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ABSTRACT

A new CMOS microprocessor, the Alpha 21164, reaches 1,200 
mips/600 MFLOPS (peak performance). This new implementation of 
the Alpha architecture achieves SPECint92/SPECfp92 performance of 
345/505 (estimated). At these performance levels, the Alpha 21164 
has delivered the highest performance of any commercially 
available microprocessor in the world as of January 1995. It 
contains a quad-issue, superscalar instruction unit; two 64-bit 
integer execution pipelines; two 64-bit floating-point execution 
pipelines; and a high-performance memory subsystem with 
multiprocessor-coherent write-back caches. 

OVERVIEW OF THE ALPHA 21164

The Alpha 21164 microprocessor is now a product of Digital 
Semiconductor. The chip is the second completely new 
microprocessor to implement the Alpha instruction set 
architecture. It was designed in Digital's 0.5-micrometer (um) 
complementary metal-oxide semiconductor (CMOS) process. First 
silicon was powered on in February 1994; the part has been 
commercially available since January 1995. At SPECint92/SPECfp92 
ratings of 345/505 (estimated), the Alpha 21164 achieved new 
heights of performance. 

The performance of this new implementation results from 
aggressive circuit design using the latest 0.5-um CMOS technology 
and significant architectural improvements over the first Alpha 
implementation.[1] The chip is designed to operate at 300 MHz, an 
operating frequency 10 percent faster than the previous 
implementation (the DECchip 21064 chip) would have if it were 
scaled into the new 0.5-um CMOS technology.[2] Relative to the 
previous implementation, the key improvements in machine 
organization are a doubling of the superscalar dimension to 
four-way superscalar instruction issue; reduction of many 
operational latencies, including the latency in the primary data 
cache; a memory subsystem that does not block other operations 
after a cache miss; and a large, on-chip, second-level, 
write-back cache.

The 21164 microprocessor implements the Alpha instruction set 



architecture. It runs existing Alpha programs without 
modification. It supports a 43-bit virtual address and a 40-bit 
physical address. The page size is 8 kilobytes (KB). 

In the following sections, we describe the five functional units 
of the Alpha 21164 microprocessor and relate some of the design 
decisions that improved the performance of the microprocessor. 
First, we give an overview of the chip's internal organization 
and pipeline layout. 

Internal Organization

Figure 1 shows a block diagram of the chip's five functional 
units: the instruction unit, the integer function unit, the 
floating-point unit, the memory unit, and the cache control and 
bus interface unit (called the C-box). The three on-chip caches 
are also shown. The instruction cache and data cache are primary, 
direct-mapped caches. They are backed by the second-level cache, 
which is a set-associative cache that holds instructions and 
data.

[Figure 1 (Five Functional Units on the Alpha 21164 
Microprocessor) is not available in ASCII format.]

Alpha 21164 Pipeline

The Alpha 21164 pipeline length is 7 stages for integer 
execution, 9 stages for floating-point execution, and as many as 
12 stages for on-chip memory instruction execution. Additional 
stages are required for off-chip memory instruction execution. 
Figure 2 depicts the pipeline for integer, floating-point, and 
memory operations.

[Figure 2 (Alpha 21164 Pipeline Stages) is not available in ASCII 
format.]

INSTRUCTION UNIT

The instruction unit contains an 8-KB, direct-mapped instruction 
cache, an instruction prefetcher and associated refill buffer, 
branch prediction logic, and an instruction translation buffer 
(ITB).

The instruction unit fetches and decodes instructions from the 
instruction cache and dispatches them to the appropriate function 
units after resolving all register and function-unit conflicts.  
It controls program flow and all aspects of exception, trap, and 
interrupt handling. In addition, it manages pipeline control for 
the integer and floating-point units, controlling all data 
bypasses and register file writes.

The instruction cache has 32-byte blocks. The cache tags hold 
virtual address information. Its tags also support PALcode 



through a bit which indicates that the tag contains a physical 
address. (PAL stands for privileged architecture library and 
refers to physically addressed code executed in a privileged 
hardware mode that implements an architecturally defined 
interface between the operating system and the hardware.)

Instruction Pipeline

The first four pipeline stages of the Alpha 21164 microprocessor 
are the instruction unit pipeline stages, stage 0 through stage 
3. The logic in the stage before stage 0 is normally considered 
to operate in stage 1 of the pipeline. In that stage, the new 
instruction cache address is calculated either by incrementing 
the previous address or by selecting a new address in response to 
a predicted or actual flow change operation.

During stage 0, the 8-KB instruction cache is accessed. It 
returns a naturally aligned block of four instructions (16 bytes) 
with 20 bits of previously decoded instruction information (5 
bits per instruction). The precalculated decode information is 
used in stage 1 for branch and jump processing and in stage 2 for 
instruction slotting. 

In stage 1, the four-instruction block is copied into one entry 
of the two-entry instruction buffer (IB). Also in stage 1, the 
instruction cache and ITB each check for hits, and the 
branch-and-jump prediction logic determines new fetch addresses.

The main function of stage 2 is steering each instruction to an 
appropriate function unit. This process, called instruction 
slotting, resolves all static execution conflicts. The 
instruction slotter accepts the next four-instruction block from 
the IB into a staging register at the beginning of stage 2 and 
routes the individual instructions to the appropriate functional 
pipelines as it advances them to stage 3. If the block contains 
certain mixes of instruction types, it is able to slot all four 
instructions in a single cycle. Otherwise, it advances as many 
instructions as possible in the first cycle.  The remaining 
instructions in the block are slotted during subsequent cycles. 
Instructions are slotted strictly in program order. A new 
four-instruction block enters stage 2 when every instruction in 
the prior block has been slotted and advanced to stage 3.

The issue stage operates in stage 3. It performs all dynamic 
conflict checks on the set of instructions advanced from stage 2. 
The issue stage contains a complex register scoreboard to check 
for read-after-write and write-after-write register conflicts. 
This stage also detects function-unit-busy conflicts, which can 
occur because the integer multiplier and floating-point divider 
are not fully pipelined. The register scoreboard logic detects 
all integer and floating-point operand bypass cases and sends the 
necessary bypass control signals.



The issue stage issues instructions to the appropriate function 
units unless it encounters a dynamic conflict. If a conflict 
occurs, the instruction and logically subsequent instructions are 
stalled (not issued). A stall in stage 3 also stalls the advance 
of the next set of slotted instructions from stage 2. This stall 
ends when all instructions in stage 3 have been issued.

To perform conflict checking and to handle exceptions (including 
traps and interrupts), the instruction unit tracks the 
instructions issued during stage 4 through stage 8. The 
instruction unit sends register file write strobes and addresses 
to the integer and floating-point register files for instructions 
that reach the retire point (stage 6) without an exception. In 
the event of an exception, write strobes are withheld (gated) to 
prevent incomplete instructions from updating the register file. 
These instructions do not complete either because they caused an 
exception or because they are in the "shadow" of an exception. 
The shadow of an exception includes all instructions that are in 
the pipeline when an exception is recognized but are logically 
subsequent to the instruction taking the exception.

The issue stage stalls for a single cycle to permit the integer 
multiplier or floating-point divider to return a result into its 
associated pipeline. This is necessary because the register files 
do not have extra write ports dedicated to receiving these 
results. The issue stage also stalls for one cycle in similar 
cases to permit data fills for load instructions that missed in 
the data cache to write to the register file and data cache. The 
issue stage stalls indefinitely when necessary to execute the 
trap barrier and memory barrier instructions.

No-op Instructions 

New instructions are shifted into the slotting and issue stages 
when a given stage becomes completely empty. Compared to an ideal 
design in which instructions are shifted to fill a given stage 
partially, this design has a slightly increased average 
cycles-per-instruction ratio. We considered the alternative in 
which instructions are shifted in as slots become available. This 
alternative would have created critical paths that would increase 
the CPU cycle time by approximately 10 percent. An evaluation of 
our trace-driven performance model showed that the alternative 
did not reduce the cycles-per-instruction ratio enough to 
compensate for the reduction in cycle time. As a result, we chose 
the simpler and faster design.

Compilers and assembly language programmers can insert no-op 
instructions to minimize and, in most cases, to eliminate any 
negative performance effect. To facilitate this process, the 
Alpha 21164 microprocessor handles three different kinds of no-op 
instruction.

The first two kinds of no-op instruction are the integer no-op 



(NOP) and the floating-point no-op (FNOP). NOP (BIS R31,R31,R31) 
can issue in either integer execution pipeline. FNOP (CPYS 
F31,F31,F31) can issue in either floating-point execution 
pipeline. The compiler uses these to improve performance when two 
instructions would be slotted together even though they cannot 
issue in the same cycle. If one instruction in a pair is 
dependent on the other, issuing them together guarantees the 
second will stall in the issue stage and prevent later 
instructions from entering that stage. The compiler inserts a NOP 
or FNOP to delay the issue of the second instruction. With this 
improvement, the second instruction can be issued with later 
instructions.

The third kind of no-op instruction, the universal no-op (UNOP), 
is detected in stage 2. UNOP [LDQ_U R31,0(Rnn)] is discarded in 
stage 2 so that it does not require an issue slot in either 
pipeline. UNOP allows compilers to align instructions without the 
unnecessary use of pipeline issue slots. For example, the 
compiler can align the target of a branch without necessarily 
slowing execution of the fall-through path to that branch.

Instruction Prefetcher and Refill Buffer

The instruction prefetcher operates in parallel with the 
instruction cache. When an instruction is not in either the 
instruction cache or refill buffer, the prefetcher generates a 
stream of 32-byte instruction block fetch requests to fill the 
4-entry refill buffer with instruction data. Each instruction 
block contains 8 instructions. Fetched instruction data is stored 
in the refill buffer when it is returned. Four-instruction 
subblocks of instruction data are moved from the refill buffer to 
the IB when needed. At that time, the instruction cache is also 
updated. If this data movement empties an entry in the refill 
buffer, an additional fetch request is initiated. Fetched 
instruction data is buffered in the refill buffer rather than the 
instruction cache to avoid evicting valid cache blocks 
unnecessarily.

The refill buffer is a type of stream buffer. Each entry stores a 
virtual address and has a comparator so the refill buffer can be 
probed for instruction data on a cache miss. Instruction fetching 
begins only if an access misses in both the instruction cache and 
the refill buffer. Fetching stops when any instruction flow 
change occurs (i.e., branch, jump, exception, etc.). It also 
stops if at any time the instructions needed in stage 1 are found 
in the instruction cache.

The combination of the on-chip, 96-KB second-level cache and the 
instruction prefetcher significantly reduces the benefit of 
enlarging the instruction cache beyond its current size of 8 KB. 
The prefetcher generates requests at a high rate. Because it is 
on-chip, the second-level cache has the bandwidth to handle 
requests quickly and with relatively little effect on data-stream 



requests. In general, the performance benefit from making the 
instruction cache larger is very small. This is one of the 
benefits of the two-level on-chip cache hierarchy.

Instruction Stream Address Translation and 
the Instruction Translation Buffer

The instruction unit contains a 48-entry, fully associative 
instruction translation buffer (ITB) that holds instruction 
stream address translations and protection information. Each 
entry in the ITB can map 1, 8, 64, or 512 contiguous 8-KB pages.

During stage 1, the ITB entries are checked for a match with the 
program counter (PC). If the page is found, its protection bits 
are checked against the current operating mode. If the page is 
not found, an ITB miss trap occurs. If the page is found in the 
ITB and the access is an instruction cache miss, the ITB supplies 
the physical page address to the prefetcher.

Branch and Jump Prediction

The branch prediction logic examines the block of instructions 
coming from the instruction cache or refill buffer during stage 
1. It checks the block for control instructions (taken 
conditional branches, jumps, subroutine return instructions, and 
other flow-change instructions) and calculates the new fetch 
address. Since the new fetch address is available at the end of 
stage 1, the read of the instruction cache for the target 
instruction occurs in the next cycle. This means the control 
instruction is in stage 2 at the same time as the target 
instruction is in stage 0, resulting in a one-cycle branch delay 
that creates an empty cycle in the pipeline. The IB quashes this 
empty cycle if any stall occurs ahead of it in the pipeline.

The branch prediction logic predicts conditional branch 
instructions using a branch history table with 2K entries 
addressed by low-order bits of the PC. Each is a two-bit counter 
that increments when branches are taken and decrements when 
branches are not taken. The counter saturates at the top and 
bottom counts. A branch is predicted to be taken if the current 
counter value is one of the two highest counts; otherwise, it is 
predicted to be not-taken. This method is more effective than the 
method used in the first Alpha microprocessor (which had only one 
bit of history per entry), partly because it reduces the 
misprediction rate for typical loop branches by half.

A 12-entry return address stack is used to predict the target 
address on subroutine returns (i.e., RET, JSR_COROUTINE) and 
returns from PALcode. Each entry stores 11 bits of address, which 
is sufficient to address the 8-KB instruction cache. The upper 32 
bits of the target address are predicted by using the value in 
the instruction cache tag that is addressed by the return address 
stack. The same basic mechanism is used to predict the full 



target address of jump and jump-type subroutine call instructions 
since the Alpha architecture provides a hint field in these 
instructions that indicates the target cache address.

The Alpha 21164 microprocessor recovers from incorrect branch and 
PC predictions by taking a mispredict trap when the incorrectly 
predicted branch or jump-type instruction executes in the 
execution unit. For a typical branch misprediction, the execution 
time is five cycles longer. 

Replay Traps

In a replay trap, the instruction unit prevents completion of a 
given instruction by trapping the instruction and then restarting 
execution immediately with that instruction. The trap mechanism 
prevents completion of subsequent instructions. This mechanism 
replays the instruction from the beginning of the Alpha 21164 
pipeline. It is used when a stall after stage 3 would otherwise 
be required.

There are three main reasons stalls are not implemented for 
stages later than stage 3. The ability to stall adds complexity 
to clocking circuits, particularly in execution unit data paths. 
In addition, it adds control complexity. An example of this is a 
stalled two-input function unit in which one input operand is 
invalid. To end the stall, certain latches must be enabled while 
others are not, because the valid data must be held in one 
pipeline latch while the invalid data is replaced in another. 
Finally, adding stall logic would create additional critical 
paths. The elimination of stalls beyond stage 3 and the use of 
the replay trap mechanism avoid these complexities.

The replay trap mechanism is used for a number of unusual memory 
instruction conflicts and memory unit resource overruns. For 
example, the load-miss-and-use replay trap is used when a load 
misses in the data cache and a dependent instruction issues 
exactly two cycles after the load. The issue decision for such a 
dependent instruction is made prior to the actual determination 
of cache hit, so a hit is predicted. If this prediction is wrong, 
the dependent instruction is restarted from the front of the 
pipeline and will arrive at the issue stage one cycle before data 
arrives from the second-level cache. Because the instruction 
arrives before the data, there is no performance loss due to the 
trap mechanism.

INTEGER FUNCTION UNIT

The integer function unit executes integer operate instructions, 
calculates virtual addresses for all load and store instructions, 
and executes all control instructions except floating-point 
conditional branches. It includes the register file and several 
integer functional subunits, most of which are contained in two 



parallel four-stage pipelines. Both pipelines contain an adder 
and a Boolean logic unit. The first pipeline contains the 
shifter, and the second pipeline contains the control instruction 
execution unit. The first pipeline also attaches to the partially 
pipelined integer multiplier, which operates in the background. 
Except for the issue cycle and a cycle to return the result, the 
first pipeline and integer multiplier operate in parallel.

Integer Register File and Bypasses

The integer register file is read during stage 3 and written in 
stage 6. Bypass paths are implemented to allow all subunits other 
than the multiplier to receive and use the result of a previous 
instruction from stage 4, 5, or 6 of either pipeline. Due to 
implementation constraints, the multiplier can only receive 
bypassed data from stage 6 of the pipeline. This increases 
multiply latency by as many as two cycles when multiply input 
operands are produced by preceding integer operate instructions.

The integer register file contains 40 registers: the 32 integer 
registers specified by the architecture (R0 through R31) with R31 
always reading as 0; and 8 shadow registers available to PALcode 
as scratch space. The register file is accessed by 4 read ports 
(2 for each pipeline) and 2 write ports (1 for each pipeline).

Instruction Latencies

Most instructions executed in the integer function unit have a 
latency of 1 cycle. These instructions execute in stage 4. The 
conditional move instruction has a latency of 2 cycles. It 
executes in stage 4 and stage 5.

Multiply latency depends on the data size and the operation being 
performed. Thirty-two-bit multiplies have an 8-cycle latency, and 
the multiplier can start a second multiply after 4 cycles, 
provided that the second multiply has no data dependency on the 
first. Sixty-four-bit signed multiplies have a 12-cycle latency; 
the 64-bit multiply unsigned high instruction has a 14-cycle 
latency; and for both of these 64-bit multiplies, the multiplier 
can start a nondependent multiply after 8 cycles.

Because of a special bypass, compare and Boolean logic 
instructions can have a latency of 0 cycles when a conditional 
move or a branch test input operand is the result of an 
immediately preceding compare or Boolean logic instruction. The 
integer unit uses the bypass to allow dual issue of the producer 
and consumer in this case.

To realize the full benefit from the increased issue width 
relative to the first Alpha microprocessor, the DECchip 21064, it 
is critical to reduce operational latencies. As the issue width 
increases, the cost in instruction execution opportunities for a 



given latency increases. In the integer unit, the following 
latencies are reduced relative to the 21064: the shifter latency 
(from 2 cycles to 1), the byte and word operation latencies (from 
2 cycles to 1), and the multiplier latency (from 19 to 23 cycles 
in the 21064 to 8 to 16 cycles in the Alpha 21164). Also the 
special bypass for conditional instructions reduces that latency 
from 1 cycle in the 21064 to 0 cycles in the Alpha 21164. For the 
most part, these latency reductions are achieved by circuit 
design improvements.

Integer Load and Store Instructions

Integer load instructions issue in either pipeline and as many as 
two can issue per cycle. Integer store instructions issue in the 
first pipeline only. For integer load instructions that hit in 
the data cache, the data is multiplexed into the output of stage 
5 of the pipeline in which the load issued; the data is then 
written to the register file through the write port associated 
with that pipeline. For integer load instructions that miss in 
the data cache, the data is returned later by the memory 
subsystem. The data is then multiplexed into the output of stage 
5 as before, and the instruction unit inserts a properly timed 
NOP cycle by stalling the issue stage for one cycle to make the 
pipeline's register write port available.

FLOATING-POINT UNIT

The floating-point unit consists of the floating-point register 
file and two pipelined functional subunits: an add pipeline that 
executes all floating-point instructions except for multiply, and 
a multiply pipeline that executes floating-point multiplies. All 
IEEE and VAX rounding modes are done in hardware, including IEEE 
round to plus and minus infinity.  

Pipeline Structure and Operation Latencies

Each floating-point subunit on the Alpha 21164 CPU chip contains 
three functional stages implemented in four pipeline stages, 
stage 5 through stage 8. The floating-point register file is read 
in stage 4 and written at the end of stage 8. Figure 3 depicts 
the physical layout of the floating-point unit.  Figure 4 shows 
the pipelining of instructions executed in the floating-point 
unit.

[Figure 3 (Physical Layout of the Floating-point Unit) 
is not available in ASCII format.]

As in the integer unit, latency is reduced in the floating-point 
unit relative to the previous Alpha implementation. The latency 
of all floating-point operate instructions, except floating-point 
divide, is 4 cycles. In the DECchip 21064, most floating-point 
operations take 6 cycles. The floating-point divide latency 



varies depending on the input data values. For a single-precision 
divide, the latency is reduced from 34 cycles in the 21064 to an 
average of 19 in the 21164; and for a double-precision divide, it 
is reduced from 63 cycles to an average of 31. As discussed 
previously, reducing latency is important as issue width 
increases. As in the integer unit, the reduced latency is 
achieved mostly by circuit design improvements.

Register File and Bypasses

The floating-point register file has nine ports: two read ports 
and one write port per functional unit for source and destination 
operand accesses, one read port for floating-point stores, and 
two write ports to support two floating-point loads per cycle.  
Bypass paths forward data from each of the four write buses in 
the floating-point register file to each of the five read buses.

Floating-point Load and Store Instructions

In Alpha microprocessors, floating-point numbers are stored in 
one format in memory and in another format in the floating-point 
registers. Floating-point load and store instructions convert 
from one format to the other as they move the data. In the Alpha 
21164 pipeline, floating-point input operands are read from the 
floating-point register file one cycle later than integer input 
operands are read from the integer register file. This skew 
provides an extra cycle for floating-point load data format 
conversion.
        
Floating-point load and store instructions first issue to the 
integer unit for address calculation. The issue restrictions are 
exactly the same as for integer load or store instructions. For 
floating-point load instructions, the data is written to the 
register file using one of the two write ports reserved for that 
purpose. When a conflict for these write ports occurs between a 
write due to a new load that hit in the data cache and a write 
due to a previous load that missed, the conflict is resolved by 
forcing the new load to miss in the data cache.

[Figure 4 (Floating-point Unit Pipeline) is not available in 
ASCII format.]

Add Pipeline

The key components of the add pipeline design are the fast 
fraction adder, operand data-path alignment, normalization shift 
detection, sticky-bit calculation, and round-adder design. The 
fast-adder design operates in a single phase (one phase equals 
one-half of a CPU cycle). It is used in the function stage 1 and 
stage 3 fraction adders. To reduce formatting and rounding 
complexity, the least significant bits in fractions are aligned 
to one of two different bit positions: one for single-precision 



data (IEEE S and VAX F) and 4-byte integers, and one for 
double-precision data (IEEE T, and VAX G and D) and 8-byte 
integers.

For effective subtracts with exponent differences of {--}1, 0, or 
1, a new normalization shift detect algorithm uses three leading 
bit chains to examine stage 1 input operands to determine the 
required normalization shift. The normalization shift amount is 
chosen by comparing the least significant bit of one exponent to 
the least significant bit of the other.

The sticky bit for adds and subtracts is determined by comparing 
the exponent difference with an encoded value for the number of 
trailing zeros in the fraction being aligned.

The stage 3 round adder operates in one cycle and consists of a 
fraction adder and an output selector. The fraction adder takes 
one phase and adds two operands plus rounding bits based on the 
round mode. The selector assembles the fraction result based on 
global carry-and-propagate information from the adder. It also 
examines the adder result alignment and performs a final 
normalization shift of as much as one bit left or right. The 
exponent result is also selected in stage 3 before the complete 
result is sent to the register file write bus and bypass logic.

Multiply Pipeline

Multiplication is done using radix-eight Booth encoding, which  
requires 18 partial products to be summed.[3] The first stage of 
the multiply pipeline is used to create three times the 
multiplicand and to determine the Booth encodings. The multiplier 
array is composed of 14 rows of carry-save adders that perform 
the addition of multiplicands. The carry and sum outputs of the 
array are reduced by combining carry-save adders and then are 
passed through a half adder to facilitate rounding.

The sticky bit for multiplication is determined by summing the 
number of trailing zeros in both operands.  The carry output from 
the less significant product bits is used by the round selector 
of the multiply pipeline to determine the correct final product.

Divider

Floating-point divide instructions issue into the add pipeline. 
The operands are immediately passed to the divider. Instruction 
issue to the add pipeline continues while a divide is in progress 
until the result is ready. At that point, the issue stage in the 
instruction unit stalls one cycle to allow the quotient to be 
sent to the round adder and then be written into the register 
file.

The divider uses a normalizing nonrestoring algorithm that 



determines 1 to 4 bits of quotient per cycle, averaging 2.4 
quotient bits per cycle.[4] Implementation of this algorithm 
requires that an exact partial remainder be produced every cycle.  
The implementation uses a fast adder that produces its result in 
half of a cycle.

MEMORY UNIT

The memory unit contains a fully associative, 64-entry, data 
translation buffer (DTB); an 8-KB, direct-mapped, primary data 
cache; a structure called the miss address file (MAF); and a 
write buffer. It processes load, store, and memory barrier 
instructions.

The write-through data cache has 32-byte blocks and 2 read ports. 
Its tags hold physical address data.

The memory unit receives as many as 2 virtual addresses from the 
integer unit each cycle. Because it has 2 read ports, the DTB can 
translate both virtual addresses to physical addresses and detect 
memory management faults. (Like the ITB, each entry in the DTB 
can map 1, 8, 64, or 512 contiguous 8-KB pages.)

Load instructions access the data cache and return data to the 
register file if there is a hit. The latency for loads that hit 
in the data cache is two cycles. Again, latency is reduced 
relative to the DECchip 21064 microprocessor where the latency is 
three cycles for loads that hit. The reduced latency was achieved 
by circuit design improvements. Reducing this latency is 
particularly important as issue width increases because of the 
frequent use of loads in programs.

For loads that miss, the physical addresses are sent to the MAF, 
where they wait to be sent to the C-box. Store instructions write 
the data cache if there is a hit; they are always placed in the 
write buffer, where they wait to be sent to the C-box.  

Memory Unit Pipeline Structure

Virtual address calculation begins in the integer unit early in 
stage 4. The data cache access begins later in stage 4 and 
completes early in stage 5. Address translation is done in 
parallel with data cache access. Data cache hit is determined 
late in stage 5. If the access hits, the data is written to the 
register file (for a load access) or the cache (for a store 
access) in stage 6. In the case of a data cache miss, the 
memory access advances to pipeline stages in the C-box.

Miss Address File 

The MAF consists of two sections that store data. The first 



section holds load misses (called DREADs) in six entries, and the 
other section holds instruction fetch addresses (called IREFs) in 
four entries. For DREADs, the MAF stores the physical address, 
destination register, and instruction type 
(integer/floating-point, 4-byte/8-byte/IEEE-S-Type/VAX-G-Type, 
etc.). For IREFs, the MAF stores only the physical address.
    
Buffered accesses in the MAF and write buffer are sent to the 
C-box at a peak rate of one every other cycle. DREADs have 
highest priority, writes have the next highest priority, and 
IREFs have lowest priority.

When the C-box returns data for a DREAD, the memory unit provides 
the destination register and instruction type information from 
the MAF. This information is then used to convert the data to its 
in-register format, to determine which registers to write, and to 
update the register scoreboard in the instruction unit. The DREAD 
entry is removed from the MAF when the second half of the data 
fill arrives.

The C-box returns IREF data directly to the instruction unit's 
cache and refill buffer. The IREF entry is removed from the MAF 
as soon as the command has been accepted by the C-box.

Merging Capability.  One key performance feature of the MAF is 
that it merges multiple load misses that access the same 32-byte 
block of memory into a single C-box DREAD request. One load 
instruction requests at most 8 bytes of a 32-byte memory block. 
As many as 4 load misses can be merged into 1 DREAD request. This 
improves latency and reduces unnecessary bandwidth consumption in 
the second-level cache.

To implement merging, the MAF merge logic detects any load miss 
address to a block that has already been queued in the DREAD 
section of the MAF. The logic then adds the new destination 
register to the existing request. Merging is limited to 1 load 
miss per naturally aligned 8-byte portion of the 32-byte block. 
Also, merging is permitted only for load misses with identical 
instruction types. The memory unit allocates a new DREAD entry in 
the MAF only for load misses that do not merge. The merge logic 
supports the peak load instruction issue rate. It can merge as 
many as 2 load misses per cycle into the DREAD section and can 
merge loads that issue together.

The MAF merge capability is an integral part of the two-level 
cache hierarchy design. It can reduce the rate of memory read 
operations from two loads per cycle in the integer pipelines to 
one read every other cycle in the second-level cache pipeline. By 
doing so, the MAF makes the full bandwidth of the second-level 
cache available to the program.

The MAF can hold as many as 6 DREADs that can represent as many 
as 21 loads. (The theoretical maximum is 24 loads; this limit is 
a by-product of the overflow prevention algorithm.) Requests are 



sent to the C-box in the order in which they were allocated in 
the MAF. Accesses in the second-level cache can hit underneath 
(behind) second-level cache misses, allowing data fills to be 
returned in a different order than they were sent to the C-box.

Two-level Data Cache.  Many workloads benefit more from a reduced 
latency in the data cache than from a large data cache. We 
considered a single-level design for a large data cache. For 
circuit reasons, physically large caches are slower than small 
caches. To achieve a reduced latency, we chose a fast primary 
cache backed by a large second-level cache. As a result, the 
effective latency of reads is better in the Alpha 21164 CPU chip 
than it would have been in a single-level design.

The two-level data cache has other benefits. The two-level design 
makes it reasonable to implement set associativity in the 
second-level cache. Set associativity enables power reduction by 
making data set access conditional on a hit in that set. The 
two-level design also allows the second-level cache to hold 
instructions, which makes a larger instruction cache unnecessary.

In addition, the two-level design was simpler. Because 
performance studies showed that the Alpha 21164 CPU chip should 
have write-back caching on-chip, the data cache in the 
single-level design would have been write-back. Also, because of 
its larger size, it would have been virtually addressed, which 
would have required a solution to the synonym problem. Finally, 
it would have been difficult to make the single large cache 
set-associative without adding latency. The two-level design 
eliminated all these issues.

Write Buffer

The write buffer contains 6 entries; each entry holds as many as 
32 bytes of data and one physical address. It accumulates store 
instructions written to the same 32-byte block by merging them 
into 1 entry. It can merge 1 store instruction per cycle, 
matching the peak store instruction issue rate. The write buffer 
places no restrictions on merging until a write is sent to the 
second-level cache. At that time, the write buffer stops merging 
to that entry.

Once an entry from the write buffer has been sent to the C-box, 
several steps may be required to complete the write, depending on 
the presence of the memory block in the second-level cache and 
its cache coherence state. The C-box signals the memory unit upon 
completion of a store operation, and then the memory unit removes 
the corresponding entry from the write buffer.

Access Ordering

The memory unit guarantees that all memory accesses to the same 



address are processed in the order given by the instruction 
stream. This is a design problem in any nonblocking memory 
subsystem design. Load misses that conflict with a store, and 
stores that conflict with a load miss, set conflict bits that 
prevent the issue of the DREAD or write until all conflicts have 
been cleared. If a store matches a valid entry in the write 
buffer and cannot merge with that entry, it is allocated a new 
entry that is prevented from being sent to the C-box until the 
earlier write is completed.

Memory Barrier Instructions

The memory unit implements the memory barrier (MB) instruction by 
retiring all previous load misses and writes before sending the 
MB to the bus interface unit. The instruction unit stalls new 
memory instructions until the MB has been completed.

The memory unit implements the write memory barrier (WMB) 
instruction as follows:  When the WMB is executed, the memory 
unit marks the last write that is pending at that time. Writes 
added after that time are added behind the WMB mark. They are not 
sent to the C-box until all writes ahead of the WMB mark are 
completed. Unlike the MB instruction, execution of the WMB 
instruction does not require any stalls in the instruction unit. 

Replay Traps in the Memory Unit

The memory unit forces a replay trap if a new load or write would 
cause the buffer to overflow. It also forces a replay trap when a 
store that hits in the data cache is followed by a load to 
exactly the same location in the next cycle. In this case, 
because the store writes the data cache in stage 6, the data from 
the store would not yet be available to the load.

CACHE CONTROL AND BUS INTERFACE UNIT 

The cache control and bus interface unit or C-box contains the 
second-level cache and the following subunits: the second-level 
cache arbiter unit (SAU), the bus interface unit sequencer (BSQ), 
the victim address file (VAF), the bus interface unit address 
file (BAF), the write buffer unit (WBU), and the system probe 
arbiter (SPA). Figure 5 shows the functional units of the C-box.

[Figure 5 (Functional Units of the C-box) is not available in 
ASCII format.]

The C-box provides the interface to the system for access to 
memory and I/O. It provides full support for multiprocessor 
systems using a cache coherence protocol (described later in this 
section). It manages the second-level cache and an optional 
off-chip third-level cache, both of which are 



multiprocessor-coherent write-back caches.

The SAU arbitrates the requests for access to the second-level 
cache. The BSQ requests to write data fill (due to previous 
second-level cache misses). The VAF requests read accesses of 
deallocated second-level cache blocks that have been modified 
(called victims). The SPA requests access for external cache 
coherence transactions. The memory unit requests access for 
DREAD, IREF, and write requests. Highest priority is given to the 
BSQ, followed by the VAF, and then the SPA; lowest priority is 
given to the memory unit.

The BSQ controls data movement to and from the Alpha 21164 
microprocessor. It accesses the optional off-chip third-level 
cache. It communicates with the system to request data that is 
not cached, to write back deallocated cache blocks that have been 
modified, to carry out coherence transactions, and to perform I/O 
accesses.

The VAF reads and holds victims from the second-level cache and 
data for memory broadcast writes, I/O writes, and external cache 
coherence commands that require data from the second-level cache.  
It has two entries for victims, each of which holds the address 
and data for a victim. These victims are written back to 
third-level cache or memory when the BSQ is idle or sooner if 
necessary to maintain cache coherence. These entries also hold 
data for memory broadcast writes and I/O writes. A separate 
buffer holds data for external cache coherence commands that 
require data from the second-level cache.

The WBU handles second-level cache writes and cooperates with 
other C-box subunits to maintain cache coherence.

The SPA receives cache coherence requests from the external 
system environment. To fulfill these coherence requests, it 
accesses the second-level cache and, if the off-chip cache is 
present, cooperates with the BSQ to access the off-chip cache. It 
then sends an appropriate response to the external system.

Second-level Cache and Optional Off-chip Cache

The C-box manages the on-chip second-level cache and the optional 
off-chip cache. Both are write-back, and both are 
mixed instruction and data caches. If it is present, the off-chip 
cache is a third-level cache. The second-level cache is 96 KB in 
size and is 3-way set-associative. The off-chip cache is 
direct-mapped and can be configured to sizes ranging from 1 
megabyte (MB) to 64 MB. The off-chip cache is not set-associative 
because it is not feasible given pin-count constraints. The tags 
in both caches hold physical address data and coherence state 
bits for each block.

The block size for the off-chip cache is configurable to 32 bytes 



or 64 bytes. The second-level cache has 1 tag per 64-byte block. 
It can be configured to operate with 64-byte blocks or with 
32-byte subblocks.

The second-level cache tags contain bits to record which 16-byte 
data words within the block or subblock have been modified since 
the block was brought on-chip. When a block or subblock is copied 
back to the off-chip cache, only modified 16-byte data words are 
transferred. This reduces the time required to write back 
second-level cache victims in many cases.

Transaction Handling

A maximum of 2 second-level cache misses can be queued in the BAF 
for external access in the off-chip cache and memory. The BAF 
merges read requests to 32-byte blocks within the same 64-byte 
block.

For simplicity, only one operation to a given second-level cache 
address is allowed in the BAF at a time, except when the two 
requests merge. A new request with a second-level cache address 
that matches an existing request in the BAF is aborted. 
Similarly, requests that require VAF entries when the VAF is full 
are aborted, and new requests are aborted when the BAF is full. 
If a request is aborted, the memory unit retries the request 
repeatedly until it is accepted. Accesses to second-level blocks 
that are partially valid because they are being filled are 
aborted repeatedly until the data fill completes.

Maintaining Cache Coherence

The Alpha 21164 CPU chip uses a cache coherence protocol 
implemented in hardware to provide full support for 
multiprocessor systems. The instruction cache is virtual and is 
not kept coherent by the hardware. (The Alpha architecture 
requires software to manage instruction cache coherence.) The 
data cache is a subset of the second-level cache. If the off-chip 
cache is present, then the second-level cache is a subset of the 
off-chip cache.

Three state bits record the coherence state of each block or 
subblock in the second-level cache and the off-chip cache: the 
valid bit, the shared bit, and the dirty bit. The valid bit 
indicates that the block contains valid data. The shared bit 
indicates that the block may be cached in more than one CPU's 
cache. The dirty bit indicates that the memory copy of the block 
is not correct and the cache block must eventually be written 
back. These state bits allow the following states to be encoded 
for a given cache block or subblock: invalid, 
exclusive-unmodified, exclusive-modified, shared-unmodified, and 
shared-modified.



The system bus interface is the coherence reference point in the 
system. Any request to modify the state of a block is arbitrated 
at this bus before the block is changed. For example, when the 
Alpha 21164 CPU chip must write to a block in the second-level 
cache that is in the exclusive-unmodified state, the BSQ sends a 
request to the system to change the state of the block to the 
exclusive-modified state. The C-box waits for the system to 
acknowledge the request, and then retries the write. If another 
processor reads the same block before the request is 
acknowledged, the block is instead changed to the 
shared-unmodified state. In that situation, the Alpha 21164 CPU 
chip subsequently sends a full-block memory write on the system 
bus that causes all other processors to invalidate their copy of 
the block and leaves the block in the exclusive-unmodified state 
in this processor.

Second-level Cache Transaction Flows

DREADs, IREFs, and writes from the memory unit access the 
second-level cache after winning arbitration in the memory unit 
and the SAU. The second-level cache is fully pipelined. Figure 6 
shows an example of a read that is followed by a write as both 
hit in the cache.

For the read access shown in Figure 6, the pipeline stages are 
the following. The SAU arbitrates in stage 5; the second-level 
cache tag store is read in stage 6; the hit is determined in 
stage 7; and the requested data is read from the cache data store 
in stage 8 and sent on the 128-bit-wide read data bus (R-bus) in 
stage 9. The second half of the 32-byte block is read and sent in 
the next pipeline cycle. The R-bus data is received by the 
integer unit, the floating-point unit, or the instruction unit, 
depending on the access type.

[Figure 6 (Second-level Cache Read/Write Flow) is not available 
in ASCII format.]

For data returned to the integer unit or the floating-point unit, 
the data cache fill begins in stage 10 and completes in stage 11. 
The register file write occurs in stage 11. An instruction that 
is dependent on the load can begin execution in the next cycle 
In this case, the load latency is eight cycles. 

For the write access shown in Figure 6, the pipeline stages are 
the following. The SAU arbitrates in stage 5; the tag store is 
read in stage 6; the hit is determined, and data is sent on the 
128-bit write data bus (W-bus) in stage 7; and the cache is 
written in stage 8. As before, the second half of the 32-byte 
write occurs in the next pipeline cycle.

A second-level cache miss that results in a victim provides an 
interesting case for discussion. Here, we must determine which 
set to fill and then remove the victim before data can be 



returned from the off-chip cache. Figure 7 shows an example of a 
DREAD that misses in the second-level cache, creating a victim, 
and then hits in the off-chip cache. The example shown is the 
fastest possible. In this case, the BSQ is idle so the BAF is 
bypassed and the address is sent immediately to the off-chip 
cache. The access time for the off-chip cache is four CPU cycles.

As shown in Figure 7, the DREAD wins arbitration in stage 5, and 
the miss is detected in stage 7. The set picked by the random 
replacement algorithm contains modified data (a victim). Since 
the block size in the second-level cache is 64 bytes, two 32-byte 
victim read sequences are needed to copy the entire victim into 
the on-chip victim buffer. The two victim reads arbitrate at high 
priority to ensure that the victim is copied before the data 
fills from the off-chip cache overwrite the locations.

[Figure 7 (Second-level Cache Miss Sequence with Fastest Fill 
Possible) is not available in ASCII format.]

The Alpha 21164 CPU chip begins sending the off-chip cache 
address in stage 8 (because of BAF bypass, as described above). 
The tag and data are clocked into the Alpha 21164 chip at the 
beginning of stage 12. The BSQ arbitrates speculatively for a 
single cycle on the second-level cache pipeline to reserve a 
cycle on the R-bus. That cycle is used to send the data from the 
off-chip cache to the execution units and data cache.

If the access hits in the off-chip cache, the BSQ arbitrates to 
fill the second-level cache. The fill transaction takes a single 
cycle in the pipeline to write the tag store in stage 6 and the 
data store in stage 8.

The second victim read sequence occurs after the first data fill. 
Because of this, the first victim read sequence always reads the 
data location overwritten by the first data fill.

PALcode

The Alpha architecture defines the privileged architecture 
library code (PALcode) as a set of software routines that 
interface an operating system to a specific Alpha implementation. 
PALcode presents the operating system with an architecturally 
defined interface that is the same in all implementations even 
though the underlying hardware designs can be very different. 
PALcode currently exists to interface the Alpha 21164 
microprocessor to the Windows NT, Digital UNIX (formerly DEC 
OSF/1), and OpenVMS operating systems.

When the processor is executing PALcode, it is in PAL mode. PAL 
mode is entered upon execution of the CALLPAL instruction and 
upon the occurrence of interrupts, exceptions, and certain kinds 
of traps. The PALcode entry point is a hardware dispatch to a 
location that is determined by the entering event. In PAL mode, 



instructions are fetched from physical memory without address 
translation. Also, five PAL support instructions are enabled that 
give access to all hardware registers and special load/store 
access to virtual and physical memory. PAL mode is exited by 
executing a PAL instruction called HW_REI.

To meet performance goals, a number of PAL features are included 
in the Alpha 21164 microprocessor. For example, the integer 
register file contains eight shadow registers that map over R8 
through R14 and R25 in PAL mode. Although this overmapping is 
normally enabled in PAL mode, it can be disabled through a 
hardware control register. This speeds PALcode entry and exit, 
because PALcode is free to use these registers without saving and 
restoring state. The shadow register mapping is designed to avoid 
overmapping any register used to pass data from the operating 
system to PALcode or vice versa.

Several of the operating systems that run on Alpha systems access 
memory management page tables through virtual memory.[5] The 
Alpha 21164 microprocessor contains hardware to speed processing 
of the PALcode for translation buffer miss. These PALcode 
routines access virtually mapped page tables. The hardware 
calculates the virtual address of the page table entry (PTE) 
based on the miss address and the address of the page table base. 
This eliminates the instruction sequence required for this 
calculation. PALcode then executes a load instruction to this 
virtual address to fetch the required PTE. This load is performed 
using a PAL instruction that signals a virtual PTE fetch. If this 
load misses in the DTB, a special PALcode trap routine is 
dispatched to fill the DTB using a multilevel, physical-address 
access method. After that, the original virtual PTE read is 
restarted and will succeed.

TESTABILITY FEATURES

The Alpha 21164 microprocessor incorporates several testability 
features. Some enhance chip test, and some features provide 
useful module test capability.[6]

Repairable On-chip RAMs

The Alpha 21164 microprocessor requires large random-access 
memory (RAM) arrays for its on-chip caches. To improve yield, the 
instruction and data cache arrays have spare rows and the 
second-level cache has spare rows and spare columns.

A working instruction cache is necessary for most chip test 
programs. Consequently, it is automatically tested by built-in 
self-test (BiSt) and automatically repaired by built-in 
self-repair (BiSr). During wafer probe, the test result is 
serially shifted off-chip for permanent repair by laser.  Upon 
chip reset, BiSt of the instruction cache occurs automatically, 



but BiSr is not necessary if the chip has been repaired.

The data cache and second-level caches are tested by programs 
loaded into the instruction cache during wafer probe. These 
programs condense the test results and write them off-chip to be 
captured by the tester for subsequent laser repair.

Chip Logic Testability

To enhance core logic testability, the Alpha 21164 microprocessor 
contains dual-mode registers that can operate as scan registers 
or as linear feedback shift registers (LFSRs). The scan mode is 
used for initialization, for scanning out signatures, and for 
debugging. The LFSR mode is used for manufacturing test. 

Module Manufacturing

The Alpha 21164 microprocessor implements the IEEE 1149.1 
standard for supporting testing during module manufacturing. The 
supported instructions are EXTEST, SAMPLE/PRELOAD, BYPASS, CLAMP, 
and HIGHZ.

SUMMARY

The internal organization of the Alpha 21164, a new, 
high-performance Alpha microprocessor, has been presented. 
Mechanisms designed to enhance the CPU's performance combined 
with the CPU's clock speed of 300 MHz produce an extremely 
high-performance microprocessor. First silicon of the Alpha 21164 
CPU chip was produced in February 1994, and three different 
operating systems were successfully booted on the first-pass 
silicon. The part became commercially available in January 1995. 
It achieved the performance level of 345 SPECint92 and 505 
SPECfp92 (estimated), a performance level unmatched by 
commercially available microprocessors.
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