DB Integrator: Open M ddl eware for Data Access

by

Ri chard Pl edereder, Vishu Krishnamurt hy,
M chael Gagnon, and Mayank Vadodari a

ABSTRACT

During the | ast few years, access to heterogeneous data sources
and integration of the disparate data has energed as one of the
maj or areas for growth of database nmanagenent software. Digital's
DB I ntegrator provides robust data access by supporting

het er ogeneous query optim zation, |ocation transparency, gl oba
consi stency, resolution of semantic differences, and security
checks. A global catal og provides |ocation transparency and
operates as an autononous netadata repository. G oba
transactions are coordi nated through two-phase commt. Highly
avail abl e horizontal partitioned views support continuous

di stributed processing in the presence of |oss of connectivity.
The DB | ntegrator enables security checks without interfering
with the access controls specified in the underlying data

sour ces.

| NTRODUCTI ON

A problem faced by organi zations today is how to uniformy access
data that is stored in a variety of databases managed by

rel ati onal and nonrel ati onal data systenms and then transformit
into an information resource that is manageable, functional, and
readily accessible. Digital's DB Integrator (DBlI) is a

nmul ti dat abase managenent system designed to provide
production-quality data access and i ntegration for heterogeneous
and distributed data sources.

Thi s paper describes the data integration needs of the enterprise
and how the DBl product fulfills those needs. It then presents
the DBl approach to nultidatabase systens and a technica
overvi ew of DBl concepts and term nol ogy. The next section
outlines the systemarchitecture of the DBlI. The paper concl udes
wi th highlights of sone of the technol ogies incorporated in DBI.

DATA | NTEGRATI ON NEEDS

Conpani es often find thenselves data rich, but information poor
Propel |l ed by diverse application and end-user requirenents,
conpani es have made significant investnments in inconpatible,
fragnented, and geographically distributed database systens that
need to be integrated. Conpanies with centralized informtion
systens are seeking nethods to distribute this data to

i nexpensi ve, departnental platforns, which would maxi m ze



performance, |ower cost, and increase availability.

The DB I ntegrator product famly is specifically designed and
i mpl enented to address the followi ng data integration needs:

(0]

Dat a access. The data integration product nust provide
uni form access to both rel ational and nonrel ati onal data
regardl ess of location or storage form Data access mnust
be extensible to allow the user to wite special-purpose
nmet hods.

Location and functional transparency. The |ocation of the
data and the functional differences of the various

dat abase systenms must be hidden to provide end users with
a single, logical view of the data and a uniformy
functional data access system

Scherma integration and translation. Users of data

i ntegration software nust be presented with an
environnent that lets themeasily determ ne what data is
avail abl e. Such an environnent is frequently referred to
as a federated database. A data integration product nust
be flexible enough to help resolve semantic

i nconsi stenci es such as variances in field names, data
types, and units of neasurenent.

Dat a consi stency. Mintaining data consistency is one of
the nost inportant aspects of any database system This
is also true for a federated database.

Performance. Integrating data frommultiple data sources
can be an expensive operation. The two primary goals are
to minimze the anount of data that is transferred across
the network and to maxim ze the anpunt of rows that are
processed within a given unit of tine.

Security. Access to distributed data nmust not conprom se
the security of data in the target databases. The
security nmodel rmust provide authorized access to an

i ntegrated schenma without violating the security of the
aut ononous data sources that have been integrated.

Openness. Any data integration product nust accomopdate
tools and applications with standard SQL (structured
query |l anguage) interfaces, both at the call |evel (e.g.
Open Dat abase Connectivity [ODBC] for personal conputer
clients) and the | anguage level (e.g., ANSI SQ.).[1,2] It
nmust be able to provide and enabl e access to data over
the nobst commonly depl oyed transports such as

transm ssion control protocol/internet protocol (TCP/IP),
DECnet, or Systens Network Architecture (SNA).[ 3]

Admi nistration. The integrated database nust provide
flexibility in configuration and be easy to set up



mai ntain, and use.

Figure 1 illustrates the current set of client-server data access
supported by the DB Integrator product fanmily.

[Figure 1 (Client-Server Data Access with the DB Integrator)
is not available in ASCII format.]

MULTI DATABASE MANAGEMENT SYSTEMS

A nul ti dat abase managenment system (VDBMS) enabl es operations
across nultiple autononobus conponent databases. Based on the
taxonony for multidatabase systens presented in Reference 4, we
can describe DBl as a | oosely coupl ed, heterogeneous, and
federated nul ti database system DBl is |oosely coupled conpared
to the conmponent databases: The database adnini strator (DBA) that
is responsible for DBl and the DBAs that are responsible for the
conponent dat abases manage their environments independently of
one another. DBl is heterogeneous because it supports different
types of conponent database systens. DBl is federated because
each conponent dat abase exists as an independent entity.

Ref erence Architecture

The MDBMS provides users with a single systemview of data

di stributed over a |arge nunber of heterogeneous databases and
file systens. The NMDBMS interoperates with the individua
conponent databases simlar to the way that the SQ. query
processing engine in a relational DBMS i nteroperates with the
record storage system Thus, a relational MDBMS, such as DBI, is
typically conposed of the follow ng processing units:

o] Language application progranm ng interface (APlI) and SQ
par ser

o] Rel ati onal data system
- dobal catal og manager
- Distributed query optim zer and conpil er
- Distributed execution system
- Distributed transacti on managenent

(0] Gat eways to access data sources

Cat al og Managenent

One of the key differentiators between MDBMS architectures is the
way that the netadata catalog is organi zed. Metadata is defined
as the attributes of the data that are accessible (e.g., nam ng,



| ocation, data types, or statistics). The netadata is stored in a
catal og. Two common approaches for catal og nmanagenent are
descri bed bel ow

o] Aut ononpus catal og. The MDBMS nmintains its own catal og
in a separate database. This catal og describes the data
available in the nultidatabase. For data that resides in
a rel ational database, the nmetadata definitions of table
obj ects, index objects, and so forth, are inported (i.e.
replicated) into the nultidatabase catal og. For data that
resides in sone other data source such as a record file
system (e.g., record managenent system [RMS]) or a spread
sheet, the MDBMS catal og contains a relationa
description of that data source.

o] Integrated catalog. The MDBMS is integrated with a
regul ar database systemthat is capable of accessing
obj ects (both data and nmetadata) in renpte and foreign
dat abases. A gateway server is responsible for making a
forei gn dat abase appear as a honbgeneous, renote database
i nstance. For data that resides in a rel ational database,
the gateway server stores views of its systemrelations
into that database. For data that resides in a record
file systemor spread sheet, the gateway server stores
the rel ational netadata description of the data in a
separate data store

DBl Approach

The DBI approach to nultidatabase managenent very closely foll ows
the reference architecture presented earlier. The DBl approach
enphasi zes the follow ng design directions:

o] G obal, autonomous catal og for netadata managenent

o] Three-tier integration nmodel (described later in this
section)

o] Si npl e, mapped-in gateway drivers to access data sources

o] Support of distributed database features for the Oracle
Rdb rel ational database as well as support of existing
Oracle Rdb applications in the nultidatabase environnment

G obal Catalog. DBl is addressable as a single integration
server. Integration clients such as tools and applications do not
need to deal with the conplexities of the distributed data. The
DBl global catalog is a repository in which DBl nmintains the
description of the distributed data. It enables DBl to provide
tools and applications with a single access point to the
federated dat abase environnment. The gl obal catal og enables DBl to
tell users what data is available wi thout requiring i medi ate
connectivity to the data or its data source. It can be nmanaged
and nmai ntai ned as an i ndependent database. The nmi ntenance of the



DBl gl obal catalog is not inherently tied to a specific data
manager; currently, the DBl catalog may reside in ORACLE, SYBASE
or Oracle Rdb dat abases.

The use of a global catalog may result in a systemwith a single
point of failure. To elimnate its potential failure within a
node, a disk, or a network, standard high-availability nechanisns
may be enpl oyed. These include shadowed di sks with shared access
(e.g., clustered nodes) and data replication of the DBl catal og
tables with products such as the Digital Data Distributor.[5]

Three-tier versus Two-tier Architecture. Wth a two-tier data

i ntegration nodel, once the data has been retrieved fromthe
server tier, the actual integration occurs on the client tier
This may result in massive integration operations at the client
site. In contrast, the DBl is based on a three-tier architecture
that perfornms nost integration functions on a mddle tier between
the client and the various database servers. The three-tier
approach avoi ds unnecessary transfer of data to the client and is
essential to providing production-quality data integration. In
anot her conparison, all clients in the two-tier approach need to
be configured to access the various data sources; however, the
three-tier approach significantly reduces such managenent

conpl exities.

Gateway Driver Model. DBl deploys a set of gateway drivers to
access specific data sources, including other DBl databases.
These drivers share a single operating system process space with
DBl to avoid unnecessary interprocess conmunications. When DB
performs parallel query processing, however, gateway drivers may
reside in a separate process space. The core of DBl interacts
with the actual gateway drivers (e.g., a SYBASE gateway driver)
through the Strategic Data Interface (SDI), an architected
interface that is used within the DBl product fanmily as a design
center.[6] A gateway driver is inplenented as a relatively thin
software |ayer that is SDI conpliant and that is responsible for
handl i ng i npedance ni smatches in data nodels (e.g., RMS versus
relational), query |anguage (e.g., different dialects of SQ),
and run-tinme capabilities (e.g., SQ statement atomicity).

Di stributed Rdb. ©One of the design goals for DBl was to enable
di stributed database processing for DEC Rdb (now Oracle Rdb).[7]
From the perspective of an application, DBl therefore |ooks like
a distributed Rdb dat abase system

DBI CONCEPTS AND TERM NOLOGY

In this section, we present a brief overview of the concepts and
term nol ogy rel evant to DBI



DBl Dat abase

A DBI dat abase consists of (1) a set of tables that DBI creates
to maintain the DBl netadata (also referred to as the catal og)
and (2) the distributed data that is available to the user when
connected to the DBl catal og.

A DBA creates a DBl database using the DEC SQL CREATE DATABASE
statement. This statenment has been extended for DBl to allow the
user to indicate the physical database (e.g., a SYBASE dat abase)
that will be used to hold the DBl metadata tables.

The creator of a DBl database automatically beconmes the owner and
system admi ni strator of that database. A DBl system adm ni strator
may grant access privileges on the DBl database to other users.
Dependi ng on the | evel of privilege, a user nay then perform
system admini stration functions, execute data definition |Ianguage
(DDL) operations, and/or query the tables in the virtua

dat abase.

DBl Objects

In addition to regular SQL objects such as tables or colums, DB
uses objects, links, and proxies that are outside the scope of
the SQ. | anguage st andard.

Li nks and Proxies. The link object tells DBl howto connect to
an underlying data source (referred to as the |link database). A
link object has three conponents: a |ink name, the access string
used to attach to the |ink database, and, optionally, security

i nformati on used by the DBl gateway driver to provide
authentication information to the |ink database system The proxy
object is associated with a |ink object. It can be used to

speci fy user-specific authentication information for individua
links. \Wien users do not want to use proxies for their |inks,
they must specify the authentication information for a specific
dat abase at the tine they connect to DBI

Tables. Wth |ink and proxy objects in place, the user can

i mport netadata definitions of underlying tables into the DB
catal og. The netadata inported for a table includes statistics,
and constraint and i ndex information, all of which are used by
the DBl optimzer. The inport step is performed with a CREATE
TABLE st atenent that has been extended to allow for a link
reference. For exanple:

-- Inmport "rdb_enp" table into DBl database as "enp"
-- fromthe link database represented by the |ink
-- naned "link_rdb".

CREATE TABLE enp LINK TO rdb_enp USI NG | i nk_rdb;



Views. View objects are useful for meking nultiple tables from
different |ink databases appear as a single table. In DBlI, views
serve as powerful nechanisns to resolve semantic differences in
tabl es from di sparate databases. DBl supports two types of views:
regul ar SQL views and horizontally partitioned views (HPVS).
Regul ar views are conpliant with ANSI SQL92 Level 1; they support
full query expression capabilities and updatability.[2] HPVs
consi st of a view nane, a partitioning colum, and partition
specifications. Figure 2 is an exanple of an HPV definition

Figure 2 Exanple of an HPV Definition

CREATE VIEW enp (enp_id, first_name, |ast_name, country)
USI NG HORI ZONTAL PARTI TI ONI NG ON (country)

PARTI TI ON us WHERE country = 'US'" COWOSE AS
SELECT enpl oyeeid, firstnane, |astname, 'US
FROM enp_us

PARTI TI ON eur ope WHERE OTHERW SE COMPCOSE AS
SELECT enp_id, first_nanme, |ast_nanme, country_code
FROM enp_eur

HPVs provide a very powerful construct for defining a | ogica
tabl e conposed of horizontal partitions that nmay span tables from
di sparate data sources. Both retrieval and update operations on
HPVs are optim zed such that unnecessary partition access is
elimnated. In addition, HPVs nay be used to inplenent a
shar ed- not hi ng conputing nmodel on top of both honmpbgeneous and

het er ogeneous dat abases. [ 8]

Stored Procedures. DBl supports stored procedure objects. Stored
procedures allow the user to enbed application logic in the

dat abase. They mmke application code easily shareable and
facilitate DBl to nmintain dependenci es between the application
code and dat abase objects. Furthernore, stored procedures reduce
nmessage traffic between the client and the server. Figure 3 is an
exanpl e of a stored procedure.

Figure 3 Exanple of a Stored Procedure

procedure nmai ntain_salaries(:state char(2) in,
:n_decreased integer out);
begin
set :n_decreased = O;
for :enpfor as each row of
select * from enpl oyees enp where state = :state;
do
set :last_salary = 0;
hi story_I oop:



for :salfor as for each row of
sel ect salary_amunt from salary history s
where s.enployee_id = :enpfor.enpl oyee_id

do

if :salfor.salary_anount < :last_salary then
set :n_decreased = :n_decreased + 1
| eave hi story_I| oop;

end if;

set :last_salary = :salfor.sal ary_anount

end for;
end for;

end;

DBl Dat abase Adm ni stration

DBl supports statenments that keep the inported netadata
consistent with the |ink database. The extended ALTER TABLE
statement may be used to regularly refresh the table netadata
informati on or update the table's statistics. The ALTER LI NK
statement may be used to nmodify the |ink database specification
or a proxy for a given link object.

DBl Configuration Capabilities

Figure 4 shows the power of configuration options supported by
DBI. Following the three-tier nodel for data integration, the DB
server may access a very |large nunber of databases, including

ot her DBl dat abases.

[Figure 4 (DBI Configuration Capabilities) is not available in
ASClI | format.]

The DBI server is accessible through SQL APlIs that are avail able
on popular client platforns. DBlI's client-server protocol is
supported on all common transports such as TCP/IP, Novell's
sequenced packet exchange/i nternetwork packet exchange (SPX/ | PX)
DECnet, or W ndows Sockets. DBl itself may be deployed on Digita
UNI X (fornerly DEC OSF/ 1) and OpenVMS platforms today. Support
for additional platfornms is being added.

DBI SYSTEM ARCHI TECTURE

In this section, we describe the systemarchitecture of the DB
product family and present sonme of its specific designs.

Interfaces
As shown in Figure 5, the DBl system architecture is anchored by

two external interfaces, SQ. and netadata driver interfaces/data
driver interfaces (MDI/DDlI), and two internal interfaces, Digita



Standard Rel ational Interface (DSRI) and SDI

The SQL interface is used by DBI clients to issue requests to the
i ntegration server. The MDI/DDI interface is used by DBI to cal
gateway drivers that are provided by a user. The MDI/DDI
interface specifies a sinple, record-oriented data access
interface provided by Digital to assist users in the access and

i ntegration of data sources for which no Digital-supplied gateway
drivers are avail abl e.

DSRI is the interface between DBlI's SQ. parser and the DB
processing engine.[9] The SDI interface specifies a canonica
data interface that shields the DBl core from

dat a- source-specific interfaces and facilitates nodul ar

devel opnent . [ 6]

[Figure 5 (DB Integrator Architecture) is not available in ASCl
format. ]

Conponent s

The conponent architecture of DBl in Figure 6 closely resenbles
the nmul ti database reference architecture presented earlier

o] The SQ. and ODBC client-server environment provides
| anguage APl and SQL parser functions.

o] The API driver and context manager support distributed
transacti on nmanagenent and part of the distributed
execution system

o] The netadata manager provi des gl obal catal og managenent.

o] The conpil er supports the distributed query optim zer and
conpi | ati on.

o] The executor supports the remai ning part of the
di stributed execution system

o] The SDI di spatcher and gateway drivers provide the access
to data sources.

[Figure 6 (DB Integrator Conponents) is not available in ASCl
format. ]

SQ. Environnent and Server Infrastructure. The SQ. parser
supports DEC SQ., an ANSI/National Institute for Science and
Technol ogy (NI ST)-conpliant SQL i nplenentation by mappi ng DEC SQL
syntax into an internal query graph representation.[9] In a
client-server environment, the DBl server infrastructure is used
to manage, nonitor, and maintain a DBl server configuration that
supports workstation and desktop clients.

APl Driver and Context Manager. The APl driver is responsible



for the top-level control flow of client requests within the DB
core. It currently accepts DSRI calls from applications such as
DEC SQL and di spatches themwi thin DBlI. The context manager
performs demand-driven propagati on of execution context to the
gateway drivers and maintains the distributed context of active
sessi ons, transactions, and requests.

Met adat a Manager. The netadata nmanager is responsible for the
overal | managenment and access to netadata. The services provided
fall into the categories of catal og managenent, data definition,
net adat a cache nanagenent, and query access to DBl system

rel ati ons. The netadata catal og manager nmintains the DBl catal og
in the formof DBlI-created tables in an underlying database
(e.g., SYBASE or ORACLE). The DDL processor executes the data
definition statenents. The netadata cache nmanager is responsible
for maintaining netadata in a volatile cache that provides

hi gh- speed access to netadata objects.

Conpiler. The compiler provides services for translating SQ
statements and stored procedures into DBl execution plans. A

rul e-based query optinizer perfornms query rewite operations,
enunerates di fferent execution strategies, and factors in
functional capabilities of the underlying data sources. Each
execution strategy is associated with a cost that is based on
predi cate selectivity estimtes, table cardinalities,
availability of indices, network bandwi dth, and so forth. The

| onest cost strategy is chosen as the final execution plan. Above
a certain threshold of query conplexity, the optinizer swtches
froman exhaustive search nmethod to a greedy search nethod to
limt the conputational conplexity of the optim zation phase. The
conpi |l er generates code that can be processed by the executor
conmponent and the gateway drivers.

Executor. The executor conponent is responsible for processing
the execution plan that the conpiler produces. These activities
i ncl ude

o] Exchangi ng data between the DBI and the client

o] Streani ng data between the DBl core and the link
dat abases

o] Perform ng internedi ate data mani pul ati on steps such as
j 0i ns or aggregates

o] Managi ng wor kspace and buffer pool to efficiently handle
| arge amounts of transient and internedi ate data

o] Supporting parallel processing



SDI Di spatcher and Gateway Drivers. The SDI di spatcher separates
the core of DBI fromthe gateway driver space. It |ocates and

| oads shareabl e i nages that represent gateway drivers and routes
SDI calls to the corresponding entries in the gateway driver

i mage.

TECHNI CAL CONSI DERATI ONS

The DBI devel oprment team sel ected several designs and

technol ogies that it believes to be crucial for distributed and
het er ogeneous data processing. This section summarizes those
designs within the follow ng functional units: distributed
execution; distributed nmetadata handling; distributed,

het er ogeneous query processing; high availability; performnce;
and DBl server configuration.

Di stri buted Execution

To support transparent distributed query processing, DB
propagat es execution context such as connection context or
transaction context to the target data sources. Tools and
applications see only the sinple user session and transaction
that they establish with the DBI integration server.

DBl uses a tree organization to track the distributed execution
context. \When a user connects to a DBl database, a DBl user
session context is created. This session context is subsequently
used to anchor active transactions, conpiled SQ. statenments, as
wel |l as the nmetadata cache that is created for every user
attaching to DBlI. \Wen DBl passes control to a gateway driver,
both session and transaction context are established at the
target data source

Di stributed transacti ons nmust support consistency and concurrency
across aut ononous dat abase managers. Consi stency requires that a
distributed transacti on nmanager with two-phase conmit logic is
avail able. DBl uses the Digital Distributed Transacti on Manager
(DDTM for that purpose and is addi ng support for the distributed
transaction processing (DTP) XA standard integration.[10,11]

Concurrency requires that distributed deadl ocks are detected. In
a multidatabase system distributed deadl ock prevention is not
feasi bl e because no dat abase manager exposes external interfaces
to its | ock managenent services -- a procedure required to
perform deadl ock detection. DBl therefore relies on the sinple
techni que of transaction tine-out to detect deadl ocks. In
addition, a DBl application nay choose to specify isolation

| evel s lower than serializability or repeatable read. This is
done with the SQL SET TRANSACTI ON statenment. The DBl context
manager records the transaction attributes specified and forwards
themto the underlying data sources as part of propagating
transaction context. Lower isolation levels will, in general
result in fewer |ock requests and thus fewer deadl ock situations.



Di stributed Request Activation. DBl supports SQ statenent
atomicity. This requires either that a single SQ statenent
executes in its entirety or, in the case of a failure, that the
database is reset to its state prior to the execution of the
statement. Wth DBI, the SQL statenment nay be executed as a

seri es of database requests at nultiple data sources. DB
internally uses the concept of markpoints to track SQ. statenent
boundaries. Gateway drivers are infornmed of nmarkpoint boundari es,
and the driver attenpts to map the markpoint SDI operations into
semantical |y equival ent constructs (e.g., savepoints) at the
target data source. Sone databases support SQL3-styl e savepoints,
which are atomic units of work within a transacti on. When DB
decides to roll back a markpoint, the gateway driver nmay then

i nform such a data source to roll back to the | ast savepoint. In
the absence of markpoint primtives in the target data source,
the gateway driver may elect to roll back the entire transaction
to nmeet the roll-back markpoint semantics.

Gateway Drivers. In contrast with other data integration
architectures, the DBl gateway drivers are designed to be sinple
protocol and data translators. Their primary task is to report
the capabilities of the data-source interface (APl and SQL

| anguage) to the DBI core and subsequently map between the SD
interface protocol and the data-source interface. The gateway
drivers typically share process context with the DBl server
process, thus avoiding the need for an internedi ate gateway
server process that would otherw se reside between the DBl server
and the data-source server (e.g., SYBASE SQ. Server). This
reduces the anobunt of context switching and interprocess nessage
transfer.

The gateway drivers are responsible for mapping the SDI senmantics
to the interface prinmtives provided at the target data source.
For rel ational databases such as Oracle Rdb, ORACLE, | NFORM X,
SYBASE, or DB2, this requires primarily a mapping to the

product -specific SQ dialect and the product-specific data types.
For file systens such as RMS, the gateway driver maps the SD
semantics to calls to the RMS run-tinme |ibrary.

Di stributed Metadata Handling

In this section, we discuss three areas of inportance to the
handling of nmetadata in DBI: catal og managenent, security, and
nmet adat a cachi ng.

Cat al og Managenent. The DBI requirenent of database independence
implies that DBI cannot require the presence of a particular DBVS
for its persistence netadata storage. Rather than devising a
private storage and retrieval system DBl was designed to |ayer



on top of comon relational DBMSs.

Static, preconpiled native applications are used to access

nmet adata from a given catal og DBMS for two reasons: (1) The
pattern of netadata access for the catal og database is known, and
(2) The tables housing the DBl netadata in the catal og dat abase
are predeterm ned. Although this approach does not take advantage
of the existing gateway drivers, it results in high-performance
access to the nmetadata store.

To sinmplify the devel opnment of a catal og application, the set of
primtive operations on the catal og database was isolated, and a
catal og application interface (Cl) was defined. Catal og
applications are devel oped according to the Cl specification and
i mpl enented as shareabl e i mages. DBl dynamically | oads the
appropriate catal og application i mage based on the catal og type
speci fied by a user attaching to a DBl database.

Security. The security support in the currently rel eased version
3.1 of DBI is sinple but effective. It uses the security

mechani sms of the underlying |ink database systens in the
foll owi ng areas

o] Aut hori zation to connect to an underlying database
t hrough DBI and access data fromit.

Access to the data that is nmanipulated through DBl is
controlled by the underlying DBMS. Typically, underlying
dat abase systenms control access to data based on the
identity of the user attached to its database. DB
supports objects called proxies that enable the client to
specify its user identity (i.e., usernane/password),
which is then used to attach to the underlying database.

o] Aut hori zation to performvarious DBl operations.

All privileges for a DBl database are for the database
itself, rather than for tables or colums. The privil eges
are based on hierarchically organi zed categories of

users:

- The DBADM privilege is given to users responsible for
setting up and nmintaining a DBl database.

- The CREATE, DROP privilege is granted to interactive
users and application devel opers with database design
responsi bility who nust performdata definition
operations.

- The SELECT privilege is reserved for interactive
users and application devel opers who perform data
mani pul ati on operations but do not perform any data
definition operations.



When a DBl adm nistrator grants or revokes privileges for a DB
dat abase, DBI, in turn, grants or revokes the appropriate set of
privileges on the DBl tables in the database systemthat manages
the DBl catal og. The enforcement of privileges is therefore
carried out by that database system For exanple, when the SELECT
privilege is granted on the |ogical database, DBl grants the
SELECT privilege on the tables that represent the DBl catal og.
This ensures that the user has access to the netadata for
processing queries. Simlarly, when a user is granted the CREATE
DROP privilege on the DBl database, DBI grants SELECT, | NSERT,
UPDATE, and DELETE on the appropriate tables in the catal og

dat abase to the user. This ensures that any DDL actions executed
by the user will enable DBI to nodify the tables in the catal og
dat abase.

Met adat a Manager Cache. The in-nenory netadata cache serves a
dual purpose. First, it facilitates rapid access to the netadata
by the DBI conpiler. Second, it serves as a data store for the
DBl systemrel ations that can be queried by tools and
applications. For exanple, DEC SQ. obtains netadata for semantic
anal ysis of SQ. statenments by querying the DBl systemrel ations.

The nmetadata cache is structured as a single hash table
representing a flat namespace across all DBl objects. An open
hashi ng schene is enployed in which the hash-table entries hang
of f the buckets in the hash table in a linked |ist.

To optim ze the use of the cache as well as to accelerate the
attach operation, the netadata manager initially obtains only

m nimal, high-level nmetadata information fromthe catal og

dat abase; for exanple, only nanes of tables are fetched into the
cache during the DBl database attach operation. Subsequently, the
net adat a manager obtains further nmetadata information fromthe
cat al og database on a demand basi s.

DBl allows the creation of new nmetadata objects. These operations
are typically perforned within markpoint and transaction
boundaries to enforce proper statenent and transaction
demarcation. The netadata nanager nmintains a physical log in
cache to denote transaction and markpoi nt boundaries. The log is
an ordered list of structures, each representing a DDL action, a
pointer to the cache structure that was changed, and either the
previ ous values of fields that were updated or a pointer to a
previ ous i mage of an entire structure. Wien a narkpoint or
transaction is comitted, the corresponding log part is reset;
when a markpoint or transaction is rolled back, the log is used
to restore the cache to its state prior to the start of the

mar kpoi nt or transaction.

An object in cache can becone stal e when anot her user attaches to
the DBl database and causes an object's netadata to be changed in
the catal og database. To ensure consistency of the cached version
of an object's nmetadata with the actual version in the catal og



dat abase, the nmetadata nmanager uses a tinme stanp to check the
currency of the cached object when perform ng increnenta

fetching of the object's netadata. If the object in cache is
stale, the object is not accessible in the session, and an error
nmessage is issued to the user indicating that the object in cache
is inconsistent with the catal og database. In a production
environnent, this would be a rare event, given the |ow frequency
of data definition operations.

The netadata cache is also the data source for the DBl system

rel ati on queries. The nmetadata nmanager navi gates the cache
structures to obtain data for the systemrel ations, making use of
the hash table for efficient access and using DBI's execution
conmponent for evaluating search conditions and expressions.

Di stributed, Heterogeneous Query Processing

Di stributed query processing in a heterogeneous database

envi ronnent poses certain unique problens. Data sources behave
differently in terns of data transfer cost, and they support

di fferent | anguage constructs. Many systens enploy rudi nentary
techni ques for deconposing a query, frequently pulling in all the
data fromunderlying tables to the processi ng node, and then
performng all the operations in the integration engine. Qhers
sinmply use syntactic transformations, thereby providing the | east
common denoni nator in | anguage functionality. DBlI, on the other
hand, provides a robust query optim zer that includes
deconposition algorithns to reduce the data flow and provide

hi gh- perf ormance query executi on.

Cost - based Pl an Generation. When a query has several equival ent
means of producing the result, the plan that has the | east
estimted cost is chosen. Statistics for table, columm, and index
objects are used for estimating result size after various

rel ati onal operations.[12,13] Data transni ssion costs fromthe
underlying |ink database to DBl are taken into account when
estimati ng how much of the query is to be sent to the gateway

dat abase. The network transm ssion cost is neasured dynamcally
for each user session, once per gateway connection. The cost
associated with performng a relational operation is also
aggregated into the overall cost. This crucial step ensures that
the plan is not skewed toward one dat abase engi ne, which would be
the case if only the network transm ssion costs were taken into
account .

Rul e-based Transformations. A query result nay be produced with
di fferent sequences of relational operations. These sequences are
generated using rul e-based transformati ons. The starting point is
the original operation set in which the query was syntactically
represented. Fromthis, pernutations are generated to form
equi val ence sets, which then lead to the various conbinations of
execution plans that need to be exam ned for cost. Finally, the



| east costly plan is chosen for the query. Heuristics are applied
tolimt the anpunt of search space.

Capabi lity-based Deconposition. The critical characteristic of a
het er ogeneous environnent is that the data sources are nonuniform
in their ability to performcertain operations and in their
support of various |anguage constructs. For exanple, nopst

dat abases cannot support derived table expressions (i.e., select
expressions in the FROM cl ause of another SELECT statenent).

The pl an generation and deconposition phases of the optinizer
nmust recogni ze the underlying databases' capabilities. Consider
the query exanple shown in Figure 7 and the indicated |ocations
of the tables.

Figure 7 Exanple of an SQL Query

sel ect *
fromT1l, T2, T3
where (Tl.cl = T2.c2)
and (T1.c¢3 = T3.c3)
and (T1.c5 = (select avg(T4.c5) from T4)

+ (select T5.c7 fromT5 where T5.¢8 = 'a")

T1, T3, T4 and T5 are located in a Oracle database.
Table T2 is located in a DB2 dat abase.

First, with T1 and T3 located in the sanme database, the optin zer
can generate a subplan in which the join between these two tables
can be executed in the ORACLE database. An exani nation of the
last (third) AND predicate indicates that all the tables involved
in that predicate are located in the same ORACLE dat abase. Due to
the limtations in ORACLE s SQL | anguage support, however, it
cannot eval uate the conbi ned expressi on between two subqueries in
the WHERE cl ause, where the arithnetic result is to be conpared
to the colum T1.c5

The DBI optimzer enploys a nore sophisticated alternative. It
eval uates the two subqueries separately and then substitutes them
in the predicate in the subplan for ORACLE as run-tinme paraneter
val ues. This technique |eads to the nost efficient plan:

1. Retrieve value for (select avg(T4.c5) from T4) from
ORACLE.

2. Assign value to variable X

3. Retrieve value for (select T5.c7 fromT5 where T5.¢c8 =
"a') from ORACLE.

4. Assign value to variable Y.

)



5. Assign param1l := variable X
6. Assign param?2 := variable Y.

7. Execute the SELECT statenent below in ORACLE and fetch
the result rows.

sel ect *
fromT1l, T3
where (T1l.c3 = T3.c3)
and (T1.c5 = param 1l + param 2);

8. Fetch the rows of T2 from DB2 into DBI

9. Performthe join in DBl between the results of steps 7
and 8.

Query Unnesting. A nested SQ.L query, inits sinplest form is a
SELECT query with the WHERE cl ause predicate containing a
subquery (i.e., another SELECT query). The followi ng are exanpl es
of nested SQ. queri es:

Exanpl e 1, Tabl e Subquery

sel ect *
fromA
where A.cl IN (select (B.c2 + 5)
fromB
where B.c3 = A c3);

Exanpl e 2, Scal ar Subquery

sel ect *
fromA
where A.cl = (select max(B.c2)
fromB
where B.c3 = A c3);

Using strict SQL senmantics, we can evaluate this nested query by
conputing the results of the inner subquery for every tuple in
the outer (containing) query block. The value for the colum A c3
is substituted in the inner subquery, and the resulting value (or



val ues) are conmputed for the select |list and used to evaluate the
Bool ean condition on colum A.cl: this is repeated for every
tuple of A This nmethod of evaluating the results is very
expensive, especially in a distributed environment.

Query unnesting al gorithns provide other nethods of evaluation
that are semantically equival ent but nuch nore efficient in both
time and space. Unnesting deals with the transformati on of nested
SQL queries into an equival ent sequence of rel ational operations.
These rel ati onal operations are perfornmed as set operations,

t her eby avoi ding the expensive tuple iteration operators during
execution and providing | arge perfornmance gains in npst cases.
The background and notivation behind the use of unnesting has
been presented in several research papers.[14, 15]

Dependi ng on the type of operations and constructs found in the
nested select block and its parent select block, severa

different algorithnms can be used. Sone of these require no
speci al operators over and above the regular join operator. O her
transformations require a special semjoin operator. Consider the
exanpl es shown in Figure 8.

Figure 8 Query Unnesting Algorithm

-- Q@ - query that will not require a special join after transformation

sel ect snum city, status

fromsS
where status = (select avg(weight) + 5 -- nesting predicate
fromP
where P.city = S.city); -- correlation predicate

-- Ql-U - the unnested version
sel ect snum city, status
fromsS, (select city, avg(weight) + 5
fromP
group by city) as T1(cl,c2)
where Tl.cl = S.city
and S.status = T1.c2;

-- Algorithm

-- 1) Take the inner block's FROMtable that has a correlation predicate

-- 2) Add a Group-By to the inner block containing all attributes of this

- - tabl e that appear in one or nore correlation predicates. The order of
- - the attributes in the Goup-By does not matter

-- 3) Also, add these elenments to the select |ist of the inner block; at the
- - begi nning or at the end, whatever is convenient.

-- 4) Next, add this block to the FROM |ist of the outer block - effectively



- - doing a regular join with the tables in the outer FROM I i st.
-- 5) Lastly, rewite the correlation and nesting predicates as shown.

In the exanple shown in Figure 9, a special operator called
semjoin is necessary. The semjoin of table Rwith S on
condition J is defined as the subset of R-tuples for which there
is at | east one matching S-tuple satisfying J. Note that this
makes the operator asymetric, in that (Rsenmjoin S) is not the
same as (S semijoin R), whereas the regular join is symretric.
By i npl ementing the special semantics required for this semjoin
operator, we can transformthe nested query into this join
operator that can again nake use of high-perfornmance techni ques
i ke hash joins within the DBl execution engine.

Figure 9 Algorithmw th Sem join Operator

- Q@ - query requiring a sem-join
sel ect snum
fromsS
where city IN (select city
fromP
where P.weight = S. status);

- Q@-U - the unnested version
sel ect snum
from (S sem-join P
on (P.weight = S.status AND S.city = P.city)
)

-- Algorithm

-- 1) Do a seni-join between S and P using the foll ow ng (conmbined) condition:
- - "(P.weight = S.status) AND (S.city = P.city)"

- - In reality, this is actually specified as 2 separate sem -joi ns between
- - S and P, one with the correlation predicate and one with the form of

- - the nesting predicate. But these get conbined using rules.

-- 2) Project out S.snumfromthe result

Predi cate Analysis. When a query agai nst an HPV can be satisfied
by sinply accessing a single logical partition, then the rest of
the partitions can be elimnated fromthe execution plan.
Partition elimnation algorithns in DBl are used both at conpile
time, when the predicates on the HPV query involve conparison of
the partitioning colum with literals, as well as at query
execution time (run tine), when the partitioning colum is



conpared with run-tine paraneters.

During affinity analysis, predicates are situated as close to the
i nner table operation as feasible. For exanple, consider the
following view definition, and the subsequent sel ect statenent on
t hat view

create view V1 (a, b) as
select Tl.cl, avg(T2.c2)
from T1, T2
where (Tl.c4 = T2.c4)
group by T1.c1;

select * fromV1l where (a =5 and b > 10);

The predicate a = 5 (upon further conjunctive normal form [ CNF]
anal ysis) can be applied on the base table scan itself as Tl.cl =
5.

Index join is one of the efficient join techni ques used in DBI
This join technique nminimzes the novenent of data fromthe |ink
dat abases by taking advantage of the indexing schenmes in the link
database to facilitate the join process. Consider the follow ng

query:

sel ect *
from T1, T2
where Tl.cl = T2.¢c2 + 5
and (...sone restrict predicate(s) on T2...)

G ven an index on colum cl of table T1l, and with cardinality and
cost estimates permtting, the query optim zer can generate an
alternate plan. This plan allows the join to be performed by
using efficiently indexed access retrieval for table TI1.

Hi gh Availability

High availability in DBl results fromthe use of horizonta
partitioned views and catal og replication.

Hori zontal Partitioned Views. An HPV is a special kind of view
in which DBI is provided with information about how data is

di stributed anong tables in |ink databases. HPVs offer nany
advant ages over normal views, one of them being inproved
performance through partition elinination and use of parallelism
The other advantage is high availability.

If a partitioned view has nmultiple partitions and if sone
partitions are unavail able when the view is queried, then DB



does not fail the query but returns data fromthe avail able
partitions. An exanple is shown in Figure 10. The exanple creates
a partitioned view named ALL_EMPLOYEES, with four colums and
three partitions, each of which obtains rows fromthree different
tabl es. The partitioning is based on a specific colum, in this
case the CITY colum, as specified in the USI NG HORI ZONTAL
PARTI TI ONI NG ON cl ause.

Figure 10 Exanple of a Partitioned View

CREATE VI EW ALL_EMPLOYEES(| D, NAME, ADDRESS, CITY)
USI NG HORI ZONTAL PARTI TIONING ON CI TY
PARTI TION P1 WHERE CITY = ' MUNI CH
COVWPOSE AS SELECT I D, LAST_NAME, ADDRESS, ' MJUNI CH
FROM  MUNI CH_EMPLOYEES
WHERE STATUS = 'Y

PARTI TION P2 WHERE CITY = ' PARI S
COVPOSE AS SELECT I D, FULL_NAME, ADDRESS, 'PARI S
FROM  PARI S_EMPLOYEES
WHERE STATUS = 'Y';

PARTI TI ON P3 WHERE CI TY = ' NASHUA'
COVPOSE AS SELECT I D, FULL_NAME, ADDRESS, LOCATI ON
FROM  NH_EMPLOYEES
WHERE STATUS = 'Y';

Suppose the followi ng query is subnitted

SQL> SELECT * FROM ALL_EMPLOYEES
WHERE (CITY = ' MUNI CH )
OR (CITY = ' NASHUA' ) ;

First, partition P2 is elimnated at conpile tinme. Now suppose
partition P3 is presently not avail able due to network
connectivity problenms (Figure 11). For each partition that is
unavail abl e, a nessage is returned indicating that sone rows are
m ssing fromthe result table: %DBI-WHAHPV_UNAVAI LABLE Partition
P3 is currently unavail abl e. However, DBI still attenpts to
return as nuch data as is accessible.

[Figure 11 (High Availability with Partitioned Views) is not
available in ASCI| format.]

Catal og Replication. To prevent the DBl gl obal catalog from



becom ng a single point of failure, nultiple copies of a catal og
tabl e can be nmmintained by using replication techniques. Catal og
tabl e copi es can be created easily and nmintai ned using
replication tools such as the DEC Data Distributor.[5]

Per f or mance

In addition to its distributed query optim zer, DBl uses a series
of techniques to increase the speed of query processing, npst
notably in the areas of data transfer, nmenory managenent, join
processing, parallelism and stored procedures.

Data Transfer. The DBl execution engine perfornms bul k data
transfer using the bulk fetch nmechani sns provided by the SD
interface. Wth bulk data transfer, a single request nessage to a
| ocal or renpte data source returns many tuples with a single
response nessage. Bul k transfer techniques are mandatory in a

di stributed environment; they reduce both nmessage traffic and
stall waits due to nessage del ays. The data transfer bandw dth
between the DBl engine and the gateway drivers is further

i ncreased through the use of asynchronous SDI operations.

Menory Managenent. An MDBMS needs to be able to process |arge
anounts of data efficiently without exceeding platform or
user-specific operational quotas such as the page file size or
the working set linmit. In addition, standard operating system
pagi ng techni ques may easily result in heavy I/O thrashing for
dat abase-centric work | oads.

The DBI executor places data streans, internediate query results,
or hash buckets into individual workspaces. A workspace is

organi zed as a |linear sequence of fixed-size pages. A standard
page-tabl e nechanismidentifies the allocated pages and records
status such as whether a page is present in nmenory or whether it
is paged out to secondary storage. The workspace manager operates
as an intelligent buffer manager and pagi ng systemthat controls
fair access to nmenory across all active workspaces of a given DB
user. A buffer pool manager holds the workspace pages that reside
in menory.

The buffer pool nmanager supports nultiple buffer replacenent
policies, which is inportant for database workl oads that involve
sequential access to data that is subsequently no | onger needed.
The two supported strategies are |east recently used (LRU) and
nost recently used (MRU).[16] Finally, the workspace manager
supports wite-behind for newmy allocated pages. This all ows
new y all ocated pages that have been filled to be witten
asynchronously.

Join Processing. Highly efficient processing of joins and unions
is inmportant in any comercial database; it is crucial for a



nmul ti dat abase system DBl supports nested | oop join, index join,
and hash join. In fact, DBl supports both a regular hash-join
mechani sm and a hybrid, hash-partitioned variant that is
augnented with Bloomfiltering.[17, 18, 19]

For both hash-join variants, the inner table rows are read
asynchronously into a DBl workspace. This first pass is used to
estimate whether or not to use the hash-partitioned variant. An
exact estimate for the nunmber of partitions to use is well worth
the overhead of this initial pass.[20] In addition, a Bl oom
filter with 64 kilobits is populated as part of this pass. The
inner table cardinality, an estimate for the outer table
cardinality, and an estinmate of the presently avail able nmenory
are used to determni ne whether the sinple hash-join technique is
sufficient, or whether the use of the hybrid hash-partitioned
join technique is warranted.

In general, hash-partitioned join processing is indicated when
the inner table and its hash-tabl e buckets do not fit in menory.
In this case, both the build phase for the inner-table hash
buckets as well as the probe phase of outer-table tuples against
the inner-table hash buckets may incur nassive ampunts of random
I/ O When the hash-partitioned variant is selected, the follow ng
steps are perforned.

o] Each partition receives a separate workspace.

o] The inner table is partitioned first. During this
partitioning step, a Bloomfilter is generated fromthe
join colum of inner-table tuples and is applied when the
outer table rows are partitioned. This results in a
potentially massive reduction of the nunmber of rows that
are placed into the outer partitions, thus elimninating
expensive |/ O operations.

o] The workspaces that hold the inner-table partition 1 and
the hash-tabl e buckets for that partition are aged LRU
whi ch keeps themin nmenory for the join operation on the
first partition pair.

o] The workspaces that hold the renmining inner-table
partitions 2 through (n) are aged MRU, these pages becone
i medi ately available for buffer replacenent selection
once they have been filled and their frames unpi nned.

o] Once the partitioning phase is conplete, each pair of
i nner and outer partitions is joined starting with
partition pair 1. The inner partitions are aged LRU, and
the outer partitions are aged MRU to keep the inner
partition tuples in nmenory.

The use of flexible buffer replacenment strategies is crucial for
good buffer cache behavi or



Parallelism DBl enploys two types of parallelism pipelined
parall eli smand i ndependent parallelism][8]

Wth hash-join processing, for instance, the outer table rows are
read by separate DBl execution threads fromthe underlying

dat abase. This nmeans that the outer table tuple streamis
effectively generated in parallel with the probe phase processing
of the hash-join operator on the inner table rows. The
outer-table tuple streamis directed into the hash-join probe
phase.

For UNI ON processing on partitioned views, the individual input
streans to the UNI ON operator are generated by separate DB
execution threads. The streans are provided in parallel and

i ndependently to the UNI ON operator

Stored Procedures. Stored procedures provide a critica

per formance enhancenent for client-server processing. They all ow
the DBA to encapsulate a set of SQL statenents plus contro

I ogic. The client sends one nessage containing a stored procedure
rather than several nessages, each containing one SQL statenent.
Thi s reduces processing del ays that otherwi se would be incurred
due to network traffic.

DBl Server Configuration

In a standard DBI configuration, one execution process is created
for each DBl client. As the nunber of clients increases, nore and
nore operating systemresources are consuned. The DBl server
configuration addresses this problem

Server Conponents. A DBI server configuration includes mnimally
a nmonitor process, a dispatcher process, and a set of DB

execut or processes. The nonitor process supports on-line system
managenment of the server configuration. One or nore dispatcher
processes manage all client comrunications context. Dispatchers
route client messages to an appropriate DBl executor process

t hrough hi gh-speed shared nmenmory queues. Figure 12 shows a

typi cal DBI server configuration.

[Figure 12 (DBl Server Configuration) is not available in ASCI
format. ]

Server Infrastructure. |In the DBI server environnent, an ODBC
client logically connects to a service object that provides
access to a specific DBl database.[1] A service is instantiated
by a pool of DBI executor processes that contain the DBl inmage.
The ampunt of processes of the pool is configurable, both
off-line and on-line. This allows the adm nistrator to match the
t hroughput requirenents for a given DBl database with the



appropriate anmount of executor processes.

Mul tithreading. DBl executor processes nay presently

be configured as session-reusable or transaction-reusable.
Sessi on-reusabl e neans that a client is bound to an executor
process for the duration of the entire database session.
Transaction-reusabl e nmeans that multiple clients nmay share the
same executor process; a client is scheduled to a DB

executor for one transaction at a tine.

SUMVARY

The DB | ntegrator product contains many features that enable it
to provi de open, robust, and hi gh-performance data access. DB
guar ant ees open data access by supporting de facto and de jure
interface standards such as SQ.92 and ODBC. Client-server
connectivity is avail able over the DECnet, TCP/IP, and SPX/ | PX
transports. The MDI/DDI interface allows users to extend the use
of DBI to gain access to any nunmber of data sources.

DBl provi des robust data access by supporting heterogeneous query
optim zation, location transparency, global consistency,
resolution of semantic differences, and security checks. The DB
query optim zer takes cost factors and capabilities into account
to determi ne the optimal plan. A global catalog provides |ocation
transparency and operates as an autononous netadata repository.

G obal transactions are coordinated through two-phase comrt.

Hi ghly avail abl e horizontal partitioned views support continuous
di stributed processing in the presence of |oss of connectivity.
Definitions of views and stored procedures allow the user to hide
semantic differences anong the underlying databases. Finally, DB
enabl es security checks without interfering with the access
controls specified in the underlying data sources.

DBl of fers high-performance data access through a conbi nati on of
sophi sticated query optinization, advanced query execution

al gorithnms, and efficient use of network resources. The query
optim zer deconposes a distributed query by using as nany
features of the underlying database as possible and by enpl oyi ng
state-of-the-art techni ques such as query unnesting and partition
elimnation. The DBl query processor is capable of driving index
joins and hybrid hash-partitioned joins. Al internmediate data is
cached 1/O optim zed. Connections to renote data sources are
established solely on demand. Finally, parallel query execution

i s supported.

In the future, performance will continue to be an inportant
factor for any data access product as will support for

obj ect-oriented data nodels. By conbi ning data-integration
technol ogi es such as DBl with application-integration standards
such as Obj ect Request Brokers, a nmerger of data integration and
application integration will be feasible.



ACKNOW.EDGMVENTS

The authors would |ike to recogni ze everyone who contributed to
the DBl project. Jim Gay, Hal Berenson, Dave Lonmet, and Gayn

W nters hel ped to establish the product vision. Russ Hol den and
Dan Dietterich |l ent their technical guidance and project

| eadershi p. The DBI engi neering team desi gned, inplenmented, and
delivered the product on schedule. The DBl managenent team of
Steve Serra, Rich Bourdeau, Arlene Lacharite, and Trish Pendl eton
contributed their comritnent to delivering the vision. W would
also like to thank the anonynous referees for their inval uable
comments on the content and presentation of this paper

REFERENCES

1. Mcrosoft Open Dat abase Connectivity, Progranmer's Reference,
Version 2.0 (Rednond, Wash.: M crosoft Corporation, 1993).

2. Information Technol ogy-- Dat abase Language SQ., ANSI
X3H2- 92- 154/ DBL CBR- 002 (New York: American Nationa
Standards Institute, 1992).

3. "M ddl eware: Panacea or Boondoggle?," Strategic Analysis
Report (Gartner Group, July 5, 1994).

4. A Sheth and J. Larson, "Federated Database Systens for
Managi ng Di stri buted, Heterogeneous, and Autononous
Dat abases, " ACM Conputing Surveys, vol. 22, no. 3 (1990).

5. Digital Data Distributor Handbook (Maynard, Mass.: Digita
Equi pmrent Corporation, Oder No. AA-HZ65FI -TE, 1994).

6. Strategic Data Interface, Version 3.1 (Maynard, Mass.:
Di gital Equi pnrent Corporation, 1994). This internal DB
integrator specification is not available to externa
readers.

7. DEC Rdb Docunentation Set for DEC Rdb Version 6.0 (Maynard,
Mass.: Digital Equi prment Corporation, 1994).

8. D. J. DeWtt and J. Gray, "Parallel Database Systens: The
Future of Hi gh Perfornmance Database Systens,"
Comuni cations of the ACM vol. 35, no. 6 (1992): 85-98.

9. Digital DSRI Handbook, Version 5.1 (Maynard, Mass.: Digita
Equi pmrent Corporation, 1994). This internal docunent is not
avail abl e to external readers.

10. Digital Distributed Transacti on Manager, OpenVMS
Docunent ati on, Version 5.5 (Maynard, Mass.: Digital Equi pnment
Cor poration, 1992).



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Di stributed Transaction Processing: The XA
Speci fication, X/ Open CAE Specification: C193, |SBN
1-872630-24-3 (1992).

P. Selinger et al., "Access Path Selection in a Rel ationa
Dat abase Managenent System " Proceedi ngs of the ACM SI GMOD
Conf erence (1979).

P. Selinger and M Adiba, "Access Path Selection in
Di stributed Database Management Systens," |BM Research
Report (1980).

W Kim "On Optimizing an SQ.-1i ke Nested Query," ACM
Transactions on Dat abase Systenms, vol. 7, no. 3 (1982).

U. Dayal, "OF Nests and Trees: A Unified Approach to
Processi ng Queries That Contain Nested Subqueries, Aggregates
and Quantifiers," Proceedings of the 13th Conference on Very
Lar ge Dat abases (VLDB), Brighton (1987).

M St onebraker, "Operating System Support for Database
Management Systens," Conmmuni cations of the ACM vol. 24, no.
7 (1981): 412.

G G aefe, "Query Evaluation Techni ques for Large Databases,"”
ACM Conputing Surveys, vol. 25, no. 2 (1993).

B. H Bloom "Space/tinme Tradeoffs in Hash Coding with
Al'l owabl e Errors," Communi cati ons of the ACM vol. 13, no. 7
(1970): 422-426.

M Ramekrishna, "Practical Performance of Bloom Filters and
Paral |l el Free-text Searching," Comuni cations of the
ACM vol. 32, no. 10 (1989): 1237.

S. Christodoul akis, "Estimating Block Transfers and Join
Si zes," Proceedi ngs of the ACM SI GVOD Conf erence (1983).



Bl OGRAPHI ES
Ri chard Pl eder eder

As a consulting software engineer in Digital's Software Products
Group, Richard Pl edereder was the system architect on the DB

I ntegrator product famly and contributed to the architecture and
i mpl ementati on of common DBl and Rdb features such as SQ. stored
procedures. Richard also initiated the architecture, design, and
devel opnent effort of a nultithreaded dat abase server

envi ronnent, which is now part of the DBI/OSF and Rdb/ OSF
products. He received a B.S. and an MS. in conputer science from
the Technical University Minich, Bavaria. Richard also collects
tapes of operas by the Bavarian conposer Richard Wagner

Vi shu Kri shnamurt hy

Vi shu Krishnamurthy is a principal engineer in Digital's Database
Integration and Interoperability Group, where he is currently the
project |eader for the DB Integrator product. Vishu was the
technical |eader for the nmetadata and catal og managenent
conmponents of DBI. Since joining Digital in 1988, he has held
seni or devel opnent positions in the Distributed Conpiler G oup,
in the RdbStar project, and in the DEC Data Distributor project.
Vi shu holds a B.E. (honors) in nechanical engineering fromthe
University of Madras and M S. degrees in conmputer and infornation
sci ences and i n nechani cal engi neering (robotics) fromthe
University of Florida

M chael Gagnon

M ke Gagnon joined Digital in 1981 and worked on the design and
devel opnent of Digital's transaction processing and database
systenms. M ke contributed to the devel opnment of ACMS, Digital's
transacti on processing nmonitor for VMS systens, and nore recently
he contributed to the devel opnment of a distributed heterogeneous
dat abase system When that system was refocused as the DB

I ntegrator product, Mke |led the teamthat produced the execution
engine for all relational processing. Mke assuned project

| eadership responsibility for DBl version 1.0 and | ed the project
t hrough version 3. 1.

Mayank Vadodari a

As a principal software engineer in Digital's Database
Integration and Interoperability G oup, Mayank Vadodaria was the
techni cal group | eader for the query processing conponents of
Digital's DB Integrator product famly. He was al so responsible
for Digital's SQ. devel opment environnent products. He has been
instrumental in the design of many key features in the
conpilation and query optim zation within DBI. Mayank holds a B
Tech. fromthe Indian Institute of Technol ogy, Madras, and an



MS. in computer science fromthe University of Illinois at
Ur bana- Chanpai gn.
TRADEMARKS

DEC OSF/ 1, DECnet, Digital, OpenVMS, PATHWORKS, and ULTRI X are
trademar ks of Digital Equi pnment Corporation

ADABAS is a registered trademark of Software AG of North America,
I nc.

Al X and OS/2 are registered trademarks and AS/ 400 and DB2 are
trademar ks of International Business Machi nes Corporation

Appl eTal k and Maci ntosh are registered trademarks of Apple
Conputer Inc.

dBASE is a trademark and Paradox is a registered trademark of
Borl and I nternational, Inc.

EDA/SQL is a trademark of Information Builders, Inc.

Excel is a registered trademark and W ndows and W ndows NT are
trademar ks of M crosoft Corporation

HP-UX is a registered trademark of Hew ett-Packard Conpany.
INGRES is a registered trademark of |ngres Corporation.
INFORM X is a registered trademark of Inform x Software, |nc.
Novell is a registered trademark of Novell, Inc.

OFS is a registered trademark of Open Software Foundation, Inc.
ORACLE is a registered trademark of Oracle Corporation.

SCOis a trademark of Santa Cruz Operations, Inc.

SequeLink is a registered trademark of TechGnosis, Inc.

Solaris and Sun are registered trademarks and SunCS is a
trademark of Sun M crosystens, Inc.

SPX/ I PX is a trademark of Novell, Inc.
SYBASE is a registered trademark of Sybase, Inc.

UNI X is a registered trademark |icensed exclusively by X/ Open
Conpany, Ltd.



Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digital

Equi pment Corporation's authorship is permitted. All rights reserved.



