates the instructions
shown in Figure 5 to load the value, given the address in r0. The code runs
qui ckly for the aligned case, because the branch is correctly predicted

to fall through, but gets the correct value for unaligned data, as well. A
simlar code pattern handl es stores.
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8 Conpil er Engineering

Engi neering conpilers for a | arge conbinati on of | anguages and pl atfornms
requi red a consi derabl e number of innovations in the area of project
engineering. In this section we describe sonme of the project nethods and
t ool s GEM uses.

Opal Internedi ate Language Conpil er

The task of a GEM conpiler is to translate a program presented by the

front end in the formof an IL graph and synbol table into machine

code. In the early stages of CGEM devel opnment, no front ends existed to
generate |IL graphs and synbol tables. To fill this requirenent, a syntactic
specification of the IL and synmbol table was designed and an |IL assenbl er
called Opal was built to conpile this syntax. Opal uses CGEM conponents such
as the shell and thus supports a robust set of features including |isting
generation, object files, include files, debug support, and | anguage editor
di agnosti cs.

Even with the availability of front ends, Opal remains a vital project
tool: it allows GEM devel opers to exercise new features before front-end
support is available; front-end devel opers use Opal to experinment with
different IL alternatives; and the Opal syntax serves as the output format
of the IL dunper.

Attribute and Operator Signature Tabl es

GEM t abl es give a conplete description of all CGEM data structures,
including IL operators and symbol table nodes. The operator signature
tabl e contains the operator type, result type, nunber of operands, and

| egal operand types for IL operators. The attribute tables describe each
conmponent in a node including | ocation, abstract GEM data type, |ega

val ues, node type for pointers, and special print formats. \Wen a new
attribute is added to the GEM specification, the attribute is described
once in the tables and automatically the Opal conpiler understands the
syntax and semantics, the GEM dunp utility is able to dunp the attribute,
and the GCEMintegrity checker is able to verify the structure.

Aut omati ¢ KFOLD Bui | der

The GEM conpil er needs to eval uate constant expressions at conpile tine,
which is referred to as constant folding. GEM s internedi ate | anguage has
many | L operators and data types. A constant folder is thus a conplicated
routine with many cases, and the conpile-time and run-tinme results nust be
i denti cal

After witing our first, inconplete, handcrafted constant folder, we



searched for a nmethod to automate the process. No source | anguage supported
all the operators and data types of the GEMIL. The key insight was that
there is one |language in which IL programs can be witten precisely and
tersely: the GEMIL itself. Since GEM al ready enbodi es know edge of the
code sequences to evaluate every |IL operator, no other encoding is needed.
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The automatic KFOLD builder is a specialized GEM conpiler that uses the
standard GEM back end but has a front end that conpiles only one program
The KFOLD buil der scans the GEM operator signature table and constructs

a procedure that contains a nany-way conditional branch to select a

case based on the IL operator specified in the argunent |ist. Each case
fetches operand values fromthe argunment |ist, applies the operator, and
returns the result. Since nbst GEMIL tuples operate on several data types,
addi ti onal subcases may be based on the operator type or result type. W
have already recovered the investnment in devel oping the automati c KFOLD
builder, and it significantly eases the task of retargeting GEM

9 Concl usion

Thi s paper describes the current GEM conpiler system However, a portable,
optim zing conpiler provides many opportunities that we have not yet
expl oi ted. Some enhancenents planned for future versions are:

o Additional IL operators and data types, to support nore |anguages

o Support for additional architecture and operating system conbinations
o Dependence analysis, to enable sone of the follow ng enhancenents

0o Loop transformations, to inprove the use of the nenory hierarchy

o Software pipelining, to increase parallelismin vectorizable |oops

0 Better reordering of nenory references during instruction scheduling

0 The scheduling of instructions into different basic bl ocks

o0 The relaxing of the linear restriction on the lifetine nodel, i.e.
allowing holes in register lifetines

The GEM conpil er system has nmet demandi ng technical and tine-to-narket
goal s. The system has been successfully retargeted and rehosted for the

Al pha AXP and M PS architectures and several operating environnments. GEM
supports a wi de range of |anguages and provides high | evels of optimzation
for each. The current version of GEM generates efficient code for Al pha AXP
systenms, and the inplenentation is robust and flexi ble enough to support
future inprovenents.
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