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ABSTRACT

A new CMOS m croprocessor, the Al pha 21164, reaches 1, 200

m ps/ 600 MFLOPS (peak performance). This new i npl ementation of
the Al pha architecture achi eves SPECi nt 92/ SPECf p92 performance of
345/ 505 (estimated). At these performance |evels, the Al pha 21164
has delivered the highest performnce of any comercially

avail abl e m croprocessor in the world as of January 1995. It
contai ns a quad-issue, superscalar instruction unit; two 64-bit

i nt eger execution pipelines; two 64-bit floating-point execution
pi pelines; and a high-performnce nenory subsystemwith

nmul ti processor-coherent wite-back caches.

OVERVI EW OF THE ALPHA 21164

The Al pha 21164 microprocessor is now a product of Digita

Sem conductor. The chip is the second conpletely new

nm croprocessor to inplenment the Al pha instruction set
architecture. It was designed in Digital's 0.5-micronmeter (um
conpl ement ary net al - oxi de semi conduct or (CMOS) process. First
silicon was powered on in February 1994; the part has been
commercially avail abl e since January 1995. At SPEC nt 92/ SPECf p92
rati ngs of 345/505 (estimted), the Al pha 21164 achi eved new

hei ghts of perfornmance.

The performance of this new inplenentation results from
aggressive circuit design using the latest 0.5-um CMOS technol ogy
and significant architectural inprovenents over the first Al pha

i mpl enentation.[1] The chip is designed to operate at 300 MHz, an
operating frequency 10 percent faster than the previous

i mpl ementation (the DECchip 21064 chip) would have if it were
scaled into the new 0.5-um CMOS technol ogy.[2] Relative to the
previ ous inplenmentation, the key inprovenents in machine

organi zation are a doubling of the superscal ar dinension to
four-way superscalar instruction issue; reduction of many
operational latencies, including the latency in the prinmary data
cache; a nenory subsystemthat does not bl ock other operations
after a cache mss; and a | arge, on-chip, second-I|evel,
write-back cache.

The 21164 m croprocessor inplements the Al pha instruction set



architecture. It runs existing Al pha prograns w thout
nodi fication. It supports a 43-bit virtual address and a 40-bit
physi cal address. The page size is 8 kil obytes (KB).

In the foll owing sections, we describe the five functional units
of the Al pha 21164 microprocessor and relate sone of the design
deci sions that inproved the performance of the microprocessor
First, we give an overview of the chip's internal organization
and pi peline |ayout.

I nternal Organization

Figure 1 shows a block diagramof the chip's five functiona
units: the instruction unit, the integer function unit, the
floating-point unit, the menory unit, and the cache control and
bus interface unit (called the C-box). The three on-chip caches
are al so shown. The instruction cache and data cache are primary,
di rect - mapped caches. They are backed by the second-Ievel cache,
which is a set-associative cache that holds instructions and

dat a.

[Figure 1 (Five Functional Units on the Al pha 21164
M croprocessor) is not available in ASCII format.]

Al pha 21164 Pi peline

The Al pha 21164 pipeline length is 7 stages for integer
execution, 9 stages for floating-point execution, and as nany as
12 stages for on-chip nmenmory instruction execution. Additiona
stages are required for off-chip nenory instruction execution.
Figure 2 depicts the pipeline for integer, floating-point, and
nmenory operations.

[Figure 2 (Al pha 21164 Pipeline Stages) is not avail able in ASCI
format. ]

I NSTRUCTI ON UNI T

The instruction unit contains an 8-KB, direct-mpped instruction
cache, an instruction prefetcher and associated refill buffer
branch prediction logic, and an instruction translation buffer
(1 TB).

The instruction unit fetches and decodes instructions fromthe

i nstruction cache and di spatches themto the appropriate function
units after resolving all register and function-unit conflicts.

It controls programflow and all aspects of exception, trap, and
interrupt handling. In addition, it nanages pipeline control for
the integer and floating-point units, controlling all data
bypasses and register file wites.

The instruction cache has 32-byte bl ocks. The cache tags hold
virtual address information. Its tags al so support PALcode



through a bit which indicates that the tag contains a physica
address. (PAL stands for privileged architecture |ibrary and
refers to physically addressed code executed in a privileged
har dwar e node that inplenments an architecturally defined

i nterface between the operating system and the hardware.)

Instruction Pipeline

The first four pipeline stages of the Al pha 21164 m croprocessor
are the instruction unit pipeline stages, stage 0 through stage
3. The logic in the stage before stage 0 is nornmally considered
to operate in stage 1 of the pipeline. In that stage, the new

i nstruction cache address is cal culated either by increnenting
the previous address or by selecting a new address in response to
a predicted or actual flow change operation.

During stage 0, the 8-KB instruction cache is accessed. It
returns a naturally aligned block of four instructions (16 bytes)
with 20 bits of previously decoded instruction information (5
bits per instruction). The precal cul ated decode information is
used in stage 1 for branch and junp processing and in stage 2 for
i nstruction slotting.

In stage 1, the four-instruction block is copied into one entry
of the two-entry instruction buffer (IB). Also in stage 1, the

i nstruction cache and | TB each check for hits, and the
branch-and-junp prediction | ogic deternm nes new fetch addresses.

The main function of stage 2 is steering each instruction to an
appropriate function unit. This process, called instruction
slotting, resolves all static execution conflicts. The
instruction slotter accepts the next four-instruction block from
the IBinto a staging register at the beginning of stage 2 and
routes the individual instructions to the appropriate functiona
pi pelines as it advances themto stage 3. If the bl ock contains
certain mxes of instruction types, it is able to slot all four
instructions in a single cycle. Otherwi se, it advances as nany
instructions as possible in the first cycle. The renaining
instructions in the block are slotted during subsequent cycl es.
Instructions are slotted strictly in programorder. A new
four-instruction block enters stage 2 when every instruction in
the prior block has been slotted and advanced to stage 3.

The issue stage operates in stage 3. It perfornms all dynamc
conflict checks on the set of instructions advanced from stage 2.
The issue stage contains a conplex register scoreboard to check
for read-after-wite and wite-after-wite register conflicts.
This stage al so detects function-unit-busy conflicts, which can
occur because the integer nultiplier and floating-point divider
are not fully pipelined. The register scoreboard |ogic detects
all integer and floating-point operand bypass cases and sends the
necessary bypass control signals.



The issue stage issues instructions to the appropriate function
units unless it encounters a dynamic conflict. If a conflict
occurs, the instruction and |ogically subsequent instructions are

stalled (not issued). A stall in stage 3 also stalls the advance
of the next set of slotted instructions fromstage 2. This stal
ends when all instructions in stage 3 have been issued.

To perform conflict checking and to handl e exceptions (including
traps and interrupts), the instruction unit tracks the

i nstructions issued during stage 4 through stage 8. The
instruction unit sends register file wite strobes and addresses
to the integer and floating-point register files for instructions
that reach the retire point (stage 6) wi thout an exception. In
the event of an exception, wite strobes are withheld (gated) to
prevent inconplete instructions fromupdating the register file.
These instructions do not conplete either because they caused an
exception or because they are in the "shadow' of an exception.
The shadow of an exception includes all instructions that are in
t he pipeline when an exception is recognized but are logically
subsequent to the instruction taking the exception.

The issue stage stalls for a single cycle to permt the integer
mul tiplier or floating-point divider to return a result into its
associ ated pipeline. This is necessary because the register files
do not have extra wite ports dedicated to receiving these
results. The issue stage also stalls for one cycle in sinmlar
cases to permt data fills for load instructions that mssed in
the data cache to wite to the register file and data cache. The
i ssue stage stalls indefinitely when necessary to execute the
trap barrier and nmenory barrier instructions.

No- op Instructions

New i nstructions are shifted into the slotting and i ssue stages
when a given stage becones conpletely enpty. Conpared to an idea
design in which instructions are shifted to fill a given stage
partially, this design has a slightly increased average
cycles-per-instruction ratio. W considered the alternative in
whi ch instructions are shifted in as slots becone available. This
alternative woul d have created critical paths that would increase
the CPU cycle tine by approxi mately 10 percent. An eval uation of
our trace-driven performance nodel showed that the alternative
did not reduce the cycles-per-instruction ratio enough to
conpensate for the reduction in cycle time. As a result, we chose
the sinpler and faster design.

Conpi | ers and assenbly | anguage progranmers can i nsert no-op
instructions to mnimze and, in nost cases, to elimnate any
negati ve performance effect. To facilitate this process, the

Al pha 21164 mi croprocessor handles three different kinds of no-op
i nstruction.

The first two kinds of no-op instruction are the integer no-op



(NOP) and the floating-point no-op (FNOP). NOP (BI'S R31, R31, R31)
can issue in either integer execution pipeline. FNOP (CPYS

F31, F31, F31) can issue in either floating-point execution

pi peline. The conpiler uses these to inprove performnce when two
i nstructions would be slotted together even though they cannot
issue in the sane cycle. If one instruction in a pair is
dependent on the other, issuing themtogether guarantees the
second will stall in the issue stage and prevent |ater
instructions fromentering that stage. The conpiler inserts a NOP
or FNOP to delay the issue of the second instruction. Wth this

i mprovenent, the second instruction can be issued with |ater

i nstructions.

The third kind of no-op instruction, the universal no-op (UNOP),
is detected in stage 2. UNOP [LDQ U R31,0(Rnn)] is discarded in
stage 2 so that it does not require an issue slot in either

pi peline. UNOP allows conpilers to align instructions w thout the
unnecessary use of pipeline issue slots. For exanple, the
conpiler can align the target of a branch w thout necessarily

sl owi ng execution of the fall-through path to that branch

I nstruction Prefetcher and Refill Buffer

The instruction prefetcher operates in parallel with the
instruction cache. When an instruction is not in either the

i nstruction cache or refill buffer, the prefetcher generates a
stream of 32-byte instruction block fetch requests to fill the
4-entry refill buffer with instruction data. Each instruction

bl ock contains 8 instructions. Fetched instruction data is stored
inthe refill buffer when it is returned. Four-instruction

subbl ocks of instruction data are noved fromthe refill buffer to

the 1B when needed. At that tinme, the instruction cache is also
updated. If this data novenent enpties an entry in the refil
buffer, an additional fetch request is initiated. Fetched
instruction data is buffered in the refill buffer rather than the
i nstruction cache to avoid evicting valid cache bl ocks
unnecessarily.

The refill buffer is a type of stream buffer. Each entry stores a
virtual address and has a conparator so the refill buffer can be
probed for instruction data on a cache miss. Instruction fetching
begins only if an access misses in both the instruction cache and
the refill buffer. Fetching stops when any instruction flow
change occurs (i.e., branch, junp, exception, etc.). It also
stops if at any tine the instructions needed in stage 1 are found
in the instruction cache.

The conbi nation of the on-chip, 96-KB second-|evel cache and the

i nstruction prefetcher significantly reduces the benefit of
enlarging the instruction cache beyond its current size of 8 KB
The prefetcher generates requests at a high rate. Because it is
on-chip, the second-|evel cache has the bandwi dth to handl e
requests quickly and with relatively little effect on data-stream



requests. In general, the performnce benefit from making the
i nstruction cache larger is very small. This is one of the
benefits of the two-1evel on-chip cache hierarchy.

I nstruction Stream Address Transl ati on and
the Instruction Transl ati on Buffer

The instruction unit contains a 48-entry, fully associative
instruction translation buffer (ITB) that holds instruction
stream address transl ations and protection information. Each
entry in the ITB can map 1, 8, 64, or 512 contiguous 8-KB pages.

During stage 1, the ITB entries are checked for a match with the
program counter (PC). If the page is found, its protection bits
are checked agai nst the current operating nmode. |If the page is
not found, an ITB miss trap occurs. If the page is found in the

| TB and the access is an instruction cache nmiss, the | TB supplies
t he physical page address to the prefetcher

Branch and Junp Prediction

The branch prediction | ogic exam nes the block of instructions
coming fromthe instruction cache or refill buffer during stage
1. It checks the block for control instructions (taken

condi tional branches, junps, subroutine return instructions, and
ot her flow change instructions) and cal cul ates the new fetch
address. Since the new fetch address is available at the end of
stage 1, the read of the instruction cache for the target

i nstruction occurs in the next cycle. This nmeans the control
instruction is in stage 2 at the sane tine as the target
instruction is in stage 0, resulting in a one-cycle branch del ay
that creates an enpty cycle in the pipeline. The |IB quashes this
enpty cycle if any stall occurs ahead of it in the pipeline.

The branch prediction | ogic predicts conditional branch

i nstructions using a branch history table with 2K entries
addressed by | oworder bits of the PC. Each is a two-bit counter
that increments when branches are taken and decrements when
branches are not taken. The counter saturates at the top and
bottom counts. A branch is predicted to be taken if the current
counter value is one of the two highest counts; otherwise, it is
predicted to be not-taken. This nethod is nore effective than the
nmet hod used in the first Al pha mcroprocessor (which had only one
bit of history per entry), partly because it reduces the

m sprediction rate for typical |oop branches by half.

A 12-entry return address stack is used to predict the target
address on subroutine returns (i.e., RET, JSR_COROUTINE) and
returns from PALcode. Each entry stores 11 bits of address, which
is sufficient to address the 8-KB instruction cache. The upper 32
bits of the target address are predicted by using the value in
the instruction cache tag that is addressed by the return address
stack. The sanme basic nechanismis used to predict the ful



target address of junp and junp-type subroutine call instructions
since the Al pha architecture provides a hint field in these
instructions that indicates the target cache address.

The Al pha 21164 microprocessor recovers fromincorrect branch and
PC predictions by taking a mspredict trap when the incorrectly
predi cted branch or junp-type instruction executes in the
execution unit. For a typical branch m sprediction, the execution
time is five cycles |onger.

Repl ay Traps

In a replay trap, the instruction unit prevents conpletion of a
given instruction by trapping the instruction and then restarting
execution inrediately with that instruction. The trap mechani sm
prevents conpl etion of subsequent instructions. This nechanism
replays the instruction fromthe begi nning of the Al pha 21164
pipeline. It is used when a stall after stage 3 would otherw se
be required.

There are three main reasons stalls are not inplenented for
stages later than stage 3. The ability to stall adds conplexity
to clocking circuits, particularly in execution unit data paths.
In addition, it adds control conplexity. An exanple of this is a
stalled two-input function unit in which one input operand is
invalid. To end the stall, certain |atches nust be enabled while
ot hers are not, because the valid data nmust be held in one
pipeline latch while the invalid data is replaced in another
Finally, adding stall logic would create additional critica
paths. The elimnation of stalls beyond stage 3 and the use of
the replay trap nechani sm avoi d these conplexities.

The replay trap nechanismis used for a number of unusual nenory
i nstruction conflicts and menory unit resource overruns. For
exanpl e, the | oad-m ss-and-use replay trap is used when a | oad

nm sses in the data cache and a dependent instruction issues
exactly two cycles after the load. The issue decision for such a
dependent instruction is nmade prior to the actual determi nation
of cache hit, so a hit is predicted. If this prediction is wong,
t he dependent instruction is restarted fromthe front of the
pipeline and will arrive at the issue stage one cycle before data
arrives fromthe second-|evel cache. Because the instruction
arrives before the data, there is no performance | oss due to the
trap nmechani sm

| NTEGER FUNCTION UNI'T

The integer function unit executes integer operate instructions,
cal cul ates virtual addresses for all |oad and store instructions,
and executes all control instructions except floating-point
conditional branches. It includes the register file and severa

i nteger functional subunits, nost of which are contained in two



parall el four-stage pipelines. Both pipelines contain an adder
and a Boolean logic unit. The first pipeline contains the
shifter, and the second pipeline contains the control instruction
execution unit. The first pipeline also attaches to the partially
pi pelined integer nmultiplier, which operates in the background.
Except for the issue cycle and a cycle to return the result, the
first pipeline and integer nultiplier operate in parallel

I nt eger Register File and Bypasses

The integer register file is read during stage 3 and witten in
stage 6. Bypass paths are inplenented to allow all subunits other
than the multiplier to receive and use the result of a previous
instruction fromstage 4, 5, or 6 of either pipeline. Due to

i mpl ementation constraints, the nultiplier can only receive
bypassed data from stage 6 of the pipeline. This increases
multiply latency by as nmany as two cycles when rmultiply input
operands are produced by preceding i nteger operate instructions.

The integer register file contains 40 registers: the 32 integer
regi sters specified by the architecture (RO through R31) with R31
al ways reading as 0; and 8 shadow regi sters avail able to PALcode
as scratch space. The register file is accessed by 4 read ports
(2 for each pipeline) and 2 wite ports (1 for each pipeline).

I nstruction Latencies

Most instructions executed in the integer function unit have a
| atency of 1 cycle. These instructions execute in stage 4. The
conditional nmove instruction has a |latency of 2 cycles. It
executes in stage 4 and stage 5.

Mul tiply | atency depends on the data size and the operation being
performed. Thirty-two-bit nmultiplies have an 8-cycle | atency, and
the multiplier can start a second multiply after 4 cycles,

provi ded that the second nultiply has no data dependency on the
first. Sixty-four-bit signed nmultiplies have a 12-cycle | atency;
the 64-bit multiply unsigned high instruction has a 14-cycle

| atency; and for both of these 64-bit nultiplies, the multiplier
can start a nondependent multiply after 8 cycles.

Because of a special bypass, conpare and Bool ean | ogic

i nstructions can have a |l atency of 0 cycles when a conditiona
nove or a branch test input operand is the result of an

i medi ately precedi ng conpare or Bool ean | ogic instruction. The
i nteger unit uses the bypass to allow dual issue of the producer
and consumer in this case.

To realize the full benefit fromthe increased issue width
relative to the first Al pha m croprocessor, the DECchip 21064, it
is critical to reduce operational |atencies. As the issue w dth

i ncreases, the cost in instruction execution opportunities for a



given latency increases. In the integer unit, the follow ng

| atenci es are reduced relative to the 21064: the shifter |atency
(from2 cycles to 1), the byte and word operation |latencies (from
2 cycles to 1), and the nultiplier latency (from 19 to 23 cycles
in the 21064 to 8 to 16 cycles in the Al pha 21164). Also the
speci al bypass for conditional instructions reduces that |atency
from1l cycle in the 21064 to O cycles in the Al pha 21164. For the
nost part, these |atency reductions are achieved by circuit

desi gn i nprovenents.

I nteger Load and Store Instructions

Integer load instructions issue in either pipeline and as nany as
two can issue per cycle. Integer store instructions issue in the
first pipeline only. For integer load instructions that hit in
the data cache, the data is multiplexed into the output of stage
5 of the pipeline in which the load issued; the data is then
written to the register file through the wite port associated
with that pipeline. For integer load instructions that mss in
the data cache, the data is returned |ater by the nmenory
subsystem The data is then multiplexed into the output of stage
5 as before, and the instruction unit inserts a properly tined
NOP cycle by stalling the issue stage for one cycle to make the
pipeline's register wite port avail able.

FLOATI NG PO NT UNI'T

The floating-point unit consists of the floating-point register
file and two pipelined functional subunits: an add pipeline that
executes all floating-point instructions except for multiply, and
a multiply pipeline that executes floating-point nultiplies. Al

| EEE and VAX roundi ng nodes are done in hardware, including |IEEE
round to plus and minus infinity.

Pi peline Structure and Operation Latencies

Each fl oati ng-point subunit on the Al pha 21164 CPU chip contains
three functional stages inplenented in four pipeline stages,
stage 5 through stage 8. The floating-point register file is read
in stage 4 and witten at the end of stage 8. Figure 3 depicts

t he physical |ayout of the floating-point unit. Figure 4 shows
the pipelining of instructions executed in the floating-point
unit.

[ Figure 3 (Physical Layout of the Floating-point Unit)
is not available in ASCII format.]

As in the integer unit, latency is reduced in the floating-point
unit relative to the previous Al pha inplenmentation. The |atency
of all floating-point operate instructions, except floating-point
divide, is 4 cycles. In the DECchip 21064, nost fl oating-point
operations take 6 cycles. The floating-point divide |Iatency



vari es depending on the input data val ues. For a single-precision
divide, the latency is reduced from 34 cycles in the 21064 to an
average of 19 in the 21164; and for a doubl e-precision divide, it
is reduced from 63 cycles to an average of 31. As discussed
previously, reducing latency is inportant as issue w dth
increases. As in the integer unit, the reduced latency is

achi eved nostly by circuit design inprovenents.

Regi ster File and Bypasses

The floating-point register file has nine ports: two read ports
and one wite port per functional unit for source and destination
operand accesses, one read port for floating-point stores, and
two wite ports to support two floating-point |oads per cycle.
Bypass paths forward data fromeach of the four wite buses in
the floating-point register file to each of the five read buses.

Fl oati ng- poi nt Load and Store Instructions

In Al pha mcroprocessors, floating-point nunbers are stored in
one format in nmenory and in another format in the floating-point
regi sters. Floating-point |oad and store instructions convert
fromone format to the other as they nove the data. In the Al pha
21164 pipeline, floating-point input operands are read fromthe
floating-point register file one cycle later than integer input
operands are read fromthe integer register file. This skew
provi des an extra cycle for floating-point |oad data format
conver si on.

Fl oati ng-point |oad and store instructions first issue to the

i nteger unit for address cal culation. The issue restrictions are
exactly the same as for integer | oad or store instructions. For
floating-point load instructions, the data is witten to the
register file using one of the two wite ports reserved for that
purpose. Wen a conflict for these wite ports occurs between a
wite due to a new load that hit in the data cache and a wite
due to a previous |load that m ssed, the conflict is resolved by
forcing the new load to mss in the data cache.

[Figure 4 (Floating-point Unit Pipeline) is not available in
ASClI | format.]

Add Pi peline

The key conponents of the add pipeline design are the fast
fracti on adder, operand data-path alignnent, nornmalization shift
detection, sticky-bit calculation, and round-adder design. The
fast-adder design operates in a single phase (one phase equals
one-half of a CPU cycle). It is used in the function stage 1 and
stage 3 fraction adders. To reduce formatti ng and roundi ng
conplexity, the least significant bits in fractions are aligned
to one of two different bit positions: one for single-precision



data (I EEE S and VAX F) and 4-byte integers, and one for
doubl e-precision data (IEEE T, and VAX G and D) and 8-hyte
i nt egers.

For effective subtracts with exponent differences of {--}1, 0, or
1, a new nornelization shift detect algorithmuses three |eading
bit chains to exanmi ne stage 1 input operands to determ ne the
required normelization shift. The nornmalization shift anount is
chosen by conparing the |east significant bit of one exponent to
the |l east significant bit of the other

The sticky bit for adds and subtracts is determ ned by conparing
the exponent difference with an encoded val ue for the nunber of
trailing zeros in the fraction being aligned.

The stage 3 round adder operates in one cycle and consists of a
fracti on adder and an output selector. The fraction adder takes
one phase and adds two operands plus rounding bits based on the
round nmode. The sel ector assenbles the fraction result based on
gl obal carry-and-propagate information fromthe adder. It al so
exam nes the adder result alignment and perfornms a fina
normal i zation shift of as nmuch as one bit left or right. The
exponent result is also selected in stage 3 before the conplete
result is sent to the register file wite bus and bypass | ogic.

Mul tiply Pipeline

Mul tiplication is done using radix-ei ght Booth encodi ng, which
requires 18 partial products to be sumed.[3] The first stage of
the multiply pipeline is used to create three tinmes the

nmul tiplicand and to determ ne the Booth encodings. The nultiplier
array is conposed of 14 rows of carry-save adders that perform
the addition of nultiplicands. The carry and sum out puts of the
array are reduced by conbi ning carry-save adders and then are
passed through a half adder to facilitate roundi ng.

The sticky bit for nmultiplication is determ ned by summ ng the
nunber of trailing zeros in both operands. The carry output from
the less significant product bits is used by the round sel ector

of the nultiply pipeline to determ ne the correct final product.

Di vi der

Fl oati ng-point divide instructions issue into the add pipeline.
The operands are inmediately passed to the divider. Instruction
issue to the add pipeline continues while a divide is in progress
until the result is ready. At that point, the issue stage in the
instruction unit stalls one cycle to allow the quotient to be
sent to the round adder and then be witten into the register
file.

The divider uses a nornalizing nonrestoring algorithmthat



deternmines 1 to 4 bits of quotient per cycle, averaging 2.4
quotient bits per cycle.[4] Inplenmentation of this algorithm
requires that an exact partial remai nder be produced every cycle.
The inplenmentation uses a fast adder that produces its result in
hal f of a cycle.

MEMORY UNI'T

The nmenory unit contains a fully associative, 64-entry, data
transl ation buffer (DTB); an 8-KB, direct-mapped, primary data
cache; a structure called the niss address file (MAF); and a
write buffer. It processes |oad, store, and nenory barrier

i nstructions.

The write-through data cache has 32-byte blocks and 2 read ports.
Its tags hold physical address data.

The nmenory unit receives as many as 2 virtual addresses fromthe
i nteger unit each cycle. Because it has 2 read ports, the DTB can
transl ate both virtual addresses to physical addresses and detect
menory managenent faults. (Like the ITB, each entry in the DTB
can map 1, 8, 64, or 512 contiguous 8-KB pages.)

Load instructions access the data cache and return data to the
register file if there is a hit. The latency for |oads that hit
in the data cache is two cycles. Again, latency is reduced
relative to the DECchip 21064 m croprocessor where the |latency is
three cycles for loads that hit. The reduced | atency was achieved
by circuit design inprovenents. Reducing this latency is
particularly inmportant as issue width increases because of the
frequent use of |oads in prograns.

For | oads that niss, the physical addresses are sent to the MAF,
where they wait to be sent to the C-box. Store instructions wite
the data cache if there is a hit; they are always placed in the
write buffer, where they wait to be sent to the C-box.

Menmory Unit Pipeline Structure

Virtual address calculation begins in the integer unit early in
stage 4. The data cache access begins later in stage 4 and
conpletes early in stage 5. Address translation is done in
parallel with data cache access. Data cache hit is determ ned
late in stage 5. If the access hits, the data is witten to the
register file (for a | oad access) or the cache (for a store
access) in stage 6. In the case of a data cache mss, the
menory access advances to pipeline stages in the C-box.

M ss Address File

The MAF consists of two sections that store data. The first



section holds | oad msses (called DREADs) in six entries, and the
ot her section holds instruction fetch addresses (called IREFs) in
four entries. For DREADs, the MAF stores the physical address,
destination register, and instruction type
(integer/floating-point, 4-byte/8-byte/lEEE-S- Type/ VAX- G Type,
etc.). For IREFs, the MAF stores only the physical address.

Buf f ered accesses in the MAF and wite buffer are sent to the
C-box at a peak rate of one every other cycle. DREADs have

hi ghest priority, wites have the next highest priority, and
| REFs have | owest priority.

When the C-box returns data for a DREAD, the menory unit provides
the destination register and instruction type information from
the MAF. This information is then used to convert the data to its
in-register format, to determ ne which registers to wite, and to
update the regi ster scoreboard in the instruction unit. The DREAD
entry is renoved fromthe MAF when the second half of the data
fill arrives.

The C-box returns IREF data directly to the instruction unit's
cache and refill buffer. The IREF entry is renoved fromthe MAF
as soon as the command has been accepted by the C-box.

Mergi ng Capability. One key performance feature of the MAF is
that it nerges nmultiple | oad m sses that access the sane 32-byte
bl ock of nenory into a single C-box DREAD request. One | oad

i nstruction requests at nost 8 bytes of a 32-byte menory bl ock

As many as 4 |load misses can be nmerged into 1 DREAD request. This
i mproves | atency and reduces unnecessary bandwi dth consunption in
t he second-| evel cache.

To i npl enent nmerging, the MAF nerge | ogic detects any |oad miss
address to a block that has already been queued in the DREAD
section of the MAF. The |l ogic then adds the new destination
register to the existing request. Merging is limted to 1 |oad
m ss per naturally aligned 8-byte portion of the 32-byte bl ock
Also, nerging is permitted only for load nmisses with identica
instruction types. The nmenory unit allocates a new DREAD entry in
the MAF only for load nisses that do not nerge. The nmerge | ogic
supports the peak | oad instruction issue rate. It can nerge as
many as 2 | oad nmisses per cycle into the DREAD section and can
nmerge | oads that issue together.

The MAF nerge capability is an integral part of the two-I|eve
cache hierarchy design. It can reduce the rate of nmenory read
operations fromtwo | oads per cycle in the integer pipelines to
one read every other cycle in the second-|evel cache pipeline. By
doi ng so, the MAF nmakes the full bandwi dth of the second-Ieve
cache available to the program

The MAF can hold as nany as 6 DREADs that can represent as nmany
as 21 loads. (The theoretical maximumis 24 loads; this limt is
a by-product of the overflow prevention algorithm) Requests are



sent to the C-box in the order in which they were allocated in
the MAF. Accesses in the second-|evel cache can hit underneath
(behi nd) second-1evel cache nisses, allowing data fills to be

returned in a different order than they were sent to the C-box.

Two-| evel Data Cache. Many workl oads benefit nmore froma reduced
latency in the data cache than froma |arge data cache. W
considered a single-level design for a |arge data cache. For
circuit reasons, physically |arge caches are slower than small
caches. To achieve a reduced |l atency, we chose a fast prinmary
cache backed by a | arge second-1level cache. As a result, the
effective latency of reads is better in the Al pha 21164 CPU chip
than it would have been in a single-level design

The two-| evel data cache has other benefits. The two-|evel design
makes it reasonable to inplenent set associativity in the
second-| evel cache. Set associativity enables power reduction by
maki ng data set access conditional on a hit in that set. The
two-1 evel design also allows the second-level cache to hold

i nstructions, which makes a |l arger instruction cache unnecessary.

In addition, the two-|evel design was sinpler. Because
performance studi es showed that the Al pha 21164 CPU chip shoul d
have write-back caching on-chip, the data cache in the

si ngl e-1evel design would have been wite-back. Al so, because of
its larger size, it would have been virtually addressed, which
woul d have required a solution to the synonym problem Finally,
it would have been difficult to make the single | arge cache
set-associ ative without adding | atency. The two-1evel design
elimnated all these issues.

Wite Buffer

The wite buffer contains 6 entries; each entry holds as nmany as
32 bytes of data and one physical address. It accumnul ates store
instructions witten to the sane 32-byte bl ock by merging them
into 1 entry. It can nerge 1 store instruction per cycle,

mat chi ng the peak store instruction issue rate. The wite buffer
pl aces no restrictions on nerging until a wite is sent to the
second- | evel cache. At that tinme, the wite buffer stops nerging
to that entry.

Once an entry fromthe wite buffer has been sent to the C-box,
several steps may be required to conplete the wite, depending on
the presence of the nmenory block in the second-|evel cache and
its cache coherence state. The C-box signals the nenory unit upon
conpletion of a store operation, and then the nmenory unit renobves
the corresponding entry fromthe wite buffer

Access Ordering

The nmenory unit guarantees that all nmenory accesses to the sane



address are processed in the order given by the instruction
stream This is a design problemin any nonbl ocki ng nmenory
subsystem desi gn. Load m sses that conflict with a store, and
stores that conflict with a |oad mss, set conflict bits that
prevent the issue of the DREAD or wite until all conflicts have
been cleared. If a store matches a valid entry in the wite
buffer and cannot nmerge with that entry, it is allocated a new
entry that is prevented frombeing sent to the C-box until the
earlier wite is conpleted.

Menory Barrier Instructions

The nmenory unit inplenments the nenory barrier (MB) instruction by
retiring all previous |load nmisses and wites before sending the
MB to the bus interface unit. The instruction unit stalls new
menory instructions until the MB has been conpl et ed.

The nmenory unit inplements the wite nenory barrier (WVB)
instruction as follows: Wen the WMB is executed, the nmenory
unit marks the last wite that is pending at that tinme. Wites
added after that tinme are added behind the WMB mark. They are not
sent to the C-box until all wites ahead of the WVMB mark are
conpleted. Unlike the MB instruction, execution of the WB

i nstruction does not require any stalls in the instruction unit.

Replay Traps in the Menory Unit

The nmenory unit forces a replay trap if a new load or wite would
cause the buffer to overflow. It also forces a replay trap when a
store that hits in the data cache is followed by a load to
exactly the same | ocation in the next cycle. In this case,

because the store wites the data cache in stage 6, the data from
the store would not yet be available to the | oad.

CACHE CONTROL AND BUS | NTERFACE UNI T

The cache control and bus interface unit or C-box contains the
second-| evel cache and the foll owi ng subunits: the second-|eve
cache arbiter unit (SAU), the bus interface unit sequencer (BSQ,
the victimaddress file (VAF), the bus interface unit address
file (BAF), the wite buffer unit (WBU), and the system probe
arbiter (SPA). Figure 5 shows the functional units of the C-box.

[Figure 5 (Functional Units of the C-box) is not available in
ASClI | format.]

The C-box provides the interface to the system for access to
menory and I/O It provides full support for multiprocessor
systenms using a cache coherence protocol (described later in this
section). It manages the second-1evel cache and an optiona
off-chip third-I1evel cache, both of which are



nmul ti processor-coherent wite-back caches.

The SAU arbitrates the requests for access to the second-1eve
cache. The BSQ requests to wite data fill (due to previous
second- | evel cache m sses). The VAF requests read accesses of
deal | ocat ed second-1evel cache bl ocks that have been nodified
(called victins). The SPA requests access for external cache
coherence transactions. The nenory unit requests access for

DREAD, | REF, and write requests. Highest priority is given to the
BSQ followed by the VAF, and then the SPA; |owest priority is
given to the menory unit.

The BSQ controls data novenent to and fromthe Al pha 21164

m croprocessor. It accesses the optional off-chip third-Ieve
cache. It comrunicates with the systemto request data that is

not cached, to wite back deall ocated cache bl ocks that have been
nodi fied, to carry out coherence transactions, and to performl/O
accesses.

The VAF reads and holds victims fromthe second-I|evel cache and
data for nenory broadcast wites, I/Owites, and external cache
coherence commands that require data fromthe second-I|evel cache.
It has two entries for victinms, each of which holds the address
and data for a victim These victins are witten back to
third-1evel cache or nmenmory when the BSQis idle or sooner if
necessary to nmmintain cache coherence. These entries also hold
data for nenory broadcast wites and I/O wites. A separate
buffer holds data for external cache coherence commands t hat
require data fromthe second-1evel cache.

The WBU handl es second-1evel cache wites and cooperates with
ot her C-box subunits to maintain cache coherence.

The SPA receives cache coherence requests fromthe externa
system environnent. To fulfill these coherence requests, it
accesses the second-|evel cache and, if the off-chip cache is
present, cooperates with the BSQ to access the off-chip cache. It
then sends an appropriate response to the external system

Second- | evel Cache and Optional O f-chip Cache

The C-box manages the on-chip second-|evel cache and the optiona
of f-chip cache. Both are wite-back, and both are

m xed i nstruction and data caches. If it is present, the off-chip
cache is a third-level cache. The second-level cache is 96 KB in
size and is 3-way set-associative. The off-chip cache is

di rect - mapped and can be configured to sizes ranging from1l
nmegabyte (MB) to 64 MB. The off-chip cache is not set-associative
because it is not feasible given pin-count constraints. The tags
in both caches hold physical address data and coherence state
bits for each bl ock

The bl ock size for the off-chip cache is configurable to 32 bytes



or 64 bytes. The second-|evel cache has 1 tag per 64-byte bl ock.
It can be configured to operate with 64-byte blocks or with
32- byt e subbl ocks.

The second-1evel cache tags contain bits to record which 16-byte
data words within the block or subblock have been nodified since
t he bl ock was brought on-chip. Wen a block or subblock is copied
back to the off-chip cache, only nodified 16-byte data words are
transferred. This reduces the tinme required to wite back
second-| evel cache victins in many cases.

Transaction Handl i ng

A maxi nrum of 2 second-|evel cache mi sses can be queued in the BAF
for external access in the off-chip cache and nenory. The BAF
nmerges read requests to 32-byte blocks within the same 64-byte

bl ock.

For simplicity, only one operation to a given second-|evel cache
address is allowed in the BAF at a tinme, except when the two
requests nerge. A new request with a second-Ievel cache address
that matches an existing request in the BAF is aborted.
Simlarly, requests that require VAF entries when the VAF is ful
are aborted, and new requests are aborted when the BAF is full

If a request is aborted, the nenory unit retries the request

repeatedly until it is accepted. Accesses to second-I|evel bl ocks
that are partially valid because they are being filled are
aborted repeatedly until the data fill conpletes.

Mai nt ai ni ng Cache Coherence

The Al pha 21164 CPU chip uses a cache coherence protoco

i mpl emented in hardware to provide full support for

nmul ti processor systens. The instruction cache is virtual and is
not kept coherent by the hardware. (The Al pha architecture
requires software to namnage instruction cache coherence.) The
data cache is a subset of the second-level cache. |If the off-chip
cache is present, then the second-level cache is a subset of the
of f-chip cache.

Three state bits record the coherence state of each bl ock or
subbl ock in the second-1level cache and the off-chip cache: the
valid bit, the shared bit, and the dirty bit. The valid bit

i ndi cates that the block contains valid data. The shared bit

i ndicates that the block may be cached in nore than one CPU s
cache. The dirty bit indicates that the nmenory copy of the bl ock
is not correct and the cache bl ock must eventually be witten
back. These state bits allow the following states to be encoded
for a given cache block or subblock: invalid,

excl usi ve-unnodi fi ed, exclusive-nodified, shared-unnodified, and
shar ed- nodi fi ed.



The system bus interface is the coherence reference point in the
system Any request to nmodify the state of a block is arbitrated
at this bus before the block is changed. For exanple, when the
Al pha 21164 CPU chip nust wite to a block in the second-I|eve
cache that is in the exclusive-unnodified state, the BSQ sends a
request to the systemto change the state of the block to the
exclusive-nmodified state. The C-box waits for the systemto
acknowl edge the request, and then retries the wite. If another
processor reads the same bl ock before the request is

acknow edged, the block is instead changed to the
shared-unnodi fied state. In that situation, the Al pha 21164 CPU
chip subsequently sends a full-block menory wite on the system
bus that causes all other processors to invalidate their copy of
the bl ock and | eaves the block in the exclusive-unnmodified state
in this processor.

Second- | evel Cache Transaction Flows

DREADs, | REFs, and writes fromthe nmenory unit access the
second-| evel cache after winning arbitration in the nenory unit
and the SAU. The second-|evel cache is fully pipelined. Figure 6
shows an exanple of a read that is followed by a wite as both
hit in the cache.

For the read access shown in Figure 6, the pipeline stages are
the following. The SAU arbitrates in stage 5; the second-I|eve
cache tag store is read in stage 6; the hit is determned in
stage 7; and the requested data is read fromthe cache data store
in stage 8 and sent on the 128-bit-wi de read data bus (R-bus) in
stage 9. The second half of the 32-byte block is read and sent in
the next pipeline cycle. The R-bus data is received by the

i nteger unit, the floating-point unit, or the instruction unit,
dependi ng on the access type.

[Figure 6 (Second-level Cache Read/ Wite Flow) is not avail able
in ASCII format.]

For data returned to the integer unit or the floating-point unit,
the data cache fill begins in stage 10 and conpletes in stage 11
The register file wite occurs in stage 11. An instruction that

i s dependent on the |oad can begin execution in the next cycle
In this case, the load | atency is eight cycles.

For the wite access shown in Figure 6, the pipeline stages are
the following. The SAU arbitrates in stage 5; the tag store is
read in stage 6; the hit is determned, and data is sent on the
128-bit wite data bus (Wbus) in stage 7; and the cache is
written in stage 8. As before, the second half of the 32-byte
write occurs in the next pipeline cycle.

A second-1level cache mss that results in a victimprovides an
interesting case for discussion. Here, we nust determ ne which
set to fill and then renove the victimbefore data can be



returned fromthe off-chip cache. Figure 7 shows an exanple of a
DREAD that m sses in the second-|evel cache, creating a victim
and then hits in the off-chip cache. The exanple shown is the
fastest possible. In this case, the BSQis idle so the BAF is
bypassed and the address is sent inmediately to the off-chip
cache. The access tine for the off-chip cache is four CPU cycl es.

As shown in Figure 7, the DREAD wins arbitration in stage 5, and
the mss is detected in stage 7. The set picked by the random
repl acenent al gorithm contains nodified data (a victinm. Since
the bl ock size in the second-|evel cache is 64 bytes, two 32-byte
victimread sequences are needed to copy the entire victiminto
the on-chip victimbuffer. The two victimreads arbitrate at high
priority to ensure that the victimis copied before the data
fills fromthe off-chip cache overwite the |ocations.

[Figure 7 (Second-1level Cache M ss Sequence with Fastest Fil
Possible) is not available in ASCII format.]

The Al pha 21164 CPU chip begi ns sending the off-chip cache
address in stage 8 (because of BAF bypass, as described above).
The tag and data are clocked into the Al pha 21164 chip at the
begi nni ng of stage 12. The BSQ arbitrates speculatively for a
single cycle on the second-1|evel cache pipeline to reserve a
cycle on the R bus. That cycle is used to send the data fromthe
of f-chip cache to the execution units and data cache.

If the access hits in the off-chip cache, the BSQ arbitrates to
fill the second-level cache. The fill transaction takes a single
cycle in the pipeline to wite the tag store in stage 6 and the
data store in stage 8.

The second victimread sequence occurs after the first data fill.
Because of this, the first victimread sequence al ways reads the
data | ocation overwitten by the first data fill.

PALcode

The Al pha architecture defines the privileged architecture
library code (PALcode) as a set of software routines that
interface an operating systemto a specific Al pha inplenentation
PALcode presents the operating systemw th an architecturally
defined interface that is the sane in all inplenentations even

t hough the underlying hardware designs can be very different.
PALcode currently exists to interface the Al pha 21164

nm croprocessor to the Wndows NT, Digital UNIX (formerly DEC
OSF/ 1), and OpenVMS operating systens.

When the processor is executing PALcode, it is in PAL node. PAL
node is entered upon execution of the CALLPAL instruction and
upon the occurrence of interrupts, exceptions, and certain kinds
of traps. The PALcode entry point is a hardware dispatch to a

| ocation that is determned by the entering event. In PAL node,



instructions are fetched from physical nmenory w thout address
transl ation. Also, five PAL support instructions are enabl ed that
gi ve access to all hardware regi sters and special |oad/store
access to virtual and physical nmenory. PAL node is exited by
executing a PAL instruction called HWREI.

To nmeet perfornmance goals, a nunber of PAL features are included
in the Al pha 21164 nicroprocessor. For exanple, the integer
register file contains eight shadow regi sters that map over R8

t hrough R14 and R25 in PAL node. Although this overmapping is
normal |y enabled in PAL node, it can be disabled through a

har dware control register. This speeds PALcode entry and exit,
because PALcode is free to use these registers wthout saving and
restoring state. The shadow regi ster mapping is designed to avoid
overmappi ng any regi ster used to pass data fromthe operating
systemto PALcode or vice versa

Several of the operating systens that run on Al pha systems access
menory managenent page tables through virtual menory.[5] The

Al pha 21164 mi croprocessor contains hardware to speed processing
of the PALcode for translation buffer m ss. These PALcode

routi nes access virtually mapped page tables. The hardware
calculates the virtual address of the page table entry (PTE)
based on the m ss address and the address of the page table base.
This elimnates the instruction sequence required for this

cal cul ati on. PALcode then executes a load instruction to this
virtual address to fetch the required PTE. This |load is perforned
using a PAL instruction that signals a virtual PTE fetch. If this
| oad m sses in the DTB, a special PALcode trap routine is

di spatched to fill the DTB using a nmultilevel, physical-address
access nethod. After that, the original virtual PTE read is
restarted and will succeed.

TESTABI LI TY FEATURES

The Al pha 21164 nicroprocessor incorporates several testability
features. Sone enhance chip test, and sone features provide
useful nodule test capability.[6]

Repai rabl e On-chi p RAMs

The Al pha 21164 nicroprocessor requires |large random access
menory (RAM) arrays for its on-chip caches. To inprove yield, the
i nstruction and data cache arrays have spare rows and the
second- | evel cache has spare rows and spare col ums.

A working instruction cache is necessary for nost chip test
progranms. Consequently, it is automatically tested by built-in
self-test (BiSt) and automatically repaired by built-in
self-repair (BiSr). During wafer probe, the test result is
serially shifted off-chip for pernmanent repair by |laser. Upon
chip reset, Bi St of the instruction cache occurs autonmatically,



but Bi Sr is not necessary if the chip has been repaired.

The data cache and second-|evel caches are tested by prograns

| oaded into the instruction cache during wafer probe. These
progranms condense the test results and wite themoff-chip to be
captured by the tester for subsequent |aser repair

Chip Logic Testability

To enhance core logic testability, the Al pha 21164 i croprocessor
cont ai ns dual -node registers that can operate as scan registers
or as linear feedback shift registers (LFSRs). The scan node is
used for initialization, for scanning out signatures, and for
debuggi ng. The LFSR node is used for manufacturing test.

Modul e Manuf acturing

The Al pha 21164 nicroprocessor inplenments the | EEE 1149.1
standard for supporting testing during nodul e manufacturing. The
supported instructions are EXTEST, SAMPLE/ PRELOAD, BYPASS, CLAMP,
and HI GHzZ.

SUMVARY

The internal organization of the Al pha 21164, a new,

hi gh- perf ormance Al pha nicroprocessor, has been presented.
Mechani sms desi gned to enhance the CPU s performance conbi ned
with the CPU s cl ock speed of 300 MHz produce an extrenely

hi gh- performance nicroprocessor. First silicon of the Al pha 21164
CPU chip was produced in February 1994, and three different
operating systenms were successfully booted on the first-pass
silicon. The part becane comrercially available in January 1995.
It achieved the performance |evel of 345 SPECi nt92 and 505

SPECf p92 (estimated), a perfornmance | evel unmatched by
comercially avail abl e mi croprocessors.
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