DECtalk Software:
Text-to-Speech
Technology and
Implementation

DECtalk is a mature text-to-speech synthesis
technology that Digital has sold as a series of
hardware products for more than ten years.
Originally developed by Digital’s Assistive
Technology Group (ATG) as an alternative to

a character-cell terminal and for telephony
applications, today DECtalk also provides visu-
ally handicapped people access to information.
DECtalk uses a digital formant synthesizer to
simulate the human vocal tract. Before the
advent of the Alpha processor, the computa-
tional demands of this synthesizer placed

an extreme load on a workstation. DECtalk
Software has an application programming
interface (API) that is supported on multiple
platforms and multiple operating systems.
This paper describes the various text-to-speech
technologies, the DECtalk Software architecture,
and the API. The paper also reports our experi-
ence in porting the DECtalk code base from the
previous hardware platform.

William I. Hallahan

During the past ten years, advances in computer power
have created opportunities for voice input and out-
put. Many major corporations, including Digital,
provide database access through the telephone. The
advent of Digital’s Alpha processor has changed the
economics of speech synthesis. Instead of an expen-
sive, dedicated circuit card that supports only a single
channel of synthesis, system developers can use an
Alpha-based workstation to support many channels
simultaneously. In addition, since text-to-speech con-
version is a light load for an Alpha processor, applica-
tion developers can freely integrate text to speech into
their products.

Digital’s DECtalk Software provides natural-sound-
ing, highly intelligible text-to-speech synthesis. It is
available for the Digital UNIX operating system on
Digital’s Alpha-based platforms and for Microsoft’s
Windows NT operating system on both Alpha and
Intel processors. DECtalk Software provides an easy-
to-use application programming interface (API) that is
fully integrated with the computer’s audio subsystem.
The text-to-speech code was ported from the software
for the DECtalk PC card, a hardware product made by
Digital’s Assistive Technology Group. This software
constitutes over 30 man years of development effort
and contains approximately 160,000 lines of C pro-
gramming language code.

This paper begins by discussing the features of
DECtalk Software and briefly describing the various
text-to-speech technologies. It then presents a descrip-
tion of the DECtalk Software architecture and the
API. Finally, the paper relates our experience in port-
ing the DECtalk code base.

Features of DECtalk Software

The DECtalk Software development kit consists of a
shared library (a dynamic link library on Windows
NT), a link library, a header file that defines the sym-
bols and functions used by DECtalk Software, sample
applications, and sample source code that demon-
strates the API.

Digital Technical Journal Vol.7 No.4 1995

DECtalk Software supports nine preprogrammed
voices: four male, four female, and one child’s voice.
Both the APT and in-line text commands can control
the voice, the speaking rate, and the audio volume.
The volume command supports stereo by providing
independent control of the left and right channels.
Other in-line commands play wave audio files, gen-
erate single tones, or generate dual-tone multiple-
frequency (DTMF) signals for telephony applications.

Using the text-to-speech AP, applications can play
speech through the computer’s audio system, write
the speech samples to a wave audio file, or write the
speech samples to bufters supplied by the application.
DECtalk Software produces speech in 3 audio formats:
16-bit pulse code modulation (PCM) samples at an
11,025-hertz (Hz) sample rate, 8-bit PCM samples at
an 11,025-Hz sample rate, and p-law encoded 8-bit
samples at an 8,000-Hz sample rate. The first two for-
mats are standard multimedia audio formats for per-
sonal computers (PCs). The last format is the standard
encoding and rate used for telephony applications.

The API can also load a user-generated dictionary
that defines the pronunciation of application-specific
words. The development kit provides a window-based
tool to generate these dictionaries. The kit also con-
tains a window-based application to speak text and an
electronic mail-notification program. Sample source
code includes a simple window-based application that
speaks text, a command line application to speak text,
and a speech-to-memory sample program.

The version of DECtalk Software for Windows NT
also provides a text-to-speech dynamic data exchange
(DDE) server. This server integrates with other appli-
cations such as Microsoft Word. Users can select text
in a Word document and then proofread the text
merely by clicking a button. This paper was proofread
using DECtalk Software running a native version of
Microsoft Word on an AlphaStation workstation.

Speech Terms and DECtalk Software

Human speech is produced by the vocal cords in the
larynx, the trachea, the nasal cavity, the oral cavity, the
tongue, and the lips. Figure 1 shows the human
speech organs. The glottis is the space between the
vocal cords. For voiced sounds such as vowels, the
vocal cords produce a series of pulses of air. The pulse
repetition frequency is called the glottal pitch. The
pulse train is referred to as the glottal waveform. The
rest of the articulatory organs filter this waveform!
The trachea, in conjunction with the oral cavity, the
tongue, and the lips, acts like a cascade of resonant
tubes of varying widths. The pulse energy reflects
backward and forward in these organs, which causes
energy to propagate best at certain frequencies. These
are called the formant frequencies.

Digital Technical Journal Vol.7 No.4 1995

NASAL

CAVITY VELUM

LARYNX

LIPS
\\\\

TONGUE

VOCAL CORDS

TRACHEA

LUNGS

Figure 1
The Speech Organs

The primary discrimination cues for different vowel
sounds are the values of the first and second formant
frequency. Vowels are either front, mid, or back vow-
els, depending on the place of articulation. They are
either rounded or unrounded, depending on the posi-
tion of the lips. American English has 12 vowel
sounds. Diphthongs are sounds that change smoothly
from one vowel to another, such as in boy, bow, and
bay. Other voiced sounds include the nasals 72, 72, and
ng (as in ing). To produce nasals, a person opens the
velar flap, which connects the throat to the nasal cavity.
Liquids are the vowel-like sounds /and 7. Glides are
the sounds y (as in you) and w (as in we).

Breath passing through a constriction creates tur-
bulence and produces unvoiced sounds. fand s are
unvoiced sounds called fricatives. A stop (also called a
plosive) is a momentary blocking of the breath
stream followed by a sudden release. The consonants
b, b, 1, d, k, and g are stop consonants. Opening the
mouth and exhaling rapidly produces the consonant
h. The b sound is called an aspirate. Other conso-
nants such as p, ¢, and k frequently end in aspiration,
especially when they start a word. An affricative is a
stop immediately followed by a fricative. The English
sounds ch (as in chew and j (as in jar) are affricates.

These sounds are all American English phonemes.
Phonemes are the smallest units of speech that distin-
guish one utterance from another in a particular
language.? An allophone is an acoustic manifestation
of a phoneme. A particular phoneme may have many
allophones, but each allophone (in context) will
sound like the same phoneme to a speaker of the lan-
guage that defines the phoneme. Another way of say-
ing this is, if two sounds have different acoustic
manifestations, but the use of either one does not
change the meaning of an utterance, then by defini-
tion, they are the same phoneme.

Phones are the sets of all phonemes and allophones
for all languages. Linguists have developed an interna-
tional phonetic alphabet (IPA) that has symbols for
almost all phones. This alphabet uses many Greek
letters that are difficult to represent on a computer.
American linguists have developed the Arpabet
phoneme alphabet to represent American English
phonemes using normal ASCII characters. DECtalk
Software supports both the IPA symbols for American
English and the Arpabet alphabet. Extra symbols are
provided that either combine certain phonemes or
specify certain allophones to allow the control of fine
speech features. Table 1 gives the DECtalk Software
phonemic symbols.

Speech researchers often use the short-term spec-
trum to represent the acoustic manifestation of a
sound. The short-term spectrum is a measure of the
frequency content of a windowed (time-limited) por-
tion of a signal. For speech, the time window is typi-
cally between 5 milliseconds and 25 milliseconds, and

Table 1
DECtalk Software Phonemic Symbols

Consonants Vowels and Diphthongs
b bet aa Bob

ch chin ae bat

d debt ah but

dh this ao bought
el bottle aw bout
en button ax about
f fin ay bite

g guess eh be

hx head ey bake
jh gin ih bit

k Ken ix kisses

| let iy beat

m met ow boat

n net oy boy

nx sing rr bird

p pet uh book

r red uw lute

s sit yu cute

sh shin Allophones

t test dx rider
th thin Ix electric
% vest q we eat
w wet rx oration
yx yet tx Latin

z Z0o Silence

zh azure _ (underscore)

the pitch frequency of voiced sounds varies from 80
Hz to 280 Hz. As a result, the time window ranges
from slightly less than one pitch period to several pitch
periods. The glottal pitch frequency changes very little
in this interval. The other articulatory organs move
so little over this time that their filtering effects do
not change appreciably. A speech signal is said to be
stationary over this interval.

The spectrum has two components for each fre-
quency measured, a magnitude and a phase shift.
Empirical tests show that sounds that have identical
spectral magnitudes sound similar. The relative phase
of the individual frequency components plays a lesser
role in perception. Typically, we perceive phase differ-
ences only at the start of low frequencies and only
occasionally at the end of a sound. Matching the spec-
tral magnitude of a synthesized phoneme (allophone)
with the spectral magnitude of the desired phoneme
(taken from human speech recordings) always
improves intelligibility* This is the synthesizer calibra-
tion technique used for DECtalk Software.

A spectrogram is a plot of spectral magnitude slices,
with frequency on the y axis and time on the x axis.
The spectral magnitudes are specified either by color
or by saturation for two-color plots. Depending on the
time interval of the spectrum window, either the pitch
frequency harmonics or the formant structure of
speech may be viewed. It is even possible to ascertain
what is said from a spectrogram. Figure 2 shows spec-
trograms of both synthetic and human speech for the
same phrase. The formant frequencies are the dark
regions that move up and down as the speech organs
change position. Fricatives and aspiration are charac-
terized by the presence of high frequencies and usually
have much less energy than the formants.

The bandwidth of speech signals extends to over
10 kilohertz (kHz) although most of the energy is
confined below 1,500 Hz. The minimum intelligible
bandwidth for speech is about 3 kHz, but using this
bandwidth, the quality is poor. A telephone’s band-
width is 3.2 kHz. The DECtalk PC product has a
speech bandwidth just under 5 kHz, which is the same
as the audio bandwidth of an AM broadcast station.
The sample rate of a digital speech system must be at
least twice the signal bandwidth (and might have to be
higher if the signal is a bandpass signal), so the
DECtalk PC uses a 10-kHz sample rate. This band-
width represents a trade-off between speech quality
and the amount of calculation (or CPU loading). The
DECtalk Software synthesizer rate is 11,025 Hz,
which is a standard PC sample rate. An 8-kHz rate is
provided to support telephony applications.

People often perceive acoustic events that have
different short-term spectral magnitudes as the same
phoneme. For example, the & sound in the words kill

Digital Technical Journal Vol.7 No.4 1995

Time: 0,4030 Freq: 1484.26 Nalue: 73

D 0.00200 L: 1.28107 R: 1.25306 (F: 501.14)

i oy ki : X : PTrT) Faara by T
0.1 o,z 0.3 0.4 0.5 o7 0.8 0.3 1 1.1 1.2 1.3 1.4 1.5 1.8 1.7

Time: 1.46877 Freq: 386,31 Value: &1

D 000333 L 0.52671 R: 0.53070 (F: 280,57

Figure 2

Two Spectrograms of the Utterance “Line up at the screen door.” The upper spectrogram is the author’s speech.
The lower spectrogram is synthetic speech produced by DECtalk Software.

and cool have very different magnitude spectra. An
American perceives the two spectra as the same sound;
however, the sounds are very different to someone
from Saudi Arabia. A Japanese person does not per-
ceive any difference between the words car and call.
To an English speaker, the 7 and the / sound different
even though they have nearly identical magnitude
spectra. The /sounds in the words call and leaf are dit-
ferent spectrally (acoustically) but have the same
sound. Thus they are the same phoneme in English.

Several allophones are required to represent the &
phoneme. Most consonant phonemes require several
different allophones because the vowel sounds next to
them change their acoustic manifestations. This effect,
called coarticulation, occurs because it is often unnec-
essary for the articulatory organs to reach the final
position used to generate a phoneme; they merely
need to gesture toward the final position. Another
type of coarticulation is part of the grammar of a
language. For example, the phrase don’t you is often
pronounced doan choo.

All allophones that represent the phoneme 4 are
produced by closing the velum and then suddenly
opening it and releasing the breath stream. Speakers of
the English language perceive all these allophones as
the same sound, which suggests that synthesis may be
modeled by an articulatory model of speech produc-
tion. This model would presumably handle coarticula-
tion effects that are not due to grammar. It is currently
not known how to consistently determine speech
organ positions (or control strategies) directly from
acoustic speech data, so articulatory models have had
little success for text-to-speech synthesis.*

Digital Technical Journal Vol.7 No.4 1995

For English, the voicing pitch provides cues to
clause boundaries and meaning. Changing the fre-
quency of the vibration of the vocal cords varies the
pitch. Intonation is the shape of the pitch variation
across a clause. The sentence “Tim is leaving.” is pro-
nounced differently than “Tim is leaving?” The latter
form requires different intonation, depending on
whether the intent is to emphasize that it is “Tim”
who is leaving, or that “leaving” is what Tim is to do.
A word or phrase is stressed by increasing its pitch,
amplitude, or duration, or some combination of these.
Intonation includes pitch changes due to stress and
normal pitch variation across a clause. Correct intona-
tion is not always possible because it requires speech
understanding. DECtalk Software performs an analysis
of clause structure that includes the form classes of
both words and punctuation and then applies a pitch
contour to a clause. The form class definitions include
symbols for the parts of speech (article, adjective,
adverb, conjunction, noun, preposition, verb, etc.)
and symbols to indicate if the word is a number, an
abbreviation, a homograph, or a special word (requir-
ing special proprietary processing). For the sentence,
“Tim is leaving?” the question mark causes DECtalk
Software to raise the final pitch, but no stress is put on
“Tim” or “leaving.” Neutral intonation sometimes
sounds boring, but at least it does not sound foolish.

Text-to-Speech Synthesis Techniques
Early attempts at text-to-speech synthesis assembled

clauses by concatenating recorded words. This tech-
nique produces extremely unnatural-sounding speech.

In continuous speech, word durations are often short-
ened and coarticulation effects can occur between adja-
cent words. There is also no way to adjust the intonation
of recorded words. A huge word database is required,
and words that are not in the database cannot be pro-
nounced. The resulting speech sounds choppy.

Another word concatenation technique uses record-
ings of the formant patterns of words. A formant
synthesizer smoothes formant transitions at the word
boundaries. A variation of this technique uses linear
predictive coded (LPC) words. An advantage of the
formant synthesizer is that the pitch and duration
of words may be varied. Unfortunately, since the
phoneme boundaries within a word are difficult to
determine, the pitch and duration of the individual
phonemes cannot be changed. This technique also
requires a large database. Again, a word can be spoken
only if it is in the database. In general, the quality
is poor, although this technique has been used with
some success to speak numbers.

A popular technique today is to store actual speech
segments that contain phonemes and phoneme pairs.
These speech segments, known as diphones, are
obtained from recordings of human speech. They con-
tain all coarticulation effects that occur for a particular
language. Diphones are concatenated to produce words
and sentences. This solves the coarticulation problem,
but it is impossible to accurately modify the pitch of
any segment. The intonation across a clause is gener-
ally incorrect. Even worse, the pitch varies from seg-
ment to segment within a word. The resulting speech
sounds unnatural, unless the system is speaking a
phrase that the diphones came from (this is a devious
marketing ploy). Nevertheless, diphone synthesis pro-
duces speech that is fairly intelligible. Diphone syn-
thesis requires relatively little compute power, but it is
memory intensive. American English requires approx-
imately 1,500 diphones; diphone synthesis would have
to provide a large database of approximately 3 mega-
bytes for each voice included by the system.

DECtalk Software uses a digital formant synthesizer.
The synthesizer input is derived from phonemic sym-
bols instead of stored formant patterns as in a conven-
tional formant synthesizer. Intonation is based on
clause structure. Phonetic rules determine coarticula-
tion effects. The synthesizer requires only two tables,
one for each gender, to map allophonic variations of
each phoneme to acoustic events. Modification of vocal
tract parameters in the synthesizer allows the system to
generate multiple voices without a significant increase
in storage requirements. (The DECtalk code and data
occupy less than 1.5 megabytes.)

Poor-quality speech is difficult to understand and
causes fatigue. Linguists use standard phoneme recog-
nition tests and comprehension tests to measure the
intelligibility of synthetic speech. The DECtalk family
of products achieves the highest test scores of all text-
to-speech systems on the market.” Visually handi-
capped individuals prefer DECtalk over all other
text-to-speech systems.

How DECtalk Software Works

DECtalk Software consists of eight processing threads:
(1) the text-queuing thread, (2) the command parser,
(3) the letter-to-sound converter, (4) the phonetic and
prosodic processor, (5) the vocal tract model (VTM)
thread, (6) the audio thread, (7) the synchronization
thread, and (8) the timer thread. The text, VTM,
audio, synchronization, and timer threads are not part
of the DECtalk PC software (the DECtalk PC VIM
is on a special Digital Signal Processor) and have been
added to DECtalk Software. The audio thread creates
the timer thread when the text-to-speech system is
initialized. Since the audio thread does not usually
open the audio device until a sufficient number of
audio samples are queued, the timer thread serves to
force the audio to play in case any samples have been in
the queue too long. The DECtalk Software threads
perform serial processing of data as shown in Figure 3.

POLL AUDIO
CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT POSITION
CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT /
SYNCHRONIZATION
SYNCHRONIZATION EVENT THREAD TIMER THREAD
SYNCHRONIZATION T
MESSAGES _— ¢
H 1
PHONETIC AND
COMMAND LETTER-TO-
TEXT QUEUING | _ | | .| PrROsODIC | _,|vocaL TracT
APPLICATION] THREAD > msgig > ?Sg’g‘fD ™ processing | 77| MODEL THREAD AUDIO THREAD
THREAD
ASCII TEXT ASCII TEXT ASCII TEXT PHONEMES VTM SPEECH
COMMANDS SAMPLES

KEY:
--» INDICATES PIPES

Figure 3
The DECrtalk Software Architecture for Windows NT

Digital Technical Journal Vol.7 No.4 1995

9

10

Multithreading allows a simple and efficient means
of throttling data in multistage, real-time systems.
Each thread passes its output to the next thread
through pipes. Each thread has access to two pipe han-
dles, one for input and one for output. Most threads
consist of a main loop that has one or more calls to a
read_pipe function followed by one or more calls to
a write_pipe function. The write_pipe function will
block processing and suspend the thread if the speci-
fied pipe does not have enough free space to receive
the specified amount of data. The read_pipe function
will block processing and suspend the thread if the
specified pipe does not contain the requested amount
of data. Thus an active thread will eventually become
idle, either because there is not enough input data, or
because there is no place to store its output.

The pipes are implemented as ring buffers. The ring
buffer item count is protected by mutual-exclusion
objects on the Digital UNIX operating system and by
critical sections on the Windows NT operating system.
The pipes are created at text-to-speech initialization
and destroyed during shutdown. The DECtalk Software
team implemented these pipes because the pipe calls
supplied with the Digital UNIX and Windows NT
operating systems are for interprocess communication
and are not as efficient as our pipes.

The DECtalk Software threads all used different
amounts of CPU time. The data bandwidth increases
at the output of every thread between the command
thread and the VTM thread. Since the VTM produces
audio samples at a rate exceeding 11,025 samples per
second, it is no surprise that the VITM uses the most
CPU time of all threads. Table 2 gives the percentage
of the total application time used by each thread when
the Windows NT sample application “say” is continu-
ously speaking a large text file on an Alpha AXP 150
PC product. The output sample rate is 11,025 Hz.
Note that the “say” program main thread blocks and
uses virtually no CPU time after queuing the text
block. These percentages have been calculated from
times obtained using the Windows NT performance
monitor tool.

Because the data bandwidth increases at the output
of successive threads, it is desirable to adjust the size of
cach of the pipes ring buffers. If one imagines that all
the pipes had an infinite length (and the audio queue
was infinite) and that the operating system switched
thread context only when the active thread yielded,
then the text thread would process all the ASCII text
data before the letter-to-sound thread would run.
Likewise, each successive thread would run to comple-
tion before the next thread became active. The system
latency would be very high, but the thread switch-
ing would be minimized. The system would use 100
percent of the CPU until all the text was converted
to audio, and then the CPU usage would become

Digital Technical Journal Vol.7 No.4 1995

Table 2
DECtalk Software Thread Loading

Percentage of Total

Thread Application CPU Time
Application 1.0
(say.exe)

Text queue 0.2
Command parser 1.4
Letter-to-sound 2.4
processing

Prosodic and 18.3
phonetic processing

Vocal tract model 71.9
Audio 2.9
Synchronization 0.0
Timer 0.0
System 1.9

very low as the audio played out at a fixed rate.
Alternatively, if all the pipes are made very short, the
system latency is low. In this case, all but one of the
threads will become blocked in a very short time and
the startup transient in the CPU loading will be mini-
mized. Unfortunately, the threads will constantly
switch, resulting in poor efficiency. What is needed is
a trade-off between these two extremes.

For a specified latency, the optimum pipe sizes
that minimize memory usage for a given efficiency
are in a ratio such that each pipe contains the same
temporal amount of data. For example, let us assume
that 64 text characters (requiring 64 bytes) are in the
command thread. They produce approximately 100
phonemes (requiring 1,600 bytes) at the output of
the letter-to-sound thread and approximately 750
VTM control commands (requiring 15,000 bytes) at
the output of the prosodic and phonetics thread. In
such a case, the size of the input pipes for the com-
mand, letter-to-sound, and prosodic and phonetic
threads could be made 64, 1,600, and 15,000 bytes,
respectively, to minimize pipe memory usage for the
specified latency. (All numbers are hypothetical.)
The pipe sizes in DECtalk Software actually increase
at a slightly faster rate than necessary. We chose the
faster rate because memory usage is not critical since
all the pipes are small relative to other data struc-
tures. The size of the VTM input pipe is the most
critical: it is the largest pipe because it supports the
largest data bandwidth.

The Text Thread

The text thread’s only purpose is to buffer text so the
application is not blocked during text processing.
An application using text-to-speech services calls
the TextToSpeechSpeak API function to queue a null-

terminated text string to the system. This API function
copies the text to a buffer and passes the buffer (using
a special message structure) to the text thread. This
is done using the operating system’s PostMessage
function for Windows NT and a thread-safe linked
list for Digital UNIX. After the text thread pipes the
entire text stream to the command thread, it frees the
text buffer and the message structure.

The Command Processing Thread

The command processing thread parses in-line text
commands. These commands control the text-to-
speech system voice selection, speaking rate, and audio
volume, and adjust many other system state parame-
ters. For DECtalk, most of these commands are of the
form [: command <parameters>]. The string “[:”
specifies that a command string follows. The string “1”
ends a command. The following string illustrates sev-
eral in-line commands.

[:nb][:ra 200] My name is Betty.
[:play audio.wav]
[:dial 555-1212][:tone 700 1,000]

This text will select the speaker voice for “Betty,”
select a speaking rate of 200 words per minute, speak
the text “My name is Betty.” and then play a wave
audio file named “audio.wav.” Finally, the DTMF
tones for the number 555-1212 are played followed
by a 700-Hz tone for 1,000 milliseconds.

Because the text-to-speech system may be speaking
while simultaneously processing text in the command
thread, it is necessary to synchronize the command pro-
cessing with the audio. The DECtalk PC product (from
which we ported the code) did not perform synchro-
nization unless the application placed a special string
before the volume command. For DECtalk Software,
asynchronous control of all functions provided by
the in-line commands is already available through the
text-to-speech API calls. For this reason, the DECtalk
Software in-line commands are all synchronous.

The DECtalk command [:volume set 70] will set
the audio volume level to 70. Synchronization is per-
formed by inserting a synchronization symbol in the
text stream. This symbol is passed through the system
until it reaches the VIM thread. When the VIM
thread receives a synchronization symbol, it pipes a
message to the synchronization thread. This message
causes the synchronization thread to signal an event as
soon as all audio (that was queued before the message)
has been played. The volume control code in the com-
mand thread is blocked until this event is signaled. The
synchronization thread also handles commands of the
form [:index mark 17]. Index mark commands may
be used to send a message value (in this case 17) back
to an application when the text up to the index mark
command has been spoken.

The command thread passes control messages such
as voice selection and speaking rate to the letter-to-
sound and the prosodic and phonetic processing
threads, respectively. Tone commands, index mark
commands, and synchronization symbols are format-
ted into messages and passed to the letter-to-sound
thread. The command thread also pipes the input text
string, with the bracketed command strings removed,
to the letter-to-sound thread.

The Letter-to-Sound Thread

The letter-to-sound (LTS) thread converts ASCII text
sequences to phoneme sequences. This is done using a
rule-based system and a dictionary for exceptions. It is
the single most complicated piece of code in all of
DECtalk Software. Pronunciation of English language
words is complex. Consider the different pronuncia-
tions of the string ough in the words rough, through,
bough, thought, dough, cough, and bhiccough® Even
though the LTS thread has more than 1,500 pronun-
ciation rules, it requires an exception dictionary with
over 15,000 words.

Each phoneme is actually represented by a structure
that contains a phonemic symbol and phonemic attri-
butes that include duration, stress, and other propri-
etary tags that control phoneme synthesis. This is how
allophonic variations of a phoneme are handled. In the
descriptions that follow, the term phoneme refers
either to this structure or to the particular phone spec-
ified by the phonemic symbol in this structure.

The LTS thread first separates the text stream into
clauses. Clause separation occurs in speech both to
encapsulate a thought and because of our limited lung
capacity. Speech run together with no breaks causes the
listener (and the speaker) to become fatigued. Correct
clause separation is important to achieve natural into-
nation. Clauses are delineated by commas, periods,
exclamation marks, question marks, and special words.
Clause separation requires simultaneous analysis of the
text stream. For example, an abbreviated word does
not end a clause even though the abbreviation ends in
a period. If the text stream is sufficiently long and no
clause delimiter is encountered, an artificial clause
boundary is inserted into the text stream.

After clause separation, the LTS thread performs text
normalization. For this, the LTS thread provides spe-
cial processing rules for numbers, monetary amounts,
abbreviations, times, in-line phonemic sequences, and
even proper names. Text normalization usually refers
to text replacement, but in many cases the LTS thread
actually inserts the desired phoneme sequence directly
into its output phoneme stream instead of replacing
the text.

The LTS thread converts the remaining unprocessed
words to phonemes by using either the exception dic-
tionary or a rule-based “morph” lexicon. (The term
morph is derived from morpheme, the minimum unit

Digital Technical Journal Vol.7 No.4 1995

11

12

of meaning for a language.) By combining these two
approaches, memory utilization is minimized. A user-
definable dictionary may also be loaded to define
application-specific terms. During this conversion, the
LTS thread assigns one or more form classes to each
word. As mentioned previously, form class definitions
include symbols for abbreviations and homographs.
A homograph is a word that has more than one pro-
nunciation, such as alternate or console. DECtalk
Software pronounces most abbreviations and homo-
graphs correctly in context. An alternate pronuncia-
tion of a homograph may be forced by inserting the
in-line command [:pron alt] in front of the word.
DECtalk Software speaks the phrase “Dr. Smith lives
on Smith Dr.” correctly, as “Doctor Smith lives on
Smith Drive.” It uses the correct pronunciation of the
homograph lives.

Before applying rules, the LTS thread performs a
dictionary lookup for each unprocessed word in a
clause. If the lookup is successful, the word’s form
classes and a stored phoneme sequence are extracted
from the dictionary. Otherwise, the word is tested for
an English suffix, using a suffix table. If a suffix is
found, sometimes the form class of the word can be
inferred. Suffix rules are applied, and the dictionary
lookup is repeated with the new suftix-stripped word.
For example, the word testing requires the rule, locate
the suffix ing and remove it; whereas the word analyz-
ing requires the rule, locate the suffix i7g and replace
it with e. The suffix rules and the dictionary lookup are
recursive to handle words that end in multiple suffixes
such as endlessly.

If the word is not in the dictionary, the LTS thread
performs a decomposition of the word using morphs.
DECtalk uses a morph table to look up the phonemic
representation of portions of words. A morph always
maps onto one or more English words and can be
represented by a letter string. Morphs generally consist

of one or more roots that may contain affixes and suf-
fixes. Although new words may frequently be added to
a language, new morphs are rarely added. They are
essentially sound groupings that make up many of the
words of a language. DECtalk contains a table with
hundreds of morphs and their phonemic representa-
tions. Either a single character or a set of characters
that results in a single phoneme is referred to as a
grapheme. Thus this portion of the letter-to-sound
conversion is referred to as the grapheme-to-phoneme
translator. Figure 4 shows the architecture of the LTS
thread.

Morphemes are abstract grammatical units and were
originally defined to describe words that can be seg-
mented, such as ftall, taller, and tallest. The word
tallest is made from the morphemes ta// and est. The
word went decomposes into the morphemes go and
PAST. Thus a morpheme does not necessarily map
directly onto a derived word. Many of the pronuncia-
tion rules are based on the morphemic representations
of words.

Many morphs have multiple phonemic representa-
tions that can depend on either word or phonemic con-
text. The correct phonemic symbols are determined by
morphophonemic rules. For example, plural words that
end in the morpheme s are spoken by appending either
the s, the 2, or the eb z plural morphemes (expressed
as Arpabet phonemic symbols) at the end of the word?
Which allomorph is used depends on the final
phoneme of the word. Allomorphs are morphemes
with alternate phonetic forms. For another example
requiring a morphophonemic rule, consider the final
phoneme of the word the when pronouncing “the
apple,” and “the boy.”

After applying many morphophonemic rules to the
phonemes, the LTS thread performs syllabification,
applies stress to certain syllables, and performs allo-
phonic recoding of the phoneme stream. The LTS

CLAUSE TEXT
— NARY b
TEXT SEPARATION || NORMALIZATION DICTIO
GRAPHEME-TO-
PHONEME RULES
L ALLOPHONIC
SYLLABIFICATION |—] STRESS > perrnon [PHONEMES

Note that the grapheme-to-phoneme rules are used only if the dictionary lookup fails.

Figure 4
Block Diagram of the Letter-to-Sound Processing Thread

Digital Technical Journal Vol.7 No.4 1995

thread groups phonemes into syllables, using tables
of legal phoneme clusters and special rules. The syllab-
ification must be accurate, because the LTS thread
applies stress between syllable boundaries.

The LTS thread then assigns either primary stress,
secondary stress, or no stress to each syllable. The
stress rules are applied in order. They assign stress
only to syllables that have not had stress previously
assigned. These rules take into account the number of
syllables in a word and the positions of affixes that
were found during morph decomposition of a word.

Allophonic rules are the last rules the LTS thread
applies to the phoneme stream. These are really pho-
netic rules. Most allophonic rules are described as
follows: “if phoneme A is followed by phoneme B,
then modify (or delete) phoneme A (or B).” Most
allophonic rules are not applied across morpheme
boundaries. These rules handle many specific cases; for
example, the p in the word spit is aspirated, whereas
the p in the word pit is not. The s phoneme modifies
the articulation of the p. The s phoneme is different in
the words stop and street because the 7 sound is antici-
pated and modifies the sin the word street. This last
example is called distant assimilation.

The LTS thread passes the phonemes that include
durations and lexical information to the prosodic and
phonetic processing thread. Tone, dial, index mark,
and synchronization messages are passed unmodified
through the LTS thread.

The Phonetic and Prosodic Processing Thread

The phonetic and prosodic processing (PH) thread,
shown in Figure 5, converts the phoneme stream to a
series of vocal tract control commands. Both prosodic
rules and additional phonetic rules are applied to the
input phoneme stream.® Prosody refers to clause-
based stress, intonation, and voice quality in speech.
Words are stressed to add meaning to a clause. Stress is
achieved by increasing one or more of either the pitch,
the duration, or the amplitude of an utterance. The
phonetic rules handle coarticulation effects and adjust
phoneme durations based on the form class, the clause
position, and the speaking rate. One example is a
rule that increases the duration of the final stressed
phoneme in a clause. Additional context-dependent
phonetic coarticulation rules can adjust the durations
of phonemes or delete them.

VTM
PHONENES —=| PUONETIC o PROSODIC L (Bl
COMMANDS
PHONEMES
Figure 5

The Phonetic and Prosodic Processing Thread

The correct application of stress, like intonation,
requires understanding, so DECtalk Software gener-
ally applies syllabic stress only as part of an intonation
contour across a clause. Intonation contours are gen-
erated by fixed rules. In most clauses, the pitch rises at
the start of the clause and falls at the end of the clause.
This basic form is changed for questions, prepositional
phrases, exclamations, compound nouns, and num-
bers. This intonation is also changed based on the
syllabic stress assigned by the LTS thread. The PH
thread can also process pitch control symbols that are
placed in-line with text. These pitch commands are
parsed in the command thread and pass through the
LTS thread.

The PH thread uses each phoneme symbol and its
context to generate any allophonic variation of the
phoneme. The resulting allophone symbol indexes
into one of two tables, one table for each gender. Each
allophone symbol indexes a set of parameters that
includes voicing source amplitude, noise source ampli-
tude, formant frequencies, and formant bandwidths.
These, along with voicing source pitch and a number
of fixed speaker-dependent parameters, make up the
VTM parameters. A new set of parameters is generated
for every 6.4 milliseconds of speech. The VIM thread
uses these parameters, which are collectively called a
voice packet, to generate the speech waveform.

In addition to sending voice packets to the VITM
thread, the PH thread can send a speaker packet to
select a new speaking voice. The voice is selected either
by an in-line text command or by the application call-
ing a specific API function. The PH thread has fixed
tables of parameters for each voice. There are many
voice parameters, but some of the more interesting
ones include the gender, the average pitch, the pitch
range, the assertiveness, the breathiness, and the for-
mant scale factor. The gender is used by some of the
PH rules and by the PH thread to select the table used
to generate voice packets. The average pitch and the
pitch range are used by the PH thread to set the
pitch characteristics for the VIM’s voicing source.
The assertiveness parameter sets the rate of fall of
the pitch at the end of a clause. A high assertiveness
factor results in an emphatic voice. The breathiness
parameter sets the amount of noise that is mixed with
the voiced path signal. The formant scale factor eftec-
tively scales the size of the speaker’s trachea.

Tone, dial, index mark, and synchronization mes-
sages are passed unmodified through the PH thread.

The Vocal Tract Model Thread

The Vocal Tract Model (VIM) thread processes
speaker packets, voice packets, tone messages, and
synchronization messages. Speaker packets set the
speaker-voice-dependent parameters of the VTM.

Digital Technical Journal Vol.7 No.4 1995

13

14

One of these, the formant scale factor, is multiplied
by the first, second, and third formant frequencies in
cach voice packet. Other parameters include the values
for the frequencies and bandwidths of the fourth and
fifth formants, the gains for the voiced path of the
VTM, the frication gain for the unvoiced path of the
VTM, the speaker breathiness gain, and the speaker
aspiration gain.

Each voice packet produces one speech frame of
data. The output sample rate for DECtalk Software
is either 8,000 Hz or 11,025 Hz. For each of these
sample rates, a frame is 51 and 71 samples respectively.
Each voice packet includes frequencies and band-
widths for the first, second, and third formants, the
nasal antiresonator frequency, the voicing source gain,
and gains for each of the parallel resonators. Figure 6
shows the basic architecture of the VIM.” The VTM,
in conjunction with the PH rules, simulates the speech
organs.

The VTM consists of two major paths, a voiced path
and an unvoiced path. The voiced path is excited by a
pulse generator that simulates the vocal cords. A num-
ber of resonant filters in series simulate the trachea.
These cascaded resonators simulate a cascade of tubes
of varying widths." A nasal filter in series with the res-
onant tube model simulates the dominant resonance
and antiresonance of the nasal cavity.!' The cascade
resonators and the nasal filter complete the “voiced”
path of the VTM.

Unvoiced sounds occur as a result of chaotic turbu-
lence produced when breath passes through a con-
striction. This turbulence is difficult to model. In our
approach, the VIM matches the spectral magnitude of
filtered noise with the spectral magnitude of the
desired unvoiced phoneme (allophone). The noise
source is realized by filtering the output of a uniform-
distribution random number generator. Unvoiced
sounds contain both resonances and antiresonances.

Another approach to obtain an appropriate fre-
quency characteristic is to filter the noise source signal
using a series of parallel resonators. A consequence of

DIFFERENTIATED VOICED PATH
PULSE ™| FiLTERS
GENERATOR
PITCH AND GAIN FORMANTS,
BANDWIDTH, (2 }> sPEECH
GAIN AND GAINS
NOISE SOURCE || UNVOICED |

PATH FILTERS

Figure 6
Basic Architecture of the Vocal Tract Model

Digital Technical Journal Vol.7 No.4 1995

putting resonators in parallel is to create antireso-
nances. The positions of these antiresonances are
dependent on the parallel formant frequencies, but it
has been empirically determined that this model pro-
vides more than enough degrees of freedom to closely
match the spectral magnitude of any unvoiced sound.
The noise source generates fricatives, such as s, plosives,
such as p, and aspirates, such as . The noise source also
contributes to some voiced sounds, such as b, g, and z.
The noise source output may also be added to the
input of the voiced path to produce aspiration. To gen-
erate breathy vowels, the parallel formant frequencies
are set equal to the cascade formant frequencies.”

The radiation characteristic of the lips approximates
a differentiation (derivative) of the acoustic pressure
wave. Since all the filters in the VIM are linear and
time-invariant, the radiation effects can be incorpo-
rated in the signal sources instead of at the output.
Therefore the glottal source (pulse source) produces
differentiated pulses. The differentiated noise signal is
the filtered first difference of a uniform-distribution
random number generator.

The DECtalk Software VTM (also known as the
Klatt Synthesizer) is shown in Figure 7. The italicized
terms are either speaker-dependent parameters or con-
stant values. All other parameters are updated every
frame. Depending on the system mode, the audio
samples generated for each frame are passed to the
output routine and subsequently are either queued to
the audio device, written to a wave audio file, or writ-
ten to a buffer provided by the application. After gen-
erating a speech frame, the VIM code increases the
audio sample count by the frame size. This count is
sent to the synchronization thread whenever a syn-
chronization symbol or an index mark is received by
the VIM thread. The count is reset to zero at startup
and whenever the text-to-speech system is reset.

Tone messages are processed by the VIM thread.
Tone messages are for single tones or DTMF signals.
Each tone message includes two frequencies, two
amplitudes (one for each frequency), and one duration.
For a single tone message, the amplitude for the second
frequency is zero. Tone synthesis code generates tone
frames and queues them to the output routine. The
first 2 milliseconds and the last 2 milliseconds of a tone
signal are multiplied by either a rising or a falling
cosine-squared shaping function to limit the out-of-
band pulse energy. Each tone sample is synthesized
using a sinusoid look-up table.”

The Synchronization Thread

The synchronization thread is idle unless the VIM
thread forwards a synchronization symbol message or
an index mark message. Both messages contain the
current audio sample count. The index mark message

SPEAKER

VOICING VOICING VOICING
PITCH GAIN TILT GAIN Fy
DIFFERENTIATED NASAL NASAL
-»(:)-» TILT FILTER
PULSES z 2 anTiresonaTor [RESONATOR—|
F5, B5, A5 F4, B4, A4 F3, B3, A3 F2, B2, A2 F1,B1, Al
RESONATOR |, | RESONATOR || RESONATOR || RESONATOR || RESONATOR
F5 F4 F3 F2 F1
SPEAKER BREATHINESS
X BREATHINESS ——(%) Q)< STELKER ASPIRATION
B2, G2
SPEAKER
RESONATOR FRICATION
F2
B3, G3
SPEAKER
RESONATOR| FRICATION
DIFFERENTIATED | ,| NOISE TILT NOISE > ® F3
NOISE FILTER | sHAPING
B4, G4
NOISE SPEAKER N /
RESONATOR | FRICATION - .~ SPEECH
MODULATION Fa & OUTPUT
0.50R 1.0 .
F5, B5, G5 -t
* SPEAKER
RESONATOR | FRICATION
F5
F6, B6, G6
SPEAKER
RESONATOR FRICATION
F6
®
L SPEAKER FRICATION
KEY: X FRICATION

F FREQUENCY
B BANDWIDTH

A AMPLITUDE
G GAIN

Note: Italicized terms are either speaker-dependent parameters or constant values.
All other parameters are updated every frame.

Figure 7
The DECtalk Software Vocal Tract Model (also known as the Klatt Synthesizer)

The Audio Thread

The audio thread manages all activities associated with
playing audio through the computer’s sound hard-
ware. An audio API insulates DECtalk Software from
the differences between operating systems. The audio

also contains an index mark number from 0 to 99.
After receiving one of these messages, the synchro-
nization thread periodically polls the audio thread
until the indicated audio sample has been played. If
the message contained a synchronization symbol, an

event is set that unblocks the command thread. Ifit is
an index mark message, the synchronization thread
sends the index mark number back to the application.
For the Digital UNIX operating system, this number
is returned by calling a callback function that the appli-
cation specifies when DECtalk Software is started. For
the Windows NT operating system, the SendMessage
function is used to return the index mark number
to the application. The message is sent to a window
procedure specified by the window handle that is pro-
vided when the text-to-speech system is started.

API communicates with the audio thread. The VTM
thread calls an audio API queuing function that writes
samples to a ring buffer that is read only by the audio
thread. The audio thread opens the audio device after
approximately 0.8 seconds of audio samples have been
queued and closes the audio device when there are no
more samples to play. If the number of audio samples
in the queue is too small to cause the audio device to
be opened, and the flow rate (measured over a 100-
millisecond interval) into the audio ring buffer is zero,
the timer thread will send the audio thread a message

Digital Technical Journal Vol.7 No.4 1995

15

16

that causes the audio device to open and start playing
audio. When audio either starts or stops playing, a
message is sent to the application.

For the Digital UNIX operating system, the audio
thread is an interface to the low-level audio functions
of the Multimedia Services for Digital UNIX (MMS)
product. MMS provides a server to play audio and
video.

For the Windows NT operating system, the imple-
mentation also uses the system low-level audio func-
tions, but these functions interface directly with a
system audio driver. The audio API provides capabili-
ties to pause the audio, resume paused audio, stop
audio from playing and cancel all queued audio, get the
audio volume level, set the audio volume level, get the
number of audio samples played, get the audio format,
and set the audio format. An in-line play command can
be used to play audio files. DECtalk Software uses the
get format and set format audio capabilities to dynami-
cally change the audio format so it can play an audio file
that has a format different from the format generated
by the VTM.

DECtalk Software API

In the mid-1980s, researchers at Digital’s Cambridge
Research Lab ported the DECtalk text-to-speech
C language-based code to the ULTRIX operating
system. The command, LTS, PH, and VTM portions
of the system were different processes. The pipes were
implemented using standard UNIX I/0 handles, stdin
and stdout. These, along with an audio driver process,
were combined into a command procedure. This

system lacked many of the rules and features found
in DECtalk Software today, but it did demonstrate
that real-time speech synthesis was possible on a work-
station. Before this time, DECtalk required specialized
Digital signal-processing hardware for real-time oper-
ation.” On a DECstation Model 5000/25 work-
station, the text-to-speech implementation used 65
percent of the CPU. If the output sample rate of this
system had been raised from 8,000 Hz to 11,025 Hz,
the highest-quality rate provided by DECtalk Software,
it would have loaded approximately 89 percent of
the CPU. Workstation text-to-speech synthesis, while
possible, was still very expensive.

The power of the Alpha CPU has changed this.
Today, many copies of DECtalk Software can run
simultaneously on Alpha-based systems. Speech syn-
thesis is now a viable multimedia form. This change
created the need for a text-to-speech API. Table 3
shows the DECtalk Software CPU load for various
computers.

On Alpha systems, the performance of DECtalk
Software depends primarily on the SPECmark rating
of the computer. A lesser consideration is the sec-
ondary cache size. System bus bandwidth is not a lim-
iting factor: The combined data rates for the text,
phonemes, and audio are extremely low relative to
modern bus speeds, even when running the maximum
number of real-time text-to-speech processes that the
processor can support.

The API we have developed is the result of collabo-
ration between several organizations within Digital:
the Light and Sound Group, the Assistive Technology
Group, the Cambridge Research Lab, and the Voice

Table 3
DECtalk Software CPU Loading versus Processor SPECmarks
Secondary Audio

Clock Cache Rate Total CPU
System (MHz2) Processor (MB) SPECint92 SPECfp92 (kHz2) Load (%)
Alpha AXP 150 Alpha 512 80.9 110.2 11,025 8
150 PC 21064
AlphaStation 266 Alpha 2,048 198.6 262.5 11,025 2.4
250 4/266 21064
workstation
DEC 3000 200 Alpha 2,048 138.4 188.6 11,025 5
Model 800 21064
workstation
DEC 3000 275 Alpha 2,048 230.6 264.1 11,025 3
Model 900 21064A
workstation
AlphaStation 233 Alpha 512 157.7 183.9 11,025 3
400 4/233 21064A
workstation
AlphaStation 266 Alpha 2,048 288.6 428.6 8,000 1
600 5/266 21164
workstation
XL 590 PC 90 Pentium 512 Unknown N/A 11,025 24
Digital Technical Journal Vol.7 No.4 1995

and Telecom Engineering Group. We had two basic
requirements: We wanted the API to be easy to use
and to work with any text-to-speech system. While
creating the API, we defined interfaces so that future
improvements to the text-to-speech engine would not
require any APT calls to be changed. (Customers frown
on product updates that require rewriting code.)
Some decisions were controversial. Some contributors
felt that the text-to-speech system should return
speech samples only in memory buffers, and the
application should shoulder the burden of interfacing
to the workstation’s audio subsystem. The other
approach was to support the standard workstation
audio (which is platform dependent) and to provide
an API call that switched the system into a speech-to-
memory mode. We selected the latter approach
because it simplifies usage for most applications.

The API Functions

The core text-to-speech API functions are the
TextToSpeechStartup function, the TextToSpeechSpeak
function, and the TextToSpeechShutdown function.
The simplest application might use only these three
functions.

All applications using text-to-speech must call the
TextToSpeechStartup function. This function creates
all the DECtalk system threads and passes back a han-
dle to the text-to-speech system. The handle is used in
subsequent text-to-speech API calls. The startup func-
tion is the only API function that has different argu-
ments for the Digital UNIX and the Windows NT
operating systems. This is necessary because the asyn-
chronous reporting mechanism is a callback function
for Digital UNIX and is a system message for Windows
NT. The TextToSpeechShutdown function frees all
system resources and shuts down the threads. This
would normally be called when closing the application.

The TextToSpeechSpeak function is used to queue
text to the system. If an entire clause is not queued, no
output will occur until the clause is completed by
queuing additional text. A special TTS_FORCE para-
meter may be supplied in the function call to force a
clause boundary. The TTS_FORCE parameter is nec-
essary for applications that have no control over the
text source and thus cannot guarantee that the final
text forms a complete clause.

The text-to-speech API provides three audio output
control functions. These pause the audio output
(TextToSpeechPause), resume output after pausing
(TextToSpeechResume), and reset the text-to-speech
system (TextToSpeechReset). The reset function dis-
cards all queued text and stops all audio output.

The text-to-speech APT also provides a special syn-
chronization function (TextToSpeechSync) that blocks
until all previously queued text has been spoken. This
APT call may not return for days if a sufficient amount
of text is queued. (Index marks provide nonblocking
synchronization.)

The API supplies functions to both load
(TextToSpeechLoadUserDictionary) and unload
(TextToSpeechUnload UserDictionary) an application-
defined dictionary. The dictionary contains words and
their phonemic representations. The developer creates
a dictionary using a window-based user-dictionary
tool. This tool can speak words and their phonemic
representations. It can also convert text sequences to
phonemic sequences. This last feature frees the devel-
oper from having to memorize and use the DECtalk
Software phonemic symbols.

Additional functions select the speaker voice, con-
trol the speaking rate, control the language, determine
the system capabilities, and return status. The status
API function can indicate if the system is currently
speaking.

Special Text-to-Speech Modes

DECtalk Software has three special modes: the speech-
to-wave file mode, the log-file mode, and the speech-
to-memory mode. Each mode has two complemen-
tary calls, one to enter the mode and one to exit.
When in the speech-to-wave file mode, the system
writes all speech samples to a wave audio file. The file is
closed when exiting this mode. This is useful on slower
Intel systems that cannot perform real-time speech
synthesis. The log-file mode causes the system to write
the phonemic symbol output of the LTS thread to a
file. The last mode is the speech-to-memory mode.
After entering this mode, the application uses a special
API call to supply the text-to-speech system with
memory buffers. The text-to-speech system writes
synthesized speech to these buffers and returns the
buffer to the application. The buffers are returned
using the same mechanism used for index marks, a
callback function on the Digital UNIX operating sys-
tem and a system message on the Windows NT operat-
ing system. These buffers may also return index marks
and phonemic symbols and their durations. If the text-
to-speech system is in speech-to-memory mode, call-
ing the reset function causes all bufters to be returned
to the application.

Porting DECtalk Software

The DECtalk PC code used a simple assembly lan-
guage kernel to manage the threads. The existence of
threads on our target platforms simplified porting the
code. The thread functions, signals (such as condi-
tions or events), and mutual exclusion objects are dif-
ferent for the Digital UNIX and the Windows NT
operating systems. Since these functions occur mainly
in the pipe code and the audio code, we maintain
different versions of code for each system. The
message-passing mechanism for Windows NT has no

Digital Technical Journal Vol.7 No.4 1995

17

18

equivalent on Digital UNIX; therefore part of the API
code had to be different. The command, LTS, and
PH threads are all common code for Digital UNIX
and Windows NT. Most of the VIM thread is also
common code.

Porting the code for each thread required putting
conditional statements that define thread entry points
into each module for each supported operating system.
We also had to add special code to each thread to sup-
port our API call that resets the text-to-speech system.
The reset is the most complicated API operation,
because the data piped between threads is in the form
of variable-length packets. During a reset, it is incorrect
to simply discard data within a pipe because the thread
that reads the pipe will lose data synchronization.
Therefore a reset causes each thread to loop and dis-
card all input data until all the pipes are empty. Then
each thread’s control and state variables are set to a
known state. In many complicated systems, resetting
and shutting down are the most complicated parts of a
control architecture. System designers should incorpo-
rate mechanisms to simplify these functions.

The VIM code is much shorter and simpler than
the code in either the LTS or the PH thread, but it is
by far the largest CPU load in the system. The
DECtalk PC hardware used a specialized Digital Signal
Processor (DSP) for the VIM. The research VIM
code (written in the C language) was rewritten to be
sample-rate-independent. The filters were all made
in-line macros. With this new VTM, the DECtalk
Software system loaded an Alpha AXP 150 PC product
31 percent. After rewriting this code using floating-
point arithmetic and then converting it to assembly
language, DECtalk Software loaded the processor less
than 8 percent. (Both tests were conducted at an
11,025-Hz output sample rate.)

There are several reasons a floating-point VIM runs
faster than an integer VIM on an Alpha system. An
integer VITM requires a separate gain for each filter to
keep the output data within the filter’s dynamic range.
For a floating-point VTM, the gains of all cascaded
filters are combined into one gain. The increased
dynamic range allows combining parts of some filters
to reduce computations. Also, floating-point opera-
tions do not require additional instructions to perform
scaling. The processor achieves greater instruction
throughput because it can dual issue floating-point
instructions with integer instructions, which are used
for pointers, indices, and some loop counters. Finally,
the current generation of Alpha processors performs
some floating-point operations with less pipeline
latency than their equivalent integer operations (note
the SPEC{p92 and SPECint92 ratings of the current
Alpha processors listed in Table 3).

Digital Technical Journal Vol.7 No.4 1995

The integer VIM is faster than the floating-point
VTM on Intel processors, so we maintain two versions
of the VTM. Both versions support multiple sample
rates. The pitch of the glottal source and the frequen-
cies and bandwidths of the filters are adjusted for the
output sample rate. When necessary, the filter gains are
adjusted. These extra calculations do not add much to
the total time used by the VIM because they are per-
formed only once per frame.

Possible Future Improvements
to DECtalk Software

The Assistive Technology Group continues to improve
the letter-to-sound rules, the prosodic rules, and the
phonetic rules. Future implementations could use
object-oriented techniques to represent the dictionar-
ies, words, phonemes, and parts of the VIM. A larger
dictionary with more syntactic information can be
added. There has even been some discussion of combin-
ing the LTS and PH threads to make more efficient use
of lexical knowledge in PH. The glottal waveform gen-
erator can be improved. Syntactic parsers might provide
the information required for more accurate intonation.
Someday, semantic parsing (text understanding) may
provide a major improvement in synthetic speech into-
nation. Researchers both within and outside of Digital
are investigating these and many other areas. It seems
likely that the American English version of DECtalk
Software will continue to improve over time.

Summary

DECtalk Software provides natural-sounding, highly
intelligible text-to-speech synthesis. It was developed to
perform on the Digital UNIX operating system on
Digital’s Alpha-based platforms and with Microsoft’s
Windows NT operating system on both Alpha and Intel
processors. It is based on the mature DECtalk PC
hardware product. DECtalk Software also provides an
casy-to-use API that allows applications to use the work-
station’s audio subsystem, to create wave audio files,
and to write the speech samples to application-supplied
memory buffers. An Alpha-based workstation can run
many copies of DECtalk Software simultaneously.

DECtalk Software uses a dictionary and linguistic
rules to convert speech to phonemes. An application-
supplied dictionary can override the default pronunci-
ation of a word. Prosodic and phonetic rules modify
the phoneme’s attributes. A vocal tract model synthe-
sizes each phoneme to produce a speech waveform.
The result is the highest-quality text to speech. The
Assistive Technology Group continues to improve the
DECtalk text-to-speech algorithms.

Acknowledgments

I wish to acknowledge and thank all the members of
the DECtalk Software project and additional support
staff. Bernic Rozmovits, our engineering project
leader, was the visionary for this entire effort. He con-
tributed most of our sample applications on Windows
NT, and he also wrote the text-to-speech DDE server.
Krishna Mangipudi, Darrell Stam, and Hugh Enxing
implemented DECtalk Software on the Digital UNIX
operating system. Thanks to Bill Scarborough who did
a great job on all of our documentation, particularly
the on-line help. Special thanks to Dr. Tony Vitale and
Ed Bruckert, from Digital’s Assistive Technology
Group. They both were instrumental in developing
the DECtalk family of products and are continuing to
improve them. Without their efforts and support,
DECtalk Software could not exist. Tom Levergood
and T. V. Raman at Digital’s Cambridge Research Lab
helped test DECtalk Software and provided many sug-
gestions and improvements. Thanks also to the engi-
neering manager for Graphics and Multimedia, Steve
Seufert, who continues to support our efforts. Finally,
we are all indebted to Dennis Klatt who was the cre-
ator of the DECtalk speech synthesizer and to all the
other developers of the original DECtalk hardware
products.

References

1. G. Fant, Acoustic Theory of Speech Production
(The Netherlands: Mouton and Co. N.V., 1960).

2. C.Schmandt, Voice Communication with Computers
(New York: Van Nostrand Reinhold, 1994).

3. J. Allen, M. Hunnicutt, and D. Klatt, From Text
to Speech: The MITalk System (Cambridge, Mass.:
Cambridge University Press, 1987).

4. J.Flanagan, Speech Analysis, Synthesis, and Percep-
tion, 2d ed. (New York: Springer-Verlag, 1972).

5. D. Pisoni, H. Nusbaum, and B. Greene, “Perception
of Synthetic Speech Generated by Rule,” Proceedings
of the IEEE, vol. 73, no. 11 (1985): 1665-1676.

6. A. Vitale and M. Divay, “Algorithms for Grapheme-
Phoneme Translation in French and English” (in
preparation).

7. V. Fromkin and R. Rodman, An Introduction to
Language, 2d ed. (New York: Holt, Rinehart, and
Winston, 1978).

8. D. Klatt, “Review of Text-to-Speech Conversion for
English,” Journal of the Acoustical Society of America,
vol. 82, no. 3 (1987): 737-793.

9. D. Klatt, “Software for a Cascade/Parallel Formant
Synthesizer,” Journal of the Acoustical Society of
America, vol. 67 (1980): 971-975.

10. L. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing (London: Prentice Hall,
1975).

11. L. Rabiner and R. Schafer, Digital Processing of
Speech Signals (London: Prentice Hall, 1978).

12. D. Klatt and L. Klatt, “Analysis, Synthesis, and Percep-
tion of Voice Quality Variations among Female and
Male Talkers,” Journal of the Acoustical Society of
America, vol. 87, no. 2 (1990): 820-857.

13. J. Tierney, “Digital Frequency Synthesizers,” Chapter
V of Frequency Synthesis: Techniques and Applica-
tions, J. Gorski-Popel, ed. (New York: IEEE Press,
1975).

14. E. Bruckert, M. Minow, and W. Tetschner, “Three-
Tiered Software and VLSI Aid Development System to
Read Text Aloud,” Electronic (April 21, 1983).

Biography

William I. Hallahan

Bill Hallahan is a member of the Light and Sound Group,
part of Software Engineering for the Workstation Business
Segment. Previously he worked in the Image, Voice, and
Video Group on signal-processing algorithms and the
rewriting of the DECtalk vocal tract model. Before joining
Digital in 1992, he was employed at Sanders Associates for
12 years, where he developed and implemented algorithms
that performed signal analysis, signal demodulation, and
numerical methods. Bill received a B.S.E.E. from the
University of New Hampshire in 1980. He is co-author of
a patent application for a specific color-space conversion
algorithm used in video multimedia applications.

Digital Technical Journal Vol.7 No.4 1995

19

