The Megadoc | mage Docunent Managenent System

1 Abstract

Megadoc i mage docunent nanagenent sol utions are the result of a systens
engi neering effort that conbined several disciplines, ranging fromoptica
di sk hardware to an i nmage application framework. Although each of the
conponent technol ogies may be fairly mature, conbining theminto easy-to-
custoni ze solutions presented a significant systens engi neering chall enge.
The resulting application framework allows the configuration of custom zed
solutions with | ow systens integration cost and short tine to depl oynent.

2 Electronic Docunent Managenent

In nost organi zations, paper is the main mediumfor information sharing.
Paper is not only a comruni cation nedium but in many cases also the carrier
of an organization's vital information assets. Wereas the recordi ng of

i nformati on in docunent format is done largely with help of electronic

equi pnent, sharing and distribution of that infornmation is in many cases
still done on paper. Large-scale, paper-based operations have linted
options for tracking the progress of work.

The conputer industry thus has two opportunities:

1. Capture paper docunents in electronic inage format (if using paper is a
requirenent)

2. Provide better tools for sharing and distribution among work groups (if
the use of paper can be avoi ded)

Organi zations that use electronic imaging, as conpared to handling paper
can better track work in progress. Productivity increases (no tine is
wasted in searching) and the quality of service inproves (response
times are shorter and no information is lost) when vital information is
represented and tracked el ectronically.

I maging i s not a new technol ogy (see Table 1). Mreover, this paper does
not document new base technol ogy. Instead, we describe the key conponents
of an inmage docunent managenent systemin the context of a systens

engi neering effort. This effort resulted in a product set that allows the
configuration of custom zed sol utions.

Those who first adopted the use of inmage technol ogy have had to go through
a long learning curve-a conputer with a scanner and an optical disk does
not fully address the issues of a |arge-scale, paper-based operation. Early
adopters of electronic i magi ng experienced a challenge in defining the

right electronic docunent indexing schenme for their applications. Even

t hough the technology is now mature, the introduction of a docunent imaging
system frequently | eads to sone form of business process reengineering

to exploit the new options of electronic docunent managenent. The Megadoc

Digital Technical Journal Vol. 5 No. 2, Spring 1993 1

The Megadoc | mage Docunent Managenent System

i mmge document nmanagenent system allows the configuration of custoner-
speci fic solutions through its building-block architecture and its built-in
custoni zation options.

The Megadoc system presented in this paper is based on approxi mtely 10
years of experience with base technol ogy, custoner projects, and everything
in between. In those years, Megadoc i mage docunent managenent has mat ured
fromthe technol ogy delight of optical recording to an application
framework for image docunent managenent. This framework consists of

har dwar e and software conponents arranged in various architectural |ayers:
the base system the optical file server, the storage manager, and the

i mage application franmework.

The base system consists of PC-based workstations, running the M crosoft

W ndows operating system connected to servers for storage managenent and
t o dat abase services for docunent indexing. Specific peripherals include

i mage scanners, inmage printers, optional full-screen displays, and optiona
write once, read many (WORM di sks.

The optical file server abstracts fromthe differences between optical WORM
di sks and provi des the many hundreds of gigabytes (GB) of storage required
in large-scal e i nage docunent managenent systens.

The storage nmanager provides storage and retrieval functions for the
contents of docunents. Document contents are stored in "containers," i.e.,
| arge, one-di nensional storage areas that can span nultiple optical disk
vol umes.

The Megadoc i mage application framework contains three subl ayers:
1. Image-related software libraries for scanning, view ng, and printing
2. Application tenplates

3. A standard fol der nmanagenent application that provides, with sone
tailoring by the end-user organization, an "out-of-the-box" inmage
docunment managenent sol ution

The optical file server and the storage manager store inmmges in any type
of docunent format. However, to neet customer requirenents with respect to
| ongevity of the docunents, images should be stored in conpressed format
according to the Comité Consultatif Internationale de Tél égraphi que et

Tél éphoni que (CCITT) G oup 4 standard.

In addition to i mage docunent managenment sol utions, Megadoc conponents
are used to "imge enabl e" existing data processing applications.
In many cases, a data processing application uses sone neans of

identification for an application object (e.g., an order or an invoice).
This identification relates to a paper docunent. Megadoc reuses the
application's identification as the key to the inmage version of that
docunent. Application progranm ng interfaces (APIs) for termnal enulation
packages that are running the original application in a w ndow on the

2 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Megadoc | mage Docunent Managenent System

Megadoc i mage PC workstations allow integration with the unchanged
application.

The foll owi ng sections describe the optical file server, the storage
manager, and the inmage application franmework.

3 Megadoc Optical File Server

The Megadoc optical file server (OFS) software provides a UNIX file system
interface for WORM di sks. The OFS automatically | oads and unl oads these
WORM vol umes by jukebox robotics in a conpletely transparent way. Thus,
froman APl perspective, OFS inplenments a UNIX file systemwith a | arge on-
line file system storage capacity. Currently, up to 800 GB can be reached
with a single jukebox.

We inplenented the OFS in three |layers, as shown Figure 1

1. The optical disk filer (ODF) |ayer, which enables storing data on wite-
once devices and providing a UNIX file systeminterface.

2. The volunme manager (VM , which | oads and unl oads volunmes to and from
drives in the jukeboxes and conmuni cates with the system operator for
handl ing off-1ine vol unes.

3. The device layer, which provides device-|level access to the WORM dri ves
and to the jukebox hardware. This layer is not discussed further in this
paper.

Optical Disk Filer

When we started to design the ODF, the chief prerequisite was that it
shoul d adhere to the UNIX file systeminterface for applications. The
obvi ous benefit was that the designers would not have to wite their

own utilities to, for exanple, copy data, create new files, and nake new
directories. All UNIX utilities would work as well on WORM devices as on
any other file system

Current UNI X inplenentations provide two kernel interfaces for integrating
a new file systemtype into the kernel: the file systemswitch (FSS), in
UNI X versions based on the SystemV Release 3; and the virtual file system
(VFS), in UNI X i nplenentations |like the SystemV Rel ease 4, SunCS, and OSF
/1 operating systenms. We introduced the optical disk filer in the FSS and
|ater ported it to the VFS.

The key chal l enge for the design of a file systemfor wite-once devices
is to all ow updates without causing an "aval anche" of updates. Note that
any update to a sector on a WORM device forces a rewite of the full sector

at another location. |If pointers to an updated sector exist on the WORM
device, sectors that contain those pointers have to be rewitten, also. For
exanple, if a file systeminplenentation is chosen where the list of data
bl ocks for a file, or just the sector |location of such a list, is part of
the file's directory information, any update to that file would cause a

Digital Technical Journal Vol. 5 No. 2, Spring 1993 3

The Megadoc | mage Docunent Managenent System

rewite of the directory sector and the sectors for the parent directories,
all the way up to the root directory.

A second issue to be addressed for rempvabl e optical disks is performance.
Access tinme for on-line disks is at |east eight tines slower than for
current magnetic di sks. (The average seek tinme for a WORM device is 100
mlliseconds; rotational delay is about 35 milliseconds.) Fetching a disk
froma jukebox storage slot, loading it, and waiting for spin-up takes
between 8 and 15 seconds, depending on the type of jukebox.

Cachi ng solves both issues. W decided that the usual in-nenory cache woul d
not be sufficient for the huge anobunts of WORM data, and therefore, we use
partitions of magnetic disks for caching.

ODF WORM Layout. To avoid duplicating previous efforts, we used classica
UNI X file systens as a guideline for the definition of ODF's WORM | ayout.
However, we had to add sonme indirect pointer mechanisns to avoid update
aval anches. Each file systemis napped onto a single WORM partition. These
partitions are witten sequentially, reducing the free block adm ni stration
to maintaining a current wite point.

The ODF reuses many notions from UN X file systens, such as i-nodes,
super bl ock, and the functional contents of directory entries.[1] Applying
these UNI X notions to the optical file systemresulted in the follow ng ODF
characteristics:

0 The superblock contains all global data for a file system

o Each i-node contains the block list and all the attributes of a file
except the file's nane.

0 An i-node nunber identifies each i-node.
o Adirectory is a special type of file.
o Entries in a directory map nanes to i-node nunbers.

A new notion in the ODF, as conpared to UNIX file systems, is the

adm nistration file (admin file). One such file exists for each file
system The file is sequential, and its contents are simlar to the first
di sk blocks in classical UNIX file systenms: the first extent contains the
super bl ock, and all other extents forma constantly growing array of i-
nodes; the i-node's nunber is the index of the i-node in the file's i-node
array. An inportant difference between UNI X file systens and the ODF is
that the 2-kilobyte (kB), fixed-size extents of the ODF adnmin file are
scattered over the WORM devi ce, instead of being stored as a sequentia
array of disk blocks, as in UNI X systens. As a result, any update to an i-

node, as a consequence of a file update, causes the invalidation of at npst
one admin file extent. Since the logical index in the admn file of this

i -node, i.e., the i-node nunber, does not change, the parent directories do
not have to be updat ed.

4 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Megadoc | mage Docunent Managenent System

However, this scheme needs an additional indirect pointer nmechanism a
list of block nunbers representing the |location of the admn file extents.
The ODF stores this list in the admin file's i-node (aino). The aino is

a sequential file that contains slightly nore than bl ock nunbers and is

a sequence of contiguous bl ocks on the WORM di sk that contain the sane

i nformati on. Hence, an update to an adnin file extent always invalidates
the entire aino on the WORM devi ce, which nmakes the aino a nore desirable
candi date for caching than the admn file extents.

The foll owi ng exanple, shown in Figure 2, illustrates the steps involved in
reading | ogical block Nfromthe file with i-node nunber |

1. Read the aino to obtain the block nunber of |'s admin file extent.

2. Read the admin file extent to get file |, which is used to translate the
| ogi cal bl ock nunmber N into the physical block nunber |(N)

3. Read physical block I(N).

If the file systemis in a consolidated state, i.e., all data on the
WORM di sk is current, the aino and the superblock are the | ast pieces of
information witten to the WORM device, directly before the current wite
point. Blocks witten prior to the aino and the superbl ock contain nainly
user data but also an occasional adnmin file extent, fully interleaved.
Figure 3 shows the WORM | ayout. Since ODF requires the first adnmin file
extent and the conplete aino to be in the cache, introducing a disk with
consolidated file systens to another system requires searching the current
write point, reading the superblock, determining the aino Iength fromthe
superbl ock, and finally reading the aino itself. Searching the current
write point is a fairly fast operation inplenented through binary search
and hardware support, which allow the ODF to distinguish between used and
unused data bl ocks of 1K bytes.

ODF Caching. Caching in the ODF is file oriented. W suggest a magnetic
cache size of approximately 5 percent of the optical disk space. If data
froma file on a WORM disk is read, the ODF creates a cache file and copies
a contiguous segnent of file data fromthe WORM di sk (64 kB in size, or
less in the case of a snmall file) to the correct offset in the cache file.
The cache file is the basis for all 1/O operations until removed by the
ODF, after having rewitten all dirty segnents (i.e., updated or changed
segnments) back to the WORM devi ce. The ODF provi des special systemcalls
(through the UNI X fcntl (2) interface) to flush asynchronously dirty file
segnents to the WORM device and to renove a file's cache file. The flusher
daenon nonitors high and | ow watermarks for dirty cache contents. The
daenon flushes dirty data to the optical disks. The flusher daenmon fl ushes
data in a sequence that mnimzes the nunber of WORM vol une novenents in

a jukebox. The ODF del etes clean data (i.e., data already present on the

optical disk) on a |least-recently-used basis.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 5

The Megadoc | mage Docunent Managenent System

The admin file has its own cache file. The mi ni mum anount of admin file
data to be cached is the superblock. The ODF gradually caches the other
admin file extents, which contain the i-nodes, while the file systemis
in use. The ODF wites i-node updates to the WORM devi ce as soon as al
i-nodes in the sane admn file extent have their dirty file data witten
to the WORM device. The aino has its own cache file, also, and is always
conpletely cached. If all file data and i-nodes have been witten to the
WORM device, the file system can be consolidated by a special utility
that wites aino and superblock to the WORM devi ce, hence creating a
consol i dati on point.

For reasons of nodularity and ease of inplenentation, we chose the UN X
standard magnetic disk file systeminplenmentation to performthe caching.
An alternative woul d have been to use a magnetic disk cache with an

optim zed, ODF-specific structure. W opted for a snmall anmount of overhead,
which would allow us to add a faster file system should one becone

avail abl e. OQur performance nmeasurenments showed a | oss of |ess than 10
percent in performance as conpared to that of an ODF-specific solution

The cache file systens on magnetic di sk can be accessed only through the
ODF kernel conponent. Thus, in an active OFS system no application can
access and, therefore, possibly corrupt the cached data.

Vol unme Manager

In addition to hiding the WORM nature of the underlying physical devices,
the OFS transparently noves vol unmes between drives and storage slots in

j ukeboxes that contain many volunes ("platters"). The VM perforns this
function.

The essential characteristic of the volunme managenment |ayer is its sinple
functionality, which is best described as a "volume faulting device." The
interface to the VM consists of volune device entries, each of which gives
access to a specific WORM volune in the system For exanple, the volune
device entry /dev/ WORM A gives access to the WORM vol umre WORM A. Thi s

vol une device entry has exactly the sane interface as the usual device
entry such as /dev/worm which gives access to a specific WORMdrive in the
system or rather to any volune that happens to be on that drive at that
nmonment. Any access to a volune device, e.g., /dev/IWORM A, either passes
directly to the drive on which the volume (WORM A) is |oaded, or results in
a volunme fault. This last situation occurs when the volume is in a jukebox
slot and not in a directly accessible drive. Note that since /dev/ WORM A
has the sane interface as /dev/iworm the OFS could function w thout the VM
| ayer in any systemthat contains only one wormdrive and one vol unme t hat
is never renoved fromthat drive. However, since this configuration is not
a realistic option, the OFS includes the VM I ayer.

The internal architecture of the VMis nore conplicated than its

functionality might indicate. The VMconsists of a relatively small kerne
conponent and several server processes, as illustrated in Figure 4. The
kernel conponent is a pseudo-device driver |ayer that receives requests for
the vol une devices, e.g., /dev/ WORM A, and transl ates these requests into

6 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Megadoc | mage Docunent Managenent System

physi cal device driver (/dev/worn) requests using a table that contains the
| ocations of |oaded volumes. If the |location of a volune can be found in
the table, the I/Orequest is directly passed on to the physical device.
O herwi se, a nmessage is prepared for the central VM server process, and the
vol une server and the requesting application are put in a waiting state.

The vol ume server uses a file to translate volume device nunbers into

vol une names and | ocations. It communicates with two other types of VM
server processes: jukebox servers and drive servers. The jukebox servers
take care of all novenments in their jukebox. Drive servers spin up and spin
down their drive only on request fromthe vol unme server.

4 Storage Manager

The storage nmanager inplenments containers, as nmentioned in the Electronic
Docunment Managenent section. Large-scal e docunment managenment uses indexing
of nmultiple storage and retrieval attributes, typically with the help of a
rel ati onal database. Once the contents of a docunent are identified through
a database query on its attributes, a single pointer to the contents is
sufficient. Also, there is little need for a hierarchically structured file
system Containers provide large, flat structures where the contents of a
docunent are uniquely defined by the container identification and a uni que
identification within the container. The document's contents identification
is translated by the storage manager in a path to a directory where one

or nore contents files can be witten. For nultipage i mage docunments, the
Megadoc system stores each page as a separate image file in a directory
reserved for the docunent. This schene guarantees locality of reference,
avoi di ng unnatural delays while browsing a nultipage i mage docunent.

A container consists of a sequence of file systens, typically spanning
nmul tiple volunes. Due to the nature of the OFS, no distinction has to
be made between WORM di sk file systens and magnetic disk file systens.
The storage manager fills containers sequentially, up to a configurable
threshold for each file system allow ng sone degree of |ocal updates
(e.g., adding an imge page to an existing docunent). As soon as a
cont ai ner becones full, a new file system can be added.

Containers in a systemare network-1evel resources. A name server hol ds
contai ner |ocations. Relocation of the volune set of a container to another
j ukebox, e.g., for load balancing, is possible through system managenent
utility progranms and can be achi eved wi thout changi ng any application's

i ndexi ng dat abase.

5 RetrievAll-The Megadoc | mage Application Franmework

Early Megadoc configurations required extensive systemintegration work.
RetrievAll is the second-generation image application franmework (1AF). The

first generation was based on delivery of source of exanple applications.
However, tracking source changes appeared to be too big of an issue and
hanpered the introduction of new base functionality.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 7

The Megadoc | mage Docunent Managenent System

In cooperation with European sal es organi zations, we fornulated a Iist of
requi renents for a second-generation | AF. The framework mnust

1. Allow for standard applications. Standard applications, i.e.
scan, index, store, and retrieve, cover a w de range of custoner
requi renents in folder managenment. Tailoring standard applications can
be acconplished in one day, w thout progranm ng effort.

2. Be usable in systemintegration projects. The | AF nust provide APlIs
for folder managenent, allowing the field to build applications with
functionality beyond the standard applications by reusing parts of the
standard applications.

3. Allow i mage enabling of existing applications. RetrievAll should allow
the |inkage of electronic i mage docunents and folders with entities,
such as order nunber or invoice nunmber, in existing applications.

Exi sting applications need not be changed and run on the inmage
wor kstation using a term nal erulator running at the inage workstation.

4. Accommpdate internationalization. Al text presented by the application
to the end user should be in the native |anguage of the user. RetrievAl
shoul d support nore than one | anguage simultaneously for multilingua
countries.

5. All ow upgradi ng. A new functional release of RetrievAll should have no
effect on the customer-specific part of the application.

6. Provide docunment routing. After scanning the docunents, RetrievAl
shoul d route references to new i nage docunents to the in-trays of users
who need to take action on the new docunents.

| mage Docunents in Their Production Cycle

| mage docunents start as hard-copy pages that arrive in a nmailroom where
the pages are prepared for scanning. Paper clips and staples are renoved,
and the pages are sorted, for exanple, per departnent. An inmage batch
contains the sorted stacks of pages. The scanning application identifies
bat ches by a set of attributes. The scanning process offers a wi de variety
of options, including scanning one page or nultiple pages, accepting or
rejecting the scanned image for inmage quality control, batch inmporting
froma scanni ng subsystem browsing through scanned pages, and controlling
scanner settings.

The indexi ng process regroups inmge pages of an inmage batch into nultipage
i mmge docunments. Each docunent is identified with a set of configurable
attributes and optionally stored in one or nore folders. Folders also
carry a configurable set of attributes. On the basis of the attribute

val ues, the document contents are stored in the docunent's storage |ocation
(contai ner).

Many users of RetrievAll applications use the retrieve functions of the
application only to retrieve stored fol ders and docunents. Fol ders and
docunents can be retrieved by specifying sone of the attributes. RetrievAl
allows the configuration of query forns that represent different views

8 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Megadoc | mage Docunent Managenent System

on the indexing database. The result of a query is a list of docunents

or folders. For docunents, the operations are view, edit, delete, print,
show fol der, and put in folder. The Megadoc editor is used to view and to
mani pul ate the pages of the docunent including addi ng new pages by scanni ng
or inmporting. For folders, the operations are |list docunents, delete, and
change attri butes.

Docunment Routing Applications

A RetrievAll routing application is an extension to a fol der managenent
application. A route defines how a reference to a folder travels al ong
in-trays of users or work groups.

Systens Managenent

The foll owi ng systenms nmanagenment functions support the RetrievAll package:
o Contai ner managenent

o Security, i.e., user and group perm ssions

o Logging and auditing

o Installation, custom zation, tailoring, and |ocalization

Architecture and Overvi ew

As illustrated in Figure 5, the RetrievAll inmage application framework
consi sts of a nunber of nopdules. Each nodule is a separate programthat
performs a specific function, e.g., scanning or docunment indexing. Each
nodul e has an APl to control its functionality, and sonme nodul es have an
end-user interface. Mdules can act as building bricks under a contro
nodul e. For exanple, an inmage docunent capture application uses

1. Scan handling, to et an end user scan pages into a batch

2. Scanner settings, to allow the user to set and select the settings for a
scanner. The user can save specific settings for later reference.

3. Batch handling, to allow the end user to create, change, and del ete
bat ches.

These three nodul es can operate together under the control of the scan
control module and in this way forma docunent capture application. The
scan control nodule can, under control of a main nmodule, performthe
docunent capture function in a folder managenment application

Modul es communi cate by neans of dynami c data exchange (DDE) interfaces
provided in the Mcrosoft Wndows environment. Each nodul e, except the nain
nodul e, can act as a server, and all nodules can act as clients in a DDE
conmuni cati on.

Mai n Modul e. Any RetrievAll application has a nain nmodule that controls
the activation of nmgjor functions of the application. These functions

i ncl ude scanni ng pages into batches, identifying pages from batches

into nultipage i mage docunments and assi gni ng docunents to folders, and

Digital Technical Journal Vol. 5 No. 2, Spring 1993 9

The Megadoc | mage Docunent Managenent System

retrieving docunents and fol ders. The nmain nodul e presents a nenu to sel ect
a mgj or function. The main nodul e activates the control nodul es of the
maj or functions in an asynchronous way. For exanple, the nmain nodul e can
activate a second major function, e.g., retrieve, when the first mgjor
function, e.g., identification, is still active.

Control Modul es. Each major RetrievAll function has a control nodul e that
can run as a separate application. For exanple, when a PC acts as a scan
wor kstation, it is not necessary to offer all the functionality by neans
of the nmain nmodule. Control nodules can be activated as a server through
the DDE API with the main nodule as client or as a programitemfrom a
M crosoft W ndows program group

Server Moddules. Al nodules, with the exception of the main nodule, act as
DDE server nodul es.

Configuration files hold environnent data for each nodule. An application
configuration file describes which nmodules are in the configuration. The

| ayout of the configuration files is the same as the WN.IN file used

by the Mcrosoft Wndows software, allow ng the reuse of standard access

functions.

Maki ng an Application

An application can be nmade by selecting certain nodules. Figure 5 gives
an overview of the nmodul es used for the standard fol der managenent
application. The installation program which is part of the standard
applications, copies the appropriate nodules to the target system and
creates the configuration files.

Modul es can al so be used with applications other than the standard ones.

| mage enabling an existing (i.e., |legacy) application (see Figure 6), such
as an order entry application where the scanned i nages of the orders should
be included, entails the follow ng:

0 The existing application is controlled by a term nal emnul ator program
running in the Mcrosoft Wndows environnent. This term nal enul ator
program must have programring facilities with DDE functions.

o Wiile entering a new order into the system the inmage docunent
representing the order is on the screen. The function to include the
i mage can be nmapped on a function key of the emulator. Pressing the
function key results in a DDE request to the identification function of
the RetrievAll conponents. This DDE request passes the identification
of the docunment (as known in the order entry application) to the
identification function.

10 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Megadoc | mage Docunent Managenent System

6 Sunmmary

Thi s paper has provided an overview of the many conponents and di sciplines
needed to build an effective i mage docunment nanagenent system W discussed
the details of the WORM file system the storage manager technol ogy, and
the image application framework. O her aspects such as WORM peri phera

t echnol ogy, software conpressi on and deconpressi on of images, and the
integration of facsimle and optical character recognition technol ogies
wer e not covered.

From experi ence, we know that different custonmers have different

requi renents for inmage docunent nmanagenent systens. The same experience,
however, taught us to discover certain patterns in custonmer applications;

we captured these patterns in the application framework. The resulting
framework allows us to build highly custonized applications with | ow system
i ntegration cost and short tinme to deploynent. Future directions are in the
area of enhanced fol der nanagenent and integrated distributed work fl ows.

7 Reference

1. M Bach, The Design of the Unix Operating System |SBN 0-13-201757-1
(Englewood Cliffs, NJ: Prentice-Hall, 1986).

8 Trademarks
The following is a trademark of Digital Equipnent Corporation: Megadoc.

M crosoft is a registered trademark and Wndows is a trademark of M crosoft
Cor poration.

OSF and OSF/ 1 are registered trademarks of Open Software Foundation, |nc.
SunCS is a registered trademark of Sun M crosystens, |nc.
System V is a trademark of Anerican Tel ephone and Tel egraph Conpany.

UNI X is a registered trademark of UNI X Systens Laboratories, Inc.

9 Biographies

Jan B. te Kiefte Jan te Kiefte is technical director for Digital's
Wor kgroup Systens Software Engi neering Group in Apeldoorn, Holland. He
has over 20 years' software engi neering experience in conpiler devel opnent
and in the devel opnent of office automation products. Jan has held both
engi neeri ng managenent positions and technical consultancy positions.

He has an M Sc. degree in mathematics fromthe Technical University of
Ei ndhoven, Hol |l and.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 11

The Megadoc | mage Docunent Managenent System

Bob Hasenaar Bob Hasenaar is an engi neering nanager for the Megadoc
optical file systemteam part of Digital's Workgroup Systens Software
Engi neeri ng Group in Apeldoorn, Holland. He has seven years' software
engi neering experience in operating systens and i nage document managenent
systens. Bob was responsible for the inplenmentation of the first Megadoc
optical disk file systemin a UNI X context. He has an M Sc. degree in
t heoretical physics fromthe University of Utrecht, Holl and.

Joop W Mevius A systens architect for the Megadoc system Joop Mevi us
has over 25 years' experience in software engi neering. He has nade
contributions in the areas of database managenent systens, operating
systenms, and i nage docunment managenent systems. Joop has held both
engi neeri ng managenent positions and technical consultancy positions. He
has an M Sc. degree in mathematics fromthe Technical University of Delft,
Hol | and.

Theo M van Hunni k Theo van Hunni k is an engi neeri ng project manager
for Digital's Wrkgroup Systens Software Engi neering Group in Apel doorn,
Hol I and. He has over 20 years' software engi neering experience in conpiler
devel opnent and the devel opnent of office automation products. Theo has
participated in several international systems architecture task forces. He
managed the devel opnent team for RetrievAll, the Megadoc inmage application
f ramewor k.

12 Digital Technical Journal Vol. 5 No. 2, Spring 1993

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

