
Internal Organization of the Alpha 21164, a 300-MHz 64-bit
Quad-issue CMOS RISC Microprocessor

by John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley
J. Benschneider, Debra Bernstein, Ruben W. Castelino, Elizabeth
M. Cooper, Daniel E. Dever, Dale R. Donchin Timothy C. Fischer,
Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer, Ronald P. Preston,
Vidya Rajagopalan, Chandrasekhara Somanathan, Scott A. Taylor,
and Gilbert M. Wolrich

ABSTRACT

A new CMOS microprocessor, the Alpha 21164, reaches 1,200
mips/600 MFLOPS (peak performance). This new implementation of
the Alpha architecture achieves SPECint92/SPECfp92 performance of
345/505 (estimated). At these performance levels, the Alpha 21164
has delivered the highest performance of any commercially
available microprocessor in the world as of January 1995. It
contains a quad-issue, superscalar instruction unit; two 64-bit
integer execution pipelines; two 64-bit floating-point execution
pipelines; and a high-performance memory subsystem with
multiprocessor-coherent write-back caches.

OVERVIEW OF THE ALPHA 21164

The Alpha 21164 microprocessor is now a product of Digital
Semiconductor. The chip is the second completely new
microprocessor to implement the Alpha instruction set
architecture. It was designed in Digital's 0.5-micrometer (um)
complementary metal-oxide semiconductor (CMOS) process. First
silicon was powered on in February 1994; the part has been
commercially available since January 1995. At SPECint92/SPECfp92
ratings of 345/505 (estimated), the Alpha 21164 achieved new
heights of performance.

The performance of this new implementation results from
aggressive circuit design using the latest 0.5-um CMOS technology
and significant architectural improvements over the first Alpha
implementation.[1] The chip is designed to operate at 300 MHz, an
operating frequency 10 percent faster than the previous
implementation (the DECchip 21064 chip) would have if it were
scaled into the new 0.5-um CMOS technology.[2] Relative to the
previous implementation, the key improvements in machine
organization are a doubling of the superscalar dimension to
four-way superscalar instruction issue; reduction of many
operational latencies, including the latency in the primary data
cache; a memory subsystem that does not block other operations
after a cache miss; and a large, on-chip, second-level,
write-back cache.

The 21164 microprocessor implements the Alpha instruction set

architecture. It runs existing Alpha programs without
modification. It supports a 43-bit virtual address and a 40-bit
physical address. The page size is 8 kilobytes (KB).

In the following sections, we describe the five functional units
of the Alpha 21164 microprocessor and relate some of the design
decisions that improved the performance of the microprocessor.
First, we give an overview of the chip's internal organization
and pipeline layout.

Internal Organization

Figure 1 shows a block diagram of the chip's five functional
units: the instruction unit, the integer function unit, the
floating-point unit, the memory unit, and the cache control and
bus interface unit (called the C-box). The three on-chip caches
are also shown. The instruction cache and data cache are primary,
direct-mapped caches. They are backed by the second-level cache,
which is a set-associative cache that holds instructions and
data.

[Figure 1 (Five Functional Units on the Alpha 21164
Microprocessor) is not available in ASCII format.]

Alpha 21164 Pipeline

The Alpha 21164 pipeline length is 7 stages for integer
execution, 9 stages for floating-point execution, and as many as
12 stages for on-chip memory instruction execution. Additional
stages are required for off-chip memory instruction execution.
Figure 2 depicts the pipeline for integer, floating-point, and
memory operations.

[Figure 2 (Alpha 21164 Pipeline Stages) is not available in ASCII
format.]

INSTRUCTION UNIT

The instruction unit contains an 8-KB, direct-mapped instruction
cache, an instruction prefetcher and associated refill buffer,
branch prediction logic, and an instruction translation buffer
(ITB).

The instruction unit fetches and decodes instructions from the
instruction cache and dispatches them to the appropriate function
units after resolving all register and function-unit conflicts.
It controls program flow and all aspects of exception, trap, and
interrupt handling. In addition, it manages pipeline control for
the integer and floating-point units, controlling all data
bypasses and register file writes.

The instruction cache has 32-byte blocks. The cache tags hold
virtual address information. Its tags also support PALcode

through a bit which indicates that the tag contains a physical
address. (PAL stands for privileged architecture library and
refers to physically addressed code executed in a privileged
hardware mode that implements an architecturally defined
interface between the operating system and the hardware.)

Instruction Pipeline

The first four pipeline stages of the Alpha 21164 microprocessor
are the instruction unit pipeline stages, stage 0 through stage
3. The logic in the stage before stage 0 is normally considered
to operate in stage 1 of the pipeline. In that stage, the new
instruction cache address is calculated either by incrementing
the previous address or by selecting a new address in response to
a predicted or actual flow change operation.

During stage 0, the 8-KB instruction cache is accessed. It
returns a naturally aligned block of four instructions (16 bytes)
with 20 bits of previously decoded instruction information (5
bits per instruction). The precalculated decode information is
used in stage 1 for branch and jump processing and in stage 2 for
instruction slotting.

In stage 1, the four-instruction block is copied into one entry
of the two-entry instruction buffer (IB). Also in stage 1, the
instruction cache and ITB each check for hits, and the
branch-and-jump prediction logic determines new fetch addresses.

The main function of stage 2 is steering each instruction to an
appropriate function unit. This process, called instruction
slotting, resolves all static execution conflicts. The
instruction slotter accepts the next four-instruction block from
the IB into a staging register at the beginning of stage 2 and
routes the individual instructions to the appropriate functional
pipelines as it advances them to stage 3. If the block contains
certain mixes of instruction types, it is able to slot all four
instructions in a single cycle. Otherwise, it advances as many
instructions as possible in the first cycle. The remaining
instructions in the block are slotted during subsequent cycles.
Instructions are slotted strictly in program order. A new
four-instruction block enters stage 2 when every instruction in
the prior block has been slotted and advanced to stage 3.

The issue stage operates in stage 3. It performs all dynamic
conflict checks on the set of instructions advanced from stage 2.
The issue stage contains a complex register scoreboard to check
for read-after-write and write-after-write register conflicts.
This stage also detects function-unit-busy conflicts, which can
occur because the integer multiplier and floating-point divider
are not fully pipelined. The register scoreboard logic detects
all integer and floating-point operand bypass cases and sends the
necessary bypass control signals.

The issue stage issues instructions to the appropriate function
units unless it encounters a dynamic conflict. If a conflict
occurs, the instruction and logically subsequent instructions are
stalled (not issued). A stall in stage 3 also stalls the advance
of the next set of slotted instructions from stage 2. This stall
ends when all instructions in stage 3 have been issued.

To perform conflict checking and to handle exceptions (including
traps and interrupts), the instruction unit tracks the
instructions issued during stage 4 through stage 8. The
instruction unit sends register file write strobes and addresses
to the integer and floating-point register files for instructions
that reach the retire point (stage 6) without an exception. In
the event of an exception, write strobes are withheld (gated) to
prevent incomplete instructions from updating the register file.
These instructions do not complete either because they caused an
exception or because they are in the "shadow" of an exception.
The shadow of an exception includes all instructions that are in
the pipeline when an exception is recognized but are logically
subsequent to the instruction taking the exception.

The issue stage stalls for a single cycle to permit the integer
multiplier or floating-point divider to return a result into its
associated pipeline. This is necessary because the register files
do not have extra write ports dedicated to receiving these
results. The issue stage also stalls for one cycle in similar
cases to permit data fills for load instructions that missed in
the data cache to write to the register file and data cache. The
issue stage stalls indefinitely when necessary to execute the
trap barrier and memory barrier instructions.

No-op Instructions

New instructions are shifted into the slotting and issue stages
when a given stage becomes completely empty. Compared to an ideal
design in which instructions are shifted to fill a given stage
partially, this design has a slightly increased average
cycles-per-instruction ratio. We considered the alternative in
which instructions are shifted in as slots become available. This
alternative would have created critical paths that would increase
the CPU cycle time by approximately 10 percent. An evaluation of
our trace-driven performance model showed that the alternative
did not reduce the cycles-per-instruction ratio enough to
compensate for the reduction in cycle time. As a result, we chose
the simpler and faster design.

Compilers and assembly language programmers can insert no-op
instructions to minimize and, in most cases, to eliminate any
negative performance effect. To facilitate this process, the
Alpha 21164 microprocessor handles three different kinds of no-op
instruction.

The first two kinds of no-op instruction are the integer no-op

(NOP) and the floating-point no-op (FNOP). NOP (BIS R31,R31,R31)
can issue in either integer execution pipeline. FNOP (CPYS
F31,F31,F31) can issue in either floating-point execution
pipeline. The compiler uses these to improve performance when two
instructions would be slotted together even though they cannot
issue in the same cycle. If one instruction in a pair is
dependent on the other, issuing them together guarantees the
second will stall in the issue stage and prevent later
instructions from entering that stage. The compiler inserts a NOP
or FNOP to delay the issue of the second instruction. With this
improvement, the second instruction can be issued with later
instructions.

The third kind of no-op instruction, the universal no-op (UNOP),
is detected in stage 2. UNOP [LDQ_U R31,0(Rnn)] is discarded in
stage 2 so that it does not require an issue slot in either
pipeline. UNOP allows compilers to align instructions without the
unnecessary use of pipeline issue slots. For example, the
compiler can align the target of a branch without necessarily
slowing execution of the fall-through path to that branch.

Instruction Prefetcher and Refill Buffer

The instruction prefetcher operates in parallel with the
instruction cache. When an instruction is not in either the
instruction cache or refill buffer, the prefetcher generates a
stream of 32-byte instruction block fetch requests to fill the
4-entry refill buffer with instruction data. Each instruction
block contains 8 instructions. Fetched instruction data is stored
in the refill buffer when it is returned. Four-instruction
subblocks of instruction data are moved from the refill buffer to
the IB when needed. At that time, the instruction cache is also
updated. If this data movement empties an entry in the refill
buffer, an additional fetch request is initiated. Fetched
instruction data is buffered in the refill buffer rather than the
instruction cache to avoid evicting valid cache blocks
unnecessarily.

The refill buffer is a type of stream buffer. Each entry stores a
virtual address and has a comparator so the refill buffer can be
probed for instruction data on a cache miss. Instruction fetching
begins only if an access misses in both the instruction cache and
the refill buffer. Fetching stops when any instruction flow
change occurs (i.e., branch, jump, exception, etc.). It also
stops if at any time the instructions needed in stage 1 are found
in the instruction cache.

The combination of the on-chip, 96-KB second-level cache and the
instruction prefetcher significantly reduces the benefit of
enlarging the instruction cache beyond its current size of 8 KB.
The prefetcher generates requests at a high rate. Because it is
on-chip, the second-level cache has the bandwidth to handle
requests quickly and with relatively little effect on data-stream

requests. In general, the performance benefit from making the
instruction cache larger is very small. This is one of the
benefits of the two-level on-chip cache hierarchy.

Instruction Stream Address Translation and
the Instruction Translation Buffer

The instruction unit contains a 48-entry, fully associative
instruction translation buffer (ITB) that holds instruction
stream address translations and protection information. Each
entry in the ITB can map 1, 8, 64, or 512 contiguous 8-KB pages.

During stage 1, the ITB entries are checked for a match with the
program counter (PC). If the page is found, its protection bits
are checked against the current operating mode. If the page is
not found, an ITB miss trap occurs. If the page is found in the
ITB and the access is an instruction cache miss, the ITB supplies
the physical page address to the prefetcher.

Branch and Jump Prediction

The branch prediction logic examines the block of instructions
coming from the instruction cache or refill buffer during stage
1. It checks the block for control instructions (taken
conditional branches, jumps, subroutine return instructions, and
other flow-change instructions) and calculates the new fetch
address. Since the new fetch address is available at the end of
stage 1, the read of the instruction cache for the target
instruction occurs in the next cycle. This means the control
instruction is in stage 2 at the same time as the target
instruction is in stage 0, resulting in a one-cycle branch delay
that creates an empty cycle in the pipeline. The IB quashes this
empty cycle if any stall occurs ahead of it in the pipeline.

The branch prediction logic predicts conditional branch
instructions using a branch history table with 2K entries
addressed by low-order bits of the PC. Each is a two-bit counter
that increments when branches are taken and decrements when
branches are not taken. The counter saturates at the top and
bottom counts. A branch is predicted to be taken if the current
counter value is one of the two highest counts; otherwise, it is
predicted to be not-taken. This method is more effective than the
method used in the first Alpha microprocessor (which had only one
bit of history per entry), partly because it reduces the
misprediction rate for typical loop branches by half.

A 12-entry return address stack is used to predict the target
address on subroutine returns (i.e., RET, JSR_COROUTINE) and
returns from PALcode. Each entry stores 11 bits of address, which
is sufficient to address the 8-KB instruction cache. The upper 32
bits of the target address are predicted by using the value in
the instruction cache tag that is addressed by the return address
stack. The same basic mechanism is used to predict the full

target address of jump and jump-type subroutine call instructions
since the Alpha architecture provides a hint field in these
instructions that indicates the target cache address.

The Alpha 21164 microprocessor recovers from incorrect branch and
PC predictions by taking a mispredict trap when the incorrectly
predicted branch or jump-type instruction executes in the
execution unit. For a typical branch misprediction, the execution
time is five cycles longer.

Replay Traps

In a replay trap, the instruction unit prevents completion of a
given instruction by trapping the instruction and then restarting
execution immediately with that instruction. The trap mechanism
prevents completion of subsequent instructions. This mechanism
replays the instruction from the beginning of the Alpha 21164
pipeline. It is used when a stall after stage 3 would otherwise
be required.

There are three main reasons stalls are not implemented for
stages later than stage 3. The ability to stall adds complexity
to clocking circuits, particularly in execution unit data paths.
In addition, it adds control complexity. An example of this is a
stalled two-input function unit in which one input operand is
invalid. To end the stall, certain latches must be enabled while
others are not, because the valid data must be held in one
pipeline latch while the invalid data is replaced in another.
Finally, adding stall logic would create additional critical
paths. The elimination of stalls beyond stage 3 and the use of
the replay trap mechanism avoid these complexities.

The replay trap mechanism is used for a number of unusual memory
instruction conflicts and memory unit resource overruns. For
example, the load-miss-and-use replay trap is used when a load
misses in the data cache and a dependent instruction issues
exactly two cycles after the load. The issue decision for such a
dependent instruction is made prior to the actual determination
of cache hit, so a hit is predicted. If this prediction is wrong,
the dependent instruction is restarted from the front of the
pipeline and will arrive at the issue stage one cycle before data
arrives from the second-level cache. Because the instruction
arrives before the data, there is no performance loss due to the
trap mechanism.

INTEGER FUNCTION UNIT

The integer function unit executes integer operate instructions,
calculates virtual addresses for all load and store instructions,
and executes all control instructions except floating-point
conditional branches. It includes the register file and several
integer functional subunits, most of which are contained in two

parallel four-stage pipelines. Both pipelines contain an adder
and a Boolean logic unit. The first pipeline contains the
shifter, and the second pipeline contains the control instruction
execution unit. The first pipeline also attaches to the partially
pipelined integer multiplier, which operates in the background.
Except for the issue cycle and a cycle to return the result, the
first pipeline and integer multiplier operate in parallel.

Integer Register File and Bypasses

The integer register file is read during stage 3 and written in
stage 6. Bypass paths are implemented to allow all subunits other
than the multiplier to receive and use the result of a previous
instruction from stage 4, 5, or 6 of either pipeline. Due to
implementation constraints, the multiplier can only receive
bypassed data from stage 6 of the pipeline. This increases
multiply latency by as many as two cycles when multiply input
operands are produced by preceding integer operate instructions.

The integer register file contains 40 registers: the 32 integer
registers specified by the architecture (R0 through R31) with R31
always reading as 0; and 8 shadow registers available to PALcode
as scratch space. The register file is accessed by 4 read ports
(2 for each pipeline) and 2 write ports (1 for each pipeline).

Instruction Latencies

Most instructions executed in the integer function unit have a
latency of 1 cycle. These instructions execute in stage 4. The
conditional move instruction has a latency of 2 cycles. It
executes in stage 4 and stage 5.

Multiply latency depends on the data size and the operation being
performed. Thirty-two-bit multiplies have an 8-cycle latency, and
the multiplier can start a second multiply after 4 cycles,
provided that the second multiply has no data dependency on the
first. Sixty-four-bit signed multiplies have a 12-cycle latency;
the 64-bit multiply unsigned high instruction has a 14-cycle
latency; and for both of these 64-bit multiplies, the multiplier
can start a nondependent multiply after 8 cycles.

Because of a special bypass, compare and Boolean logic
instructions can have a latency of 0 cycles when a conditional
move or a branch test input operand is the result of an
immediately preceding compare or Boolean logic instruction. The
integer unit uses the bypass to allow dual issue of the producer
and consumer in this case.

To realize the full benefit from the increased issue width
relative to the first Alpha microprocessor, the DECchip 21064, it
is critical to reduce operational latencies. As the issue width
increases, the cost in instruction execution opportunities for a

given latency increases. In the integer unit, the following
latencies are reduced relative to the 21064: the shifter latency
(from 2 cycles to 1), the byte and word operation latencies (from
2 cycles to 1), and the multiplier latency (from 19 to 23 cycles
in the 21064 to 8 to 16 cycles in the Alpha 21164). Also the
special bypass for conditional instructions reduces that latency
from 1 cycle in the 21064 to 0 cycles in the Alpha 21164. For the
most part, these latency reductions are achieved by circuit
design improvements.

Integer Load and Store Instructions

Integer load instructions issue in either pipeline and as many as
two can issue per cycle. Integer store instructions issue in the
first pipeline only. For integer load instructions that hit in
the data cache, the data is multiplexed into the output of stage
5 of the pipeline in which the load issued; the data is then
written to the register file through the write port associated
with that pipeline. For integer load instructions that miss in
the data cache, the data is returned later by the memory
subsystem. The data is then multiplexed into the output of stage
5 as before, and the instruction unit inserts a properly timed
NOP cycle by stalling the issue stage for one cycle to make the
pipeline's register write port available.

FLOATING-POINT UNIT

The floating-point unit consists of the floating-point register
file and two pipelined functional subunits: an add pipeline that
executes all floating-point instructions except for multiply, and
a multiply pipeline that executes floating-point multiplies. All
IEEE and VAX rounding modes are done in hardware, including IEEE
round to plus and minus infinity.

Pipeline Structure and Operation Latencies

Each floating-point subunit on the Alpha 21164 CPU chip contains
three functional stages implemented in four pipeline stages,
stage 5 through stage 8. The floating-point register file is read
in stage 4 and written at the end of stage 8. Figure 3 depicts
the physical layout of the floating-point unit. Figure 4 shows
the pipelining of instructions executed in the floating-point
unit.

[Figure 3 (Physical Layout of the Floating-point Unit)
is not available in ASCII format.]

As in the integer unit, latency is reduced in the floating-point
unit relative to the previous Alpha implementation. The latency
of all floating-point operate instructions, except floating-point
divide, is 4 cycles. In the DECchip 21064, most floating-point
operations take 6 cycles. The floating-point divide latency

varies depending on the input data values. For a single-precision
divide, the latency is reduced from 34 cycles in the 21064 to an
average of 19 in the 21164; and for a double-precision divide, it
is reduced from 63 cycles to an average of 31. As discussed
previously, reducing latency is important as issue width
increases. As in the integer unit, the reduced latency is
achieved mostly by circuit design improvements.

Register File and Bypasses

The floating-point register file has nine ports: two read ports
and one write port per functional unit for source and destination
operand accesses, one read port for floating-point stores, and
two write ports to support two floating-point loads per cycle.
Bypass paths forward data from each of the four write buses in
the floating-point register file to each of the five read buses.

Floating-point Load and Store Instructions

In Alpha microprocessors, floating-point numbers are stored in
one format in memory and in another format in the floating-point
registers. Floating-point load and store instructions convert
from one format to the other as they move the data. In the Alpha
21164 pipeline, floating-point input operands are read from the
floating-point register file one cycle later than integer input
operands are read from the integer register file. This skew
provides an extra cycle for floating-point load data format
conversion.

Floating-point load and store instructions first issue to the
integer unit for address calculation. The issue restrictions are
exactly the same as for integer load or store instructions. For
floating-point load instructions, the data is written to the
register file using one of the two write ports reserved for that
purpose. When a conflict for these write ports occurs between a
write due to a new load that hit in the data cache and a write
due to a previous load that missed, the conflict is resolved by
forcing the new load to miss in the data cache.

[Figure 4 (Floating-point Unit Pipeline) is not available in
ASCII format.]

Add Pipeline

The key components of the add pipeline design are the fast
fraction adder, operand data-path alignment, normalization shift
detection, sticky-bit calculation, and round-adder design. The
fast-adder design operates in a single phase (one phase equals
one-half of a CPU cycle). It is used in the function stage 1 and
stage 3 fraction adders. To reduce formatting and rounding
complexity, the least significant bits in fractions are aligned
to one of two different bit positions: one for single-precision

data (IEEE S and VAX F) and 4-byte integers, and one for
double-precision data (IEEE T, and VAX G and D) and 8-byte
integers.

For effective subtracts with exponent differences of {--}1, 0, or
1, a new normalization shift detect algorithm uses three leading
bit chains to examine stage 1 input operands to determine the
required normalization shift. The normalization shift amount is
chosen by comparing the least significant bit of one exponent to
the least significant bit of the other.

The sticky bit for adds and subtracts is determined by comparing
the exponent difference with an encoded value for the number of
trailing zeros in the fraction being aligned.

The stage 3 round adder operates in one cycle and consists of a
fraction adder and an output selector. The fraction adder takes
one phase and adds two operands plus rounding bits based on the
round mode. The selector assembles the fraction result based on
global carry-and-propagate information from the adder. It also
examines the adder result alignment and performs a final
normalization shift of as much as one bit left or right. The
exponent result is also selected in stage 3 before the complete
result is sent to the register file write bus and bypass logic.

Multiply Pipeline

Multiplication is done using radix-eight Booth encoding, which
requires 18 partial products to be summed.[3] The first stage of
the multiply pipeline is used to create three times the
multiplicand and to determine the Booth encodings. The multiplier
array is composed of 14 rows of carry-save adders that perform
the addition of multiplicands. The carry and sum outputs of the
array are reduced by combining carry-save adders and then are
passed through a half adder to facilitate rounding.

The sticky bit for multiplication is determined by summing the
number of trailing zeros in both operands. The carry output from
the less significant product bits is used by the round selector
of the multiply pipeline to determine the correct final product.

Divider

Floating-point divide instructions issue into the add pipeline.
The operands are immediately passed to the divider. Instruction
issue to the add pipeline continues while a divide is in progress
until the result is ready. At that point, the issue stage in the
instruction unit stalls one cycle to allow the quotient to be
sent to the round adder and then be written into the register
file.

The divider uses a normalizing nonrestoring algorithm that

determines 1 to 4 bits of quotient per cycle, averaging 2.4
quotient bits per cycle.[4] Implementation of this algorithm
requires that an exact partial remainder be produced every cycle.
The implementation uses a fast adder that produces its result in
half of a cycle.

MEMORY UNIT

The memory unit contains a fully associative, 64-entry, data
translation buffer (DTB); an 8-KB, direct-mapped, primary data
cache; a structure called the miss address file (MAF); and a
write buffer. It processes load, store, and memory barrier
instructions.

The write-through data cache has 32-byte blocks and 2 read ports.
Its tags hold physical address data.

The memory unit receives as many as 2 virtual addresses from the
integer unit each cycle. Because it has 2 read ports, the DTB can
translate both virtual addresses to physical addresses and detect
memory management faults. (Like the ITB, each entry in the DTB
can map 1, 8, 64, or 512 contiguous 8-KB pages.)

Load instructions access the data cache and return data to the
register file if there is a hit. The latency for loads that hit
in the data cache is two cycles. Again, latency is reduced
relative to the DECchip 21064 microprocessor where the latency is
three cycles for loads that hit. The reduced latency was achieved
by circuit design improvements. Reducing this latency is
particularly important as issue width increases because of the
frequent use of loads in programs.

For loads that miss, the physical addresses are sent to the MAF,
where they wait to be sent to the C-box. Store instructions write
the data cache if there is a hit; they are always placed in the
write buffer, where they wait to be sent to the C-box.

Memory Unit Pipeline Structure

Virtual address calculation begins in the integer unit early in
stage 4. The data cache access begins later in stage 4 and
completes early in stage 5. Address translation is done in
parallel with data cache access. Data cache hit is determined
late in stage 5. If the access hits, the data is written to the
register file (for a load access) or the cache (for a store
access) in stage 6. In the case of a data cache miss, the
memory access advances to pipeline stages in the C-box.

Miss Address File

The MAF consists of two sections that store data. The first

section holds load misses (called DREADs) in six entries, and the
other section holds instruction fetch addresses (called IREFs) in
four entries. For DREADs, the MAF stores the physical address,
destination register, and instruction type
(integer/floating-point, 4-byte/8-byte/IEEE-S-Type/VAX-G-Type,
etc.). For IREFs, the MAF stores only the physical address.

Buffered accesses in the MAF and write buffer are sent to the
C-box at a peak rate of one every other cycle. DREADs have
highest priority, writes have the next highest priority, and
IREFs have lowest priority.

When the C-box returns data for a DREAD, the memory unit provides
the destination register and instruction type information from
the MAF. This information is then used to convert the data to its
in-register format, to determine which registers to write, and to
update the register scoreboard in the instruction unit. The DREAD
entry is removed from the MAF when the second half of the data
fill arrives.

The C-box returns IREF data directly to the instruction unit's
cache and refill buffer. The IREF entry is removed from the MAF
as soon as the command has been accepted by the C-box.

Merging Capability. One key performance feature of the MAF is
that it merges multiple load misses that access the same 32-byte
block of memory into a single C-box DREAD request. One load
instruction requests at most 8 bytes of a 32-byte memory block.
As many as 4 load misses can be merged into 1 DREAD request. This
improves latency and reduces unnecessary bandwidth consumption in
the second-level cache.

To implement merging, the MAF merge logic detects any load miss
address to a block that has already been queued in the DREAD
section of the MAF. The logic then adds the new destination
register to the existing request. Merging is limited to 1 load
miss per naturally aligned 8-byte portion of the 32-byte block.
Also, merging is permitted only for load misses with identical
instruction types. The memory unit allocates a new DREAD entry in
the MAF only for load misses that do not merge. The merge logic
supports the peak load instruction issue rate. It can merge as
many as 2 load misses per cycle into the DREAD section and can
merge loads that issue together.

The MAF merge capability is an integral part of the two-level
cache hierarchy design. It can reduce the rate of memory read
operations from two loads per cycle in the integer pipelines to
one read every other cycle in the second-level cache pipeline. By
doing so, the MAF makes the full bandwidth of the second-level
cache available to the program.

The MAF can hold as many as 6 DREADs that can represent as many
as 21 loads. (The theoretical maximum is 24 loads; this limit is
a by-product of the overflow prevention algorithm.) Requests are

sent to the C-box in the order in which they were allocated in
the MAF. Accesses in the second-level cache can hit underneath
(behind) second-level cache misses, allowing data fills to be
returned in a different order than they were sent to the C-box.

Two-level Data Cache. Many workloads benefit more from a reduced
latency in the data cache than from a large data cache. We
considered a single-level design for a large data cache. For
circuit reasons, physically large caches are slower than small
caches. To achieve a reduced latency, we chose a fast primary
cache backed by a large second-level cache. As a result, the
effective latency of reads is better in the Alpha 21164 CPU chip
than it would have been in a single-level design.

The two-level data cache has other benefits. The two-level design
makes it reasonable to implement set associativity in the
second-level cache. Set associativity enables power reduction by
making data set access conditional on a hit in that set. The
two-level design also allows the second-level cache to hold
instructions, which makes a larger instruction cache unnecessary.

In addition, the two-level design was simpler. Because
performance studies showed that the Alpha 21164 CPU chip should
have write-back caching on-chip, the data cache in the
single-level design would have been write-back. Also, because of
its larger size, it would have been virtually addressed, which
would have required a solution to the synonym problem. Finally,
it would have been difficult to make the single large cache
set-associative without adding latency. The two-level design
eliminated all these issues.

Write Buffer

The write buffer contains 6 entries; each entry holds as many as
32 bytes of data and one physical address. It accumulates store
instructions written to the same 32-byte block by merging them
into 1 entry. It can merge 1 store instruction per cycle,
matching the peak store instruction issue rate. The write buffer
places no restrictions on merging until a write is sent to the
second-level cache. At that time, the write buffer stops merging
to that entry.

Once an entry from the write buffer has been sent to the C-box,
several steps may be required to complete the write, depending on
the presence of the memory block in the second-level cache and
its cache coherence state. The C-box signals the memory unit upon
completion of a store operation, and then the memory unit removes
the corresponding entry from the write buffer.

Access Ordering

The memory unit guarantees that all memory accesses to the same

address are processed in the order given by the instruction
stream. This is a design problem in any nonblocking memory
subsystem design. Load misses that conflict with a store, and
stores that conflict with a load miss, set conflict bits that
prevent the issue of the DREAD or write until all conflicts have
been cleared. If a store matches a valid entry in the write
buffer and cannot merge with that entry, it is allocated a new
entry that is prevented from being sent to the C-box until the
earlier write is completed.

Memory Barrier Instructions

The memory unit implements the memory barrier (MB) instruction by
retiring all previous load misses and writes before sending the
MB to the bus interface unit. The instruction unit stalls new
memory instructions until the MB has been completed.

The memory unit implements the write memory barrier (WMB)
instruction as follows: When the WMB is executed, the memory
unit marks the last write that is pending at that time. Writes
added after that time are added behind the WMB mark. They are not
sent to the C-box until all writes ahead of the WMB mark are
completed. Unlike the MB instruction, execution of the WMB
instruction does not require any stalls in the instruction unit.

Replay Traps in the Memory Unit

The memory unit forces a replay trap if a new load or write would
cause the buffer to overflow. It also forces a replay trap when a
store that hits in the data cache is followed by a load to
exactly the same location in the next cycle. In this case,
because the store writes the data cache in stage 6, the data from
the store would not yet be available to the load.

CACHE CONTROL AND BUS INTERFACE UNIT

The cache control and bus interface unit or C-box contains the
second-level cache and the following subunits: the second-level
cache arbiter unit (SAU), the bus interface unit sequencer (BSQ),
the victim address file (VAF), the bus interface unit address
file (BAF), the write buffer unit (WBU), and the system probe
arbiter (SPA). Figure 5 shows the functional units of the C-box.

[Figure 5 (Functional Units of the C-box) is not available in
ASCII format.]

The C-box provides the interface to the system for access to
memory and I/O. It provides full support for multiprocessor
systems using a cache coherence protocol (described later in this
section). It manages the second-level cache and an optional
off-chip third-level cache, both of which are

multiprocessor-coherent write-back caches.

The SAU arbitrates the requests for access to the second-level
cache. The BSQ requests to write data fill (due to previous
second-level cache misses). The VAF requests read accesses of
deallocated second-level cache blocks that have been modified
(called victims). The SPA requests access for external cache
coherence transactions. The memory unit requests access for
DREAD, IREF, and write requests. Highest priority is given to the
BSQ, followed by the VAF, and then the SPA; lowest priority is
given to the memory unit.

The BSQ controls data movement to and from the Alpha 21164
microprocessor. It accesses the optional off-chip third-level
cache. It communicates with the system to request data that is
not cached, to write back deallocated cache blocks that have been
modified, to carry out coherence transactions, and to perform I/O
accesses.

The VAF reads and holds victims from the second-level cache and
data for memory broadcast writes, I/O writes, and external cache
coherence commands that require data from the second-level cache.
It has two entries for victims, each of which holds the address
and data for a victim. These victims are written back to
third-level cache or memory when the BSQ is idle or sooner if
necessary to maintain cache coherence. These entries also hold
data for memory broadcast writes and I/O writes. A separate
buffer holds data for external cache coherence commands that
require data from the second-level cache.

The WBU handles second-level cache writes and cooperates with
other C-box subunits to maintain cache coherence.

The SPA receives cache coherence requests from the external
system environment. To fulfill these coherence requests, it
accesses the second-level cache and, if the off-chip cache is
present, cooperates with the BSQ to access the off-chip cache. It
then sends an appropriate response to the external system.

Second-level Cache and Optional Off-chip Cache

The C-box manages the on-chip second-level cache and the optional
off-chip cache. Both are write-back, and both are
mixed instruction and data caches. If it is present, the off-chip
cache is a third-level cache. The second-level cache is 96 KB in
size and is 3-way set-associative. The off-chip cache is
direct-mapped and can be configured to sizes ranging from 1
megabyte (MB) to 64 MB. The off-chip cache is not set-associative
because it is not feasible given pin-count constraints. The tags
in both caches hold physical address data and coherence state
bits for each block.

The block size for the off-chip cache is configurable to 32 bytes

or 64 bytes. The second-level cache has 1 tag per 64-byte block.
It can be configured to operate with 64-byte blocks or with
32-byte subblocks.

The second-level cache tags contain bits to record which 16-byte
data words within the block or subblock have been modified since
the block was brought on-chip. When a block or subblock is copied
back to the off-chip cache, only modified 16-byte data words are
transferred. This reduces the time required to write back
second-level cache victims in many cases.

Transaction Handling

A maximum of 2 second-level cache misses can be queued in the BAF
for external access in the off-chip cache and memory. The BAF
merges read requests to 32-byte blocks within the same 64-byte
block.

For simplicity, only one operation to a given second-level cache
address is allowed in the BAF at a time, except when the two
requests merge. A new request with a second-level cache address
that matches an existing request in the BAF is aborted.
Similarly, requests that require VAF entries when the VAF is full
are aborted, and new requests are aborted when the BAF is full.
If a request is aborted, the memory unit retries the request
repeatedly until it is accepted. Accesses to second-level blocks
that are partially valid because they are being filled are
aborted repeatedly until the data fill completes.

Maintaining Cache Coherence

The Alpha 21164 CPU chip uses a cache coherence protocol
implemented in hardware to provide full support for
multiprocessor systems. The instruction cache is virtual and is
not kept coherent by the hardware. (The Alpha architecture
requires software to manage instruction cache coherence.) The
data cache is a subset of the second-level cache. If the off-chip
cache is present, then the second-level cache is a subset of the
off-chip cache.

Three state bits record the coherence state of each block or
subblock in the second-level cache and the off-chip cache: the
valid bit, the shared bit, and the dirty bit. The valid bit
indicates that the block contains valid data. The shared bit
indicates that the block may be cached in more than one CPU's
cache. The dirty bit indicates that the memory copy of the block
is not correct and the cache block must eventually be written
back. These state bits allow the following states to be encoded
for a given cache block or subblock: invalid,
exclusive-unmodified, exclusive-modified, shared-unmodified, and
shared-modified.

The system bus interface is the coherence reference point in the
system. Any request to modify the state of a block is arbitrated
at this bus before the block is changed. For example, when the
Alpha 21164 CPU chip must write to a block in the second-level
cache that is in the exclusive-unmodified state, the BSQ sends a
request to the system to change the state of the block to the
exclusive-modified state. The C-box waits for the system to
acknowledge the request, and then retries the write. If another
processor reads the same block before the request is
acknowledged, the block is instead changed to the
shared-unmodified state. In that situation, the Alpha 21164 CPU
chip subsequently sends a full-block memory write on the system
bus that causes all other processors to invalidate their copy of
the block and leaves the block in the exclusive-unmodified state
in this processor.

Second-level Cache Transaction Flows

DREADs, IREFs, and writes from the memory unit access the
second-level cache after winning arbitration in the memory unit
and the SAU. The second-level cache is fully pipelined. Figure 6
shows an example of a read that is followed by a write as both
hit in the cache.

For the read access shown in Figure 6, the pipeline stages are
the following. The SAU arbitrates in stage 5; the second-level
cache tag store is read in stage 6; the hit is determined in
stage 7; and the requested data is read from the cache data store
in stage 8 and sent on the 128-bit-wide read data bus (R-bus) in
stage 9. The second half of the 32-byte block is read and sent in
the next pipeline cycle. The R-bus data is received by the
integer unit, the floating-point unit, or the instruction unit,
depending on the access type.

[Figure 6 (Second-level Cache Read/Write Flow) is not available
in ASCII format.]

For data returned to the integer unit or the floating-point unit,
the data cache fill begins in stage 10 and completes in stage 11.
The register file write occurs in stage 11. An instruction that
is dependent on the load can begin execution in the next cycle
In this case, the load latency is eight cycles.

For the write access shown in Figure 6, the pipeline stages are
the following. The SAU arbitrates in stage 5; the tag store is
read in stage 6; the hit is determined, and data is sent on the
128-bit write data bus (W-bus) in stage 7; and the cache is
written in stage 8. As before, the second half of the 32-byte
write occurs in the next pipeline cycle.

A second-level cache miss that results in a victim provides an
interesting case for discussion. Here, we must determine which
set to fill and then remove the victim before data can be

returned from the off-chip cache. Figure 7 shows an example of a
DREAD that misses in the second-level cache, creating a victim,
and then hits in the off-chip cache. The example shown is the
fastest possible. In this case, the BSQ is idle so the BAF is
bypassed and the address is sent immediately to the off-chip
cache. The access time for the off-chip cache is four CPU cycles.

As shown in Figure 7, the DREAD wins arbitration in stage 5, and
the miss is detected in stage 7. The set picked by the random
replacement algorithm contains modified data (a victim). Since
the block size in the second-level cache is 64 bytes, two 32-byte
victim read sequences are needed to copy the entire victim into
the on-chip victim buffer. The two victim reads arbitrate at high
priority to ensure that the victim is copied before the data
fills from the off-chip cache overwrite the locations.

[Figure 7 (Second-level Cache Miss Sequence with Fastest Fill
Possible) is not available in ASCII format.]

The Alpha 21164 CPU chip begins sending the off-chip cache
address in stage 8 (because of BAF bypass, as described above).
The tag and data are clocked into the Alpha 21164 chip at the
beginning of stage 12. The BSQ arbitrates speculatively for a
single cycle on the second-level cache pipeline to reserve a
cycle on the R-bus. That cycle is used to send the data from the
off-chip cache to the execution units and data cache.

If the access hits in the off-chip cache, the BSQ arbitrates to
fill the second-level cache. The fill transaction takes a single
cycle in the pipeline to write the tag store in stage 6 and the
data store in stage 8.

The second victim read sequence occurs after the first data fill.
Because of this, the first victim read sequence always reads the
data location overwritten by the first data fill.

PALcode

The Alpha architecture defines the privileged architecture
library code (PALcode) as a set of software routines that
interface an operating system to a specific Alpha implementation.
PALcode presents the operating system with an architecturally
defined interface that is the same in all implementations even
though the underlying hardware designs can be very different.
PALcode currently exists to interface the Alpha 21164
microprocessor to the Windows NT, Digital UNIX (formerly DEC
OSF/1), and OpenVMS operating systems.

When the processor is executing PALcode, it is in PAL mode. PAL
mode is entered upon execution of the CALLPAL instruction and
upon the occurrence of interrupts, exceptions, and certain kinds
of traps. The PALcode entry point is a hardware dispatch to a
location that is determined by the entering event. In PAL mode,

instructions are fetched from physical memory without address
translation. Also, five PAL support instructions are enabled that
give access to all hardware registers and special load/store
access to virtual and physical memory. PAL mode is exited by
executing a PAL instruction called HW_REI.

To meet performance goals, a number of PAL features are included
in the Alpha 21164 microprocessor. For example, the integer
register file contains eight shadow registers that map over R8
through R14 and R25 in PAL mode. Although this overmapping is
normally enabled in PAL mode, it can be disabled through a
hardware control register. This speeds PALcode entry and exit,
because PALcode is free to use these registers without saving and
restoring state. The shadow register mapping is designed to avoid
overmapping any register used to pass data from the operating
system to PALcode or vice versa.

Several of the operating systems that run on Alpha systems access
memory management page tables through virtual memory.[5] The
Alpha 21164 microprocessor contains hardware to speed processing
of the PALcode for translation buffer miss. These PALcode
routines access virtually mapped page tables. The hardware
calculates the virtual address of the page table entry (PTE)
based on the miss address and the address of the page table base.
This eliminates the instruction sequence required for this
calculation. PALcode then executes a load instruction to this
virtual address to fetch the required PTE. This load is performed
using a PAL instruction that signals a virtual PTE fetch. If this
load misses in the DTB, a special PALcode trap routine is
dispatched to fill the DTB using a multilevel, physical-address
access method. After that, the original virtual PTE read is
restarted and will succeed.

TESTABILITY FEATURES

The Alpha 21164 microprocessor incorporates several testability
features. Some enhance chip test, and some features provide
useful module test capability.[6]

Repairable On-chip RAMs

The Alpha 21164 microprocessor requires large random-access
memory (RAM) arrays for its on-chip caches. To improve yield, the
instruction and data cache arrays have spare rows and the
second-level cache has spare rows and spare columns.

A working instruction cache is necessary for most chip test
programs. Consequently, it is automatically tested by built-in
self-test (BiSt) and automatically repaired by built-in
self-repair (BiSr). During wafer probe, the test result is
serially shifted off-chip for permanent repair by laser. Upon
chip reset, BiSt of the instruction cache occurs automatically,

but BiSr is not necessary if the chip has been repaired.

The data cache and second-level caches are tested by programs
loaded into the instruction cache during wafer probe. These
programs condense the test results and write them off-chip to be
captured by the tester for subsequent laser repair.

Chip Logic Testability

To enhance core logic testability, the Alpha 21164 microprocessor
contains dual-mode registers that can operate as scan registers
or as linear feedback shift registers (LFSRs). The scan mode is
used for initialization, for scanning out signatures, and for
debugging. The LFSR mode is used for manufacturing test.

Module Manufacturing

The Alpha 21164 microprocessor implements the IEEE 1149.1
standard for supporting testing during module manufacturing. The
supported instructions are EXTEST, SAMPLE/PRELOAD, BYPASS, CLAMP,
and HIGHZ.

SUMMARY

The internal organization of the Alpha 21164, a new,
high-performance Alpha microprocessor, has been presented.
Mechanisms designed to enhance the CPU's performance combined
with the CPU's clock speed of 300 MHz produce an extremely
high-performance microprocessor. First silicon of the Alpha 21164
CPU chip was produced in February 1994, and three different
operating systems were successfully booted on the first-pass
silicon. The part became commercially available in January 1995.
It achieved the performance level of 345 SPECint92 and 505
SPECfp92 (estimated), a performance level unmatched by
commercially available microprocessors.

ACKNOWLEDGMENTS

The authors wish to acknowledge George Chrysos, Robert Cohn,
Zarka Cvetanovic, Kent Glossop, Lucy Hamnett, Steve Hobbs, John
Shakshober, and Paula Smith for their work in producing to the
estimates of SPEC benchmark performance quoted in this paper.

REFERENCES

1. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual-issue CMOS
 Microprocessor," Digital Technical Journal, vol. 4, no. 4
 (Special Issue, 1992): 35-50.

2. W. Bowhill et al., "Circuit Implementation of a 300-MHz
 64-bit Second-generation CMOS Alpha CPU," Digital Technical
 Journal, vol. 7, no. 1 (1995, this issue): 100-118.

3. E. Swartzlander, ed., Computer Arithmetic (New York: Dowden,
 Hutchinson, and Ross, 1980).

4. O. MacSorley, "High-speed Arithmetic in Binary Computers,"
 Proceedings IRE, vol. 49 (1961): 67-91.

5. R. Sites, ed., Alpha Architecture Reference Manual
 (Burlington, Mass.: Digital Press, 1992).

6. D. Bhavsar and J. Edmondson, "Testability Strategy of the
 Alpha 21164 Microprocessor," International Test
 Conference (October 1994): 50-59.

BIOGRAPHIES

John H. Edmondson

John Edmondson is a consultant engineer in Digital Semiconductor.
He was the architecture leader of the design team for the Alpha
21164 microprocessor. Previous to that work, he was a member of
the design team for the VAX 6000 Model 600 microprocessor. Prior
to joining Digital in 1987, John worked at Canaan Computer
Corporation and Massachusetts General Hospital. John received a
B.S.E.E. from the Massachusetts Institute of Technology in 1979.

Paul I. Rubinfeld

Paul Rubinfeld was the engineering manager on the Alpha 21164
microprocessor project. During the last 16 years at Digital, he
has worked on VAX and PDP-11 CPU development projects and a
single-instruction, multiple-data, massively parallel processor
system. Paul received a B.S. and an M.S. in electrical
engineering from Carnegie Mellon University, where he helped
build the Cm* multiprocessor. Paul is a senior engineering
manager within Digital Semiconductor.

Peter J. Bannon

Pete Bannon is a consulting engineer in Digital Semiconductor. He
has participated in the design or verification of several
microprocessor chips and was a member of the Alpha 21164
architecture team. He joined Digital in 1984 after receiving a
B.S. (special honors) in computer system design from the
University of Massachusetts. He holds three patents for VAX CPU
design and has filed six patent applications for the Alpha 21164.

Bradley J. Benschneider

Brad Benschneider is a principal hardware engineer in Digital
Semiconductor. He was responsible for designing various sections
of the memory management unit on the 21164, as well as defining
the latching methodology for the chip. He is currently leading
the implementation effort of the memory management unit for the
next-generation Alpha CPU. Since joining Digital in 1987, he has
contributed to several custom chip designs in the VAX 6000 family
and the early Alpha implementations. He received a B.S.E.E. from
the University of Cincinnati, has one patent, and has coauthored
four papers.

Debra Bernstein

Debra Bernstein is a consultant engineer in Digital
Semiconductor. Her work has spanned the areas of architecture,
performance, simulation, logic design, firmware, PALcode,
verification, and hardware debug for four generations of Digital
CPUs. Deb is currently working on the hardware and software
components of a PC-based multimedia solution. She received a B.S.
in computer science (1982, cum laude) from the University of
Massachusetts.

Ruben W. Castelino

Before receiving a B.S.E.E. from the University of Cincinnati in
1988, Ruben Castelino was a co-op student at Digital working on a
chip set for the VAX 6000 Model 200. Currently a senior hardware
engineer in Digital Semiconductor, he was a codesigner of the
cache control and bus interface unit for the Alpha 21164 CPU.
Prior to that, he worked on the instruction fetch, decode, and
branch unit for the NVAX chip and performed implementation work
for the NVAX virtual instruction cache. Ruben is currently a
codesigner of the cache control and bus interface unit for a new
Alpha microprocessor.

Elizabeth M. Cooper

Beth Cooper received B.S. degrees (summa cum laude) in electrical
engineering and computer science from Washington University in
St. Louis (1985) and an M.S. degree in computer science from
Stanford University (1995). She is a member of Eta Kappa Nu. She
joined Digital in 1985 and has worked on the implementations of
several CMOS VAX and Alpha CPUs since then. Beth was the lead
cache designer on the Alpha 21164 microprocessor. She is
currently a principal hardware engineer in the Palo Alto Design
Center.

Daniel E. Dever

Since joining Digital in 1988, Dan Dever has worked on the design
and logic verification of the CMOS VAX microprocessors as well as
the 21064 and 21164 Alpha microprocessors. Dan is currently

involved in the design of the memory management unit for the
next-generation Alpha microprocessor. He received a B.S. in
electrical engineering from the University of Cincinnati in 1988.

Dale R. Donchin

Dale Donchin is an engineering manager and technical contributor
in Digital Semiconductor. He designed several circuits related to
the clock and cache and contributed to and led CAD tool use for
the Alpha 21164 CPU. He is presently performing these duties for
the development of the next-generation Alpha microprocessor. Dale
joined Digital in 1978 and was previously a development manager
in the RSX Operating System Group. Dale holds a B.S.E.E. (1976,
honors) and an M.S.E.E. (1978) from Rutgers University College of
Engineering and is a member of IEEE and ACM.

Timothy C. Fischer

Tim Fischer is a senior hardware engineer in Digital
Semiconductor. He is currently working on the instruction issue
logic for the next-generation Alpha microprocessor. Prior to
this, Tim worked on the design of the Alpha 21164 floating-point
unit, the NVAX+ bus interface unit, and the NVAX clocks and
patchable control store. He has coauthored several papers. Tim
joined Digital in 1989 after receiving an M.S. in computer
engineering from the University of Cincinnati.

Anil K. Jain

Anil Jain, a consulting engineer in Digital Semiconductor, led
the implementation of the external interface unit on the Alpha
21164 microprocessor. Prior to this, he was the project leader
for the floating-point unit on the NVAX microprocessor. He also
made technical contributions on the CVAX microprocessor and on
device modeling of Digital's first CMOS process. Anil received a
B.S.E.E. from Punjab Engineering College (1978) and an M.S.E.E.
from the University of Cincinnati (1980). He holds three patents.

Shekhar Mehta

Shekhar Mehta is a senior hardware engineer in Digital
Semiconductor's High Performance Computing Group. He designed the
miss address file on the memory subsystem of the Alpha 21164 CPU
and was responsible for the electromigration checks of the chip.
He is currently leading the design of the caches on a future
Alpha microprocessor. Before joining Digital in 1988, Shekhar was
an engineer at Larsen & Toubro, Bombay, India. He received an
M.S.E.E. from the University of Wisconsin at Madison (1988).

Jeanne E. Meyer

Since joining Digital in 1989, Jeanne Meyer has worked on the
implementation, behavioral modeling, and logic verification of

several microprocessor chips. In her work on the Alpha 21164 CPU,
she was responsible for PALcode verification, maintenance, and
support. She also contributed to the microarchitecture definition
and behavioral model of the chip's memory management unit. She is
currently leading the design of the memory management unit for a
new Alpha microprocessor. Jeanne received a B.S.E.E. (summa cum
laude, 1982) from the University of Cincinnati. She holds two
patents.

Ronald P. Preston

Ronald Preston is a principal engineer in Digital Semiconductor.
Since joining Digital in 1988, he has worked on the design of
several microprocessors and was the implementation leader for the
instruction unit on the Alpha 21164. Ron was also responsible for
the architecture and implementation of the
issue/bypass/scoreboard logic. Ron is the coauthor of several
articles on hot carrier analysis of CMOS circuits. He received a
B.S.E.E. in 1984 and an M.S.E.E. in 1988, both from Rensselaer
Polytechnic Institute. Ron is a member of Eta Kappa Nu and IEEE.

Vidya Rajagopalan

Vidya Rajagopalan is currently with Quantum Effect Design Inc.
Prior to joining QED, she was a member of Digital's Semiconductor
Engineering Group, where she worked on the Alpha 21164 and 21064
microprocessor designs. Vidya received an M.S. in electrical
engineering from the University of Maryland, College Park and a
B.E. from Visvesvaraya Regional College of Engineering, Nagpur,
India.

Chandrasekhara Somanathan

Chandrasekhara Somanathan received an M.B.A. from Northeastern
University in 1994, an M.S. in computer science from the
Rochester Institute of Technology in 1984, and a B.S. in
electrical and electronics engineering from BITS, Pilani, India
in 1982. While at Digital from 1985 to 1994, he designed the
cache controller unit of the Alpha 21164 RISC microprocessor, and
the floating-point and cache controller units of the VAX 6000/400
CISC microprocessor; he also developed Digital's MOS timing
analysis CAD software. He is currently with HaL Computer Inc.,
developing high-performance SPARC RISC microprocessors.

Scott A. Taylor

Scott Taylor joined Digital in 1993 after receiving a B.S. degree
in electrical engineering from the University of Illinois. He was
involved with the functional verification of the memory, cache
control, and external interface units on the Alpha 21164
microprocessor. Scott has also worked on CPU test pattern
generation and debug as well as on-chip cache repair strategies.
He is currently contributing to the verification of the next
generation of Alpha high-performance microprocessors.

Gilbert M. Wolrich

A consultant engineer in Digital Semiconductor, Gil Wolrich was
the leader and architect for the floating-point unit on the Alpha
21164 chip. He received a B.S.E.E. from Rensselaer Polytechnic
Institute and an M.S.E.E. from Northeastern University.

TRADEMARKS

Digital, DEC OSF/1, OpenVMS, and VAX are trademarks of Digital
Equipment Corporation.

OSF/1 is a registered trademark of the Open Software Foundation,
Inc.

SPECint and SPECfp are registered trademarks of the Standard
Performance Evaluation Council.

UNIX is a registered trademark licensed exclusively by X/Open
Company, Ltd.

Windows NT is trademark of Microsoft Corporation.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

