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In late 1993, the Mail Interchange Group (MIG)
within DIGITAL started the AltaVista Mail develop-
ment program. At that time, the members of MIG had
substantial experience in the development of elec-
tronic mail (e-mail) technologies; however, the new
products were being targeted for use on the Internet
in an environment that was quite different from the
one for their previous products. In an effort to satisfy
the new customer base, the members of MIG reexam-
ined their design and development process. 

The AltaVista Mail product emerged from efforts to
improve MIG’s support for Internet-based e-mail
technologies. Our previous products were electronic
mail and directory servers for network backbone use,
based on the most recent X.400 and X.500 standards.
Products suitable for the Internet environment would
clearly be quite different. 

This paper begins by presenting our analysis of
Internet services and support software and describing
the transmission of e-mail on the Internet. The paper
then discusses the implications of developing a prod-
uct for the Internet environment and explains the
impact of those implications on the design and imple-
mentation decisions that defined the AltaVista Mail
product. The paper concludes with the engineering
assumptions and habits that had to be overturned to
build the product set. 

Internet Services and Software 

During our initial analysis of the product possibili-
ties, we made several interesting observations about
Internet services and software, particularly in compari-
son to the mission-critical products in MIG’s existing
portfolio. (Our observations could more accurately be
called assertions—it was and is remarkably difficult to
get hard information about Internet use.) 

1. The academic/research/technical community
determined the nature of the Internet’s service
offerings. Most of the software defining the
Internet’s services was generated by and for this
community. 
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The emergence of the Internet as a place where
people can conduct business prompted DIGITAL
to investigate the development of products
specifically for use in this environment. Electronic
messaging systems based on Internet technolo-
gies provide the communication medium for
many businesses today. The development of
AltaVista Mail illustrates many of the concerns
facing engineers who are designing products 
for this new customer base. The results of our
experience can be helpful in many ways and
should be of interest to those involved in
designing technologies for running Internet
applications. 
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2. The real market opportunity would not be among
the academic/research/technical community but
would be drawn from ordinary businesses. 

3. Much of the service software on the Internet was
unsatisfactory for routine business use, either because
it was unreliable or because it was difficult for end
users to deal with it. Even though free software was
abundant, much of it did not work. Support for the
free software was a risk: some software had excellent
peer support; unfortunately, not all end users were
aware of its existence or were able to access it. 

4. We judged the operating system platforms com-
monly used for service software to be unsuitable for
a large part of the business community. The various
UNIX platforms need skilled local staff; corrupted
or poorly configured Windows version 3.1 and
Macintosh run-time environments would be diffi-
cult to diagnose and expensive to support. 

Expanding into support of the Internet environ-
ment would require us to build native equivalents for
some of our existing server software. We believed that
the Windows NT platform offered a good framework
for systems that would work well in any business envi-
ronment and be easy to support. 

Initially, we required the following products: a server
that supported the Simple Mail Transfer Protocol
(SMTP) and the Post Office Protocol version 3 (POP3);

a gateway to Lotus cc:Mail post offices; and a gateway
to Microsoft Mail post offices. 

The SMTP/POP3 server is the mail system compo-
nent responsible for accepting messages from mail
client programs. It transmits them toward the recipi-
ents’ SMTP servers and performs local delivery using
the POP3 protocol. This process is described in more
detail in the next section. 

E-mail on the Internet 

This section briefly describes how Internet e-mail is
transferred from the originator to the recipient. 

The originator’s mail client program constructs a
message according to the rules described in the
Internet standard, RFC 822.1 The RFC 822 standard
defines a message as a sequence of short lines of 7-bit
ASCII text, each terminated by a carriage-return and
line-feed sequence (CRLF). The first lines are header
fields; these are extensible but typically include the
originator and recipient e-mail addresses, the date, and
the message subject. The header ends with a blank
line, and the remaining lines constitute the body of the
message. Figure 1 shows an SMTP dialogue that
includes an RFC 822 message. 

Where appropriate, the mail program can also follow
the Multipurpose Internet Mail Extensions (MIME)
rules in RFC 1521 and RFC 15222,3; these describe

Figure 1
Example SMTP Dialogue

SMTP command/response

220 server1.altavista.co.uk AltaVista Mail 
V1.0/1.0 BL22 SMTP ready

helo client1.altavista.co.uk
250 OK
mail from:<Fred@altavista.co.uk>
250 OK
rcpt to:<Bill@altavista.co.uk>
250 OK
data
354 Start mail input; end with <CRLF>.<CRLF>
Date: Mon, 7 Jul 1997 08:30:13 +0100
From: Fred <Fred@altavista.co.uk>
To: Bill <Bill@altavista.co.uk>
Subject: Example message

Hi Bill,

This is a test message.
It‘s not very long.

Fred
.
250 OK
quit
221 redsvr.altavista.co.uk closing connection

Comments
Caller opens connection
Server’s welcome message

Client gives its own host name
Host name was acceptable
Identifies return path for nondelivery reports
Return path was acceptable
A recipient for this message
Recipient was acceptable
Message follows
OK to start message header
Message’s date
Originator field
Recipient field
Subject field
Blank line ends message-header fields
Content lines…

…End of content
Message has been accepted
No more messages; signing off
Finished



MIME data

Date: Mon, 7 Jul 1997 08:30:13 +0100

From: Fred <Fred@altavista.co.uk>

To: Bill <Bill@altavista.co.uk>

Subject: Binary attachment

MIME-version: 1.0

Content-type: multipart/mixed; 

boundary=”zzzBoundaryzzz“

--zzzBoundaryzzz

Content-type: text/plain; charset=”us-ascii“

Content-Transfer-Encoding: 7bit

Hi Bill,

Here‘s a binary file.

It‘s four bytes of all 1‘s.

Fred

--zzzBoundaryzzz

Content-type: application/octet-stream; 

name=”foo.dat“

Content-Transfer-Encoding: base64

/////w==

--zzzBoundaryzzz--
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how to construct a message body to transfer typed and
structured data and how to pass non-ASCII characters
in header fields. Figure 2 shows an example of a mes-
sage constructed according to the MIME standard. 

The originator’s client submits the message to a
nearby SMTP server using the SMTP protocol.4 This
very simple protocol uses short, CRLF-terminated
lines of 7-bit ASCII text to transfer its commands and
responses. To submit a message, three commands are
used: the MAIL, RCPT, and DATA commands intro-
duce the originator’s e-mail address, the recipients’ 
e-mail addresses, and the RFC 822 message data,
respectively. 

The SMTP server examines each recipient’s e-mail
address to decide where the message should be sent.
Recipients are routed by consulting the Domain
Name System (DNS), a distributed directory that asso-
ciates domain names with sets of typed resource
records that denote the published properties of each
domain.5–7 For a recipient, user@domain.name, the
target domain.name is looked up and the resource
records of type MX (for Mail eXchange) are retrieved.5

These records list the hosts that the domain nominates
to receive its mail; each host has a numeric preference

value. Eventually, the mail must be delivered to the
most preferred host. 

For each target domain, the SMTP server uses the
SMTP protocol to transfer the message to the
domain’s most preferred, reachable MX host. (The
most preferred host may be unreachable from the local
server: it may be switched off for a while, or it may be
behind a firewall, a machine that protects a private net-
work by limiting access from the open Internet to the
machines inside the protected network.) The chosen
host, if it is not the most preferred, forwards the 
message to a more preferred host and so on, until the
message reaches the recipient domain’s most preferred
host. That host then delivers the message to an area
from which the recipient’s mail client program can
fetch it. 

Fetching a message is often a platform-specific oper-
ation, but a standard protocol such as POP3 can also
be used.8 This simple, text-based protocol allows the
mail client to list the messages waiting to be fetched,
to fetch individual messages, and to delete them from
the server once they are safely stored within the client. 

Newer, more feature-rich protocols and interfaces,
such as the Internet Message Access Protocol version

Figure 2
Example MIME Message

Comments

Normal RFC 822 header fields

This is a MIME message…

… consisting of a list of body parts
Blank line ends message-header fields
Start…
… of first body part…
… in ASCII plain text…
… using 7-bit encoding
Blank line ends body-part-header fields
Body-part contents

End…
… of first body part and start of second…
… a stream of bytes called foo.dat…

… using base64 encoding
Blank line ends body-part-header fields
Hex FFFFFFFF encoded in base64
End…
… of message
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4 (IMAP4), do offer certain user advantages; however,
they do not perform the basic job of delivering mes-
sages any better than POP3.9 Even though support for
IMAP4 was added to AltaVista Mail version 2.0, POP3
remains the method of choice for fetching messages
from a remote server: this protocol is so simple that it
is hard to implement incorrectly. 

Product Design Decisions 

The definition of the AltaVista Mail product set did
not start with technical issues. Instead, it started with
an assumption about the purchase price of a product.
Even though the price we chose was not used for the
released product, our assumption turned out to be,
perhaps, the most useful and powerful design tool
available during development. 

Product Pricing and Organizational Concerns 
We were interested in exploring the implications of
offering a product at a very low price and selling in
very large quantities to make the business worthwhile.
MIG’s previous products had been priced at the oppo-
site end of the price scale: they were expensive, but
they were valuable to the relatively few customers who
needed their functions. 

(Interestingly, as we explored the necessary organi-
zational and technical changes involved in moving to
the low end, we realized that they would in no way
jeopardize our ability to sell at the high end. The orga-
nizational changes improve efficiency no matter what
the product price, and the technical changes make for
a better, more usable product regardless of the cus-
tomer profile.) 

Our starting point was to investigate the engineer-
ing implications of building a product that would sell
for $100. We concluded the following: 

■ To maximize the number of products sold, we
would have to satisfy the largest imaginable cus-
tomer base and not exclude a potential customer
for any reason. 

■ Customers attracted to a low purchase price will
also require low running costs. No hidden costs
could be associated with running the product. 

■ Support costs would have to be kept to a minimum.
If each customer needed telephone support several
times over the life of the product, the $100 price
would not cover support expenses. We would have
to aim at receiving zero support calls. 

■ We would have to minimize the implementation
and maintenance cost and deliver products and
updates as early as possible. The Internet market
moves quickly, particularly at the low end, and a
long development cycle loses sales. 

Our existing approach to development involved
obtaining agreement from many groups within 
DIGITAL concerning the nature of a problem area
and the architecture of any solutions, and then imple-
menting product versions against the architecture.
This process is slow and expensive with considerable
management overhead. 

For the AltaVista Mail product, we decided instead
to direct a small team to generate a product-quality
prototype as quickly as possible and to ship that proto-
type as a product. In the interests of rapid develop-
ment, we would deliberately discard much of the
traditional Phase Review Process but would use regu-
lar, informal monitoring to ensure that the prototype
remained acceptable to our target customer. 

All design and implementation decisions would
be judged by their effect on this target customer,
not by their adherence to an architecture. All future
development would be guided by customer feed-
back. This method is far less expensive, delivers a
product far sooner, and is more likely to reflect cur-
rent customer needs. 

Technological Concerns 
Our ideas on product pricing and the design process
led to three initial design decisions. 

First, nonexpert users must be able to get the full
value from the product. Setting up and configuring
the product must involve answering the minimum
number of questions. Each question must relate to a
topic on which the user can reasonably be expected to
have an opinion. The user must not be asked questions
about the internal operation of the product, only
about topics with an external significance. 

The product must offer the minimum number of
operational controls. (Some high-end customers
demand many controls. If necessary, these controls
could be added in a later version; but the product must
not depend on them, they should not be presented to
the average user, and those users who insist on seeing
them should be charged a premium to cover the addi-
tional support costs. We would explicitly accept that
there are certain customers we should not aim to sat-
isfy and certain features we should never offer.) 

Second, the product must never go wrong. The
product must never encounter any internal errors,
only those caused by failures in its operational envi-
ronment. Any environmental failure must be
reported completely and accurately in terms that the
user can understand. After a failure has been fixed, the
product must start working again with no further
intervention. If an environmental failure or an opera-
tor intervention corrupted the software, reinstalling
the kit must get the system working again. The prod-
uct must not depend on any product that does not
follow these rules. 
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Third, the product must be inexpensive to build 
and maintain and must use a rapid development cycle.
The product—and each of its components—should
deliver the maximum customer-perceived value for the
minimum engineering investment. Although the
number of features should be minimized, the func-
tions delivered should be sufficient to be useful to a
large customer base. 

Implementation Decisions 

The most important decision was to aim for simplicity
above all else: simplicity of design, implementation,
and presentation. Simplicity delivers reliability and
inexpensive implementation and maintenance. It also
helps to ensure that a product is comprehensible to its
end user and does not behave in baffling ways, even
when it is not working due to an external influence. 

A related decision was to use no method or tool that
might encourage complexity by helping to manage it:
no formal design methods, no automated design veri-
fication, and no automated system test. The developer
should immediately feel the pain of building a complex
structure or one that requires an elaborate system test
and thus be encouraged to think again. 

Of course, proper engineering practice dictated that
we should use a repeatable system test with properties
that were well understood, but we deliberately never
automated the test. We also used remedial tools such
as locally developed libraries to look for memory and
handle leaks. (These tools do not tempt developers
into bad habits.) 

User Interaction with the Server 
Ideally, the server should perform its job with no com-
ment, and the user should feel no need to think about
the server’s performance. Product documentation
should be minimized, and there should be no printed
documentation at all. 

We designed the server to make many of the prod-
uct’s operational decisions, rather than leave the deci-
sions to an administrator: 

■ The administrator cannot control the routing
process. Messages are sent to the targets defined in
DNS, and no local rules nominating other targets
are supported. The administrator can nominate a
firewall but cannot say when to use it (the server
uses it automatically, when all the other targets have
been found unreachable). 

■ The operational logs are purged automatically. The
administrator can only control how long any
logged event is guaranteed to be stored before
being purged, and this interval cannot be selected
on a per-log or per-event basis. 

■ The server’s network connections are scheduled by
the server itself. The administrator can only control

the minimum and maximum retry intervals for
SMTP connection attempts, not the specific times
at which the server tries to communicate. 

■ The server determines if an event is relevant to sys-
tem security and responds according to its own rules.
Repeated authentication failures result in mailboxes
and originating host addresses being locked out for a
time; the administrator can manually reset the lock-
out but cannot control how long it lasts, nor how
many failures are judged to be an attack. 

Unfortunately, user interfaces cannot be avoided
entirely. Therefore the goal must be to minimize the
amount of user interaction required with the server and
to make user interaction easy to perform and as reassur-
ing as possible to the user. We were able to design the
SMTP/POP3 server to be easy to set up and use, and
we reduced the user interaction with the gateways 
to the minimum. Gateways are notoriously difficult to
set up; we simplified the process of installation to the
extent that a central cc:Mail or MSmail administrator
can talk an inexperienced user through the installation.

The SMTP/POP3 server requires an administrator
to perform only the following four actions: 

■ Load the software to a chosen volume 
■ Tell the server about the local network configuration 
■ Set up mail accounts (mailboxes) for the local users 
■ Check that the server is not experiencing problems 

The AltaVista Mail product implements these tasks
through three user interfaces: the setup (installation)
procedure, a Windows-based administration graphical
user interface (GUI), and World Wide Web forms. 

Setup Procedure. Apart from loading the software,
the setup procedure has several other functions. If
the software has been corrupted, the setup proce-
dure repairs the service by resetting the server’s
entire environment to a known state. The server’s
account privileges are reset, a new password is gener-
ated, and the database directories and files have their
file protection reset. 

Setup continues by asking the minimum number of
questions required to allow the server to work. The
administrator responds by naming any firewall used, or
if in dial-up mode, naming the remote mail server.
Finally, it runs the server’s self-test, which is described
in more detail later in this paper. It is important that
self-test run during setup. If the system is not working,
the administrator needs to be told the precise causes of
the problem immediately, before he or she can become
confused by subsequent symptoms of system failure. 

Windows-based Administration GUI. The Windows-
based administration GUI controls the AltaVista Mail
server through a simple, text-based administration
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protocol over a Transmission Control Protocol/
Internet Protocol (TCP/IP) link. Therefore the GUI
can control servers elsewhere in the network. 

The GUI has two modes. The default mode is a sim-
ple menu with links to functions that invoke the most
common administrative tasks: network configuration;
adding users and mailing lists; redirecting mail and
changing passwords; and self-test. This mode, shown
in Figure 3, is a nonthreatening interface for inexperi-
enced administrators; they do not need any other
information to use the server successfully. This means
that local users with no specialized knowledge can set
up small and undemanding sites. 

Administrators of large or busy sites need to use the
advanced mode, shown in Figure 4. This interface is
similar to the style of the Windows Explorer GUI and
gives access to every server and mailbox control, the
messages in the server, and its operational logs. 

Both modes include an on-line help file that gives 
a brief introduction to the system, reference infor-

mation on all the visible controls, and assistance in
troubleshooting. Apart from the equivalent help text
in the World Wide Web forms, this is the only product
documentation. 

The self-test is one of the most important adminis-
tration functions for sites at which mail is a mission-
critical service. The self-test checks that all aspects of
the local machine’s environment that are necessary for
the server to operate do indeed work; it also checks
that the server is responding correctly on all the net-
work ports it serves. In a redundant environment, the
self-test checks every element to make sure partial fail-
ures are reported. For example, a host generally knows
of two or more DNS servers, only one of which needs
to be working for the mail server to run. Because the
mail server will not see a problem until the last DNS
server dies, the self-test must report any partial failure. 

The self-test is vital: a regular check is the only way to
be sure that a background server is working. A server
cannot be guaranteed to inform an administrator of

Figure 3
Windows-based Administration GUI, Simple Menu
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problems because the problems may affect the notifi-
cation path used. The AltaVista Mail self-test allows an
administrator to perform the necessary check with a
single “button click.” The self-test also runs as part of
a regular cleanup procedure. Errors are reported to
the server’s error log, so a less active administrator can
monitor the system by reading this log every few days. 

World Wide Web Forms. The World Wide Web
(WWW) forms interface is provided by a built-in
Hypertext Transfer Protocol (HTTP) server. This
interface offers the same facilities as the Windows
administration GUI. Because a Windows Explorer-
style GUI is more difficult to present using a Web
browser, we implemented the “power user” options
on the top-level task menu of the WWW form. These
options make the initial interface somewhat intimidat-
ing, because they include controls whose function may
not be understood by an inexperienced administrator.
The familiar controls, however, are grouped together.
The Web GUI is shown in Figure 5. 

Several details help make the three user interfaces
approachable and nonthreatening. 

When the software requires the user to answer a
series of questions, it presents a dialogue box chain
(sometimes known as a “wizard”). Used properly, this
technique allows the user to concentrate on one thing
at a time, with all distracting material hidden. 

Every question in a dialogue box chain gives an
explanation of what information is needed, any suitable
defaults or examples, a suggestion of whom to contact
to find the answer, and a safe way to abort the process.
If the user knows the answer, he or she will be able to
recognize it in the example. Users who do not know
the answer will not be intimidated by the wording. 

The logic works in terms the user understands, not
in terms of the software’s operation. The gateways, for
example, contain a question that the software does not
use other than to make the text of the succeeding dia-
logues relate to the user’s environment. 

Some controls can easily be invoked in error but
cannot be redefined to make the error less likely. In

Figure 4
Windows-based Administration GUI, Advanced Mode 
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these cases, the resulting dialogue box confirms the
control’s function and offers the opportunity to try
again. For example, it is easy to hit the add-username-
to-mailbox control instead of the add-mailbox con-
trol, and this confusion cannot easily be eliminated
with a revised definition. The add-username dialogue
therefore warns that it does not add a mailbox but
offers a route to the dialogue that does. 

The mechanical operation of all controls is smooth.
Appropriate default functions are always active; for
example, when an input field is empty, the default

function might be “Next” or “Skip”; but the moment
any text is entered, the default function changes to
“Add” (or whatever normally happens to the input
text). This helps the user ignore the interface and con-
centrate on the meaning. 

Performance 
In a mail server product, performance, measured as
the number of messages processed per unit time, is
usually a major concern. In previous products
designed by MIG, performance was among the hand-

Figure 5
WWW Forms Administration GUI
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of code is directly affected by asynchronous events, it
becomes difficult to be convinced that the code
works. In addition, the code is unlikely to keep work-
ing as it is maintained. Synchronous methods—multi-
threading with thread-synchronous calls, polling,
and timeouts—will normally yield perfectly adequate
performance; they need only be avoided for very
low-level code such as GUI window procedures. 

8. Where latency requirements permit, polling for
new work or configuration changes can be a better
solution than an active notification path. Polling is
easy to implement and robust. There is no need to
ensure that an idle program is completely inactive:
since modern operating systems page rather than
swap, minor CPU attention every few seconds
imposes no noticeable performance penalty. 

Our approach to performance—and its nearly com-
plete subordination to simplicity—can be seen in sev-
eral aspects of AltaVista Mail’s operation. 

The server’s function is to switch messages, so its
database is a set of messages organized by target. Each
message is held as a single text file; the text consists of
the SMTP commands that would introduce each mes-
sage to the server. 

A message file is held in a directory that denotes its
target, whether that target is a remote domain, a local
mailbox, or a thread of the SMTP server itself. When
the router decides on the target, it copies the message
to its target directory and deletes the original. When a
message splits to multiple targets, no attempt is made
to share the common message data. 

Although we could have designed a far more effi-
cient way of representing the message database and
splitting the message data as it flows through the server,
our experience with previous products suggested that it
was not necessary. Because the storage system we chose
was a simple one, we could afford to throw it away if it
did not work under load. Happily, it did work, and we
gained a highly robust storage system with excellent
performance for a trivial investment. 

When a message is passed from one thread of the
SMTP server to another, it is left in the target thread’s
input directory. There is no notification path; the tar-
get thread discovers the message by polling. 

To make the source code as comprehensible as pos-
sible, the server uses extremely simple protocol
parsers. The source code is organized in terms of a
programmer’s understanding of the protocol, not
some abstraction that might be more efficient. The
parsers scan the input data as many times as is conve-
nient to extract the data they need at each level. The
result is secure and reliable protocol machines that are
easy to verify and modify when necessary. 

Despite the apparent lack of care for conventional
performance concerns, extreme workloads must be
supported. All the server’s components must support

ful of top-priority goals, and from these we had
learned a great deal about designing for the highest
possible performance. We had also learned that the
single-minded pursuit of performance is expensive,
disruptive to implementation, and prone to error. 

This experience yielded a set of informal rules for
cost-effective design regarding application perfor-
mance. These rules proved to be effective during the
development of the AltaVista Mail product set.
(Remember, these rules relate to the performance of
typical applications: they would not apply to writing an
operating system or other low-level code.) 

1. Estimate the minimum disk I/O that the product
operations will require, but treat this value only as a
sanity check against gross waste of resources. Do
not insist that this minimum be achieved. 

2. Avoid checking special cases in a task’s input data to
avoid processing steps. Such optimizations are very
likely to cause maintenance errors to go unnoticed
and greatly increase the cost of the system test. 

3. Never optimize tasks that consume only CPU time;
examine only those algorithms suspected of being
high-order consumers. It is almost never worth
optimizing error cases. 

4. Do not use complicated buffer management
schemes to avoid copying data. Complicated code
is prone to maintenance errors, and performance
will not be helped much. Modern computers are
very good at copying buffers of data but relatively
slow at executing the complex branch logic that
might be required to avoid copying data. 

5. Take advantage of the high-performance system
routines in modern operating systems. Do not
build a memory allocator or a disk cache: the oper-
ating system developer has already spent far more
on performance than an application developer can
afford to spend. (Even if the operating system rou-
tines do not perform well, the problem will be com-
mon to all applications that use the platform.)
Spend time solving the customer’s problem, not
repeating operating system development. 

6. Use the operating system disk cache. It can be
worthwhile to read even quite large amounts of file
data in multiple passes if that will simplify program
logic: the data will normally stay in memory for a
subsequent pass. If the data has been flushed from
the cache for the next pass, then the system had a
better use for the memory, and any attempt to
avoid multiple passes by remembering substantial
state will degrade performance, not improve it. 

7. Never offer an asynchronous application program-
mer interface (API), and avoid using asynchronous
modes of otherwise synchronous services, even if
that technique is presented as the way to obtain
good performance. When more than a tiny region
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huge numbers of messages, messages of huge size,
messages with huge recipient lists, and messages bound
for huge numbers of targets. Ideally, the system should
impose no limits below those imposed by the underly-
ing machines. An extreme workload should cause no
problems or substantially reduce the work rate. 

The POP3 server has to be able to support tens of
thousands of messages in a mailbox. On connecting,
most POP3 clients ask for a mailbox listing, which
involves counting the size of each message in the mail-
box. If thousands of messages are present, this can take
so long that the client disconnects, believing the server
has failed. Subsequent reconnections see exactly the
same problem, and no mail flows. To avoid this prob-
lem, the server returns a partial listing to the client if it
believes the full listing is taking too long. When the
full listing is finished, it is written to disk to be
returned to the client the next time it connects. 

SMTP rules state that servers must support at least
100 recipients per message, and that ideally there
should be no limit. Our existing customer base expects
no limit. Arbitrarily large recipient lists can be allo-
cated in virtual memory simply by configuring a page
file of sufficient size. However, very large lists then
impose a severe and highly variable load on the system.
To keep the system load within reasonable bounds, we
placed an upper bound on the amount of virtual mem-
ory claimed. The server limits the number of splits a
single message can make while being routed. (A block
of virtual memory is required for each split, not for
each recipient; however, in the worst case, each recipi-
ent requires its own split.) Once a message’s recipient
list has split to more than 64 targets, subsequent recip-
ients are moved to a new copy of the message that will
be routed separately, regardless of whether the recipi-
ents could have been served by an existing split. 

Error Handling and Error Reporting 
The server has to work reliably, even in the face of
errors in the local environment. Experience suggests
that code containing many error paths does not work.
If a function can fail for any of several individually
identified reasons, and the calling code has to handle
each reason separately, sooner or later some of those
error paths will be incorrect. Checking that each path
continues to work as development and maintenance
continues makes the system test very expensive; fur-
thermore, it is difficult to cause every possible error to
arise when testing. 

To ensure its reliability, the server uses the following
implementation rule: any function is allowed to fail,
but its calling code is not allowed to distinguish
between the various reasons for failure. Indeed, it can-
not make a distinction, because only one failure return
code is defined. Functions were reworked as necessary,
so the rule could be observed. 

(A related observation is that the code will be more
reliable when only one kind of success outcome is
allowed. We found this to be true to some extent: it is
equivalent to saying that a linear, nonconditional flow
of control is more reliable than a highly conditional
one. However, as long as every success outcome does
occur during the product’s normal operation, the code
that handles it will probably continue to work, and the
system test will have reason to check that it does.) 

The server also has to report any errors it encoun-
ters: it must say which server operation could not be
performed, precisely what system condition caused it
to fail, and what to do about the problem. This appar-
ently conflicting requirement is handled with a second
rule: error handling must be completely separated
from error reporting. 

Error reporting works with the structure of the
server. The server’s flow of control and breakdown
into threads were designed specifically to support pre-
cise error reporting. Each thread has a well-defined
purpose that can, if necessary, be explained to the
administrator, or at least named in a diagnostic report
without causing confusion. Because a thread is fully in
charge of its task, it is able to report the significance of
any failures it encounters to the administrator. 

A routine uses a simple stack-based error-posting
module to report an encountered error. The report
includes a description of the failed operation, the oper-
ation’s parameters, and other helpful information such
as the name and return status of any failed system call.
The routine then returns the standard error status
code. Its caller sees that this routine has failed and gen-
erates a report, logging the failure and adding any rel-
evant parameters it holds. The caller then releases any
resources associated with the failed request and
returns the standard error status code. Eventually a
high-level routine handles the failure, typically by log-
ging the stack of error reports and continuing with its
next item of work. 

Our approach to error handling and reporting
yielded extremely good results, but it had two serious
implications. First, we could not import any source
code from existing systems: all the code in the server
had to use the error handling and reporting methods
just described. Often, we could not use an estab-
lished API definition for common functions. Second,
the product and each of its components needs built-
in knowledge of its function as perceived by the user,
so it can report the true status of any problem and
ideally give suggestions for fixing the problem. It
needs to report the implications of the problem, not
merely the facts of the problem. For these reasons,
we could not use the powerful UNIX-style approach
of building complex systems out of small, general-
purpose tools. 



Additional Necessary Features 
In general, we tried to avoid adding features and keep
in mind the server’s one basic function: to move mes-
sages from place to place with minimal user interven-
tion. When forced to add a feature, we aimed to keep
it as simple and inexpensive to implement as possible,
yet ensure that the feature offered the greatest real
value. Obviously, this involved a trade-off, but it was
usually clear how far to go. 

The server needed a log subsystem to report important
events, for example, errors encountered and suspected
security violations (attempts to break into the server). To
gain the maximum benefit from the log subsystem, we
also used it to report the normal activities of the server 
in sufficient depth to perform a complete analysis of its
work. This allows the logs to be used for load monitoring,
performance analysis, message tracing, and billing and
accounting. Enough information is logged to identify
exactly what has happened to each message submitted to
the server. Header information allows the originator and
the recipients to be identified, and checksums for enve-
lope and content allow duplicate messages to be detected.
Duplicate detection is useful as a diagnostic aid and to
avoid billing multiple times for a single message. 

The POP3 protocol does not report a message’s
actual recipients (as opposed to the To: and Cc: fields,
which may not be complete or even related to the real
recipients). It therefore cannot be used as a way of
delivering messages to gateways: it is only suitable for
final delivery to recipients. For this reason, the addi-
tion of a proprietary interface could not be avoided.
We chose to implement an API because it offers the
simplest possible interface to the message data:
sequential access to the return path, the recipients, the
header fields, and the lines of content data. At the
same time, it provides routines that encapsulate much
of the complicated and error-prone logic that gate-
ways often need. 

For example, the API allows a gateway that is fetch-
ing a message to handle each recipient individually: it
can accept, nondeliver, redirect, expand, or send for
retry each of the recipients it sees. The gateway auto-
matically generates any required new messages, includ-
ing nondelivery reports, messages containing those
recipients sent for retry, and messages with new recipi-
ents added by redirection or mailing list expansion. 

The use of an API also guarantees that a gateway’s
operation is fully logged. When message-IDs and orig-
inator and recipient addresses are translated between
SMTP and the foreign representation, the correspon-
dence is logged. Messages can then be traced, even
across gateway boundaries. 

In addition to these features, we extended the ser-
vices of the built-in HTTP server, which offers the
administration Web pages. With a combination of
server-parsed hypertext mark-up language (HTML)

and a low-level attribute handling system to read and
write server data, a customer can change both the
appearance and the function of the Web pages, simply
by editing HTML files. 

Experience with the Product 

The AltaVista Mail product set has achieved its design
goals and has validated the implementation rules we
imposed on it. It has been inexpensive to develop, sup-
port, and maintain; is a well-behaved and effective
solution; offers excellent performance; and has yielded
very few bugs. 

Its major deficiency is that AltaVista Mail, by itself,
does not form a complete solution. Despite our efforts
to ensure that it can be run by inexperienced adminis-
trators, it relies on complex external technologies.
Dial-up networking, Internet Protocol address assign-
ment, and the other aspects of the interface to the
Internet service provider present problems that are
not easy to deal with. 

Our major problem is the configuration of MX
(routing information) records in DNS. Although the
product reports misconfiguration accurately, users call
us to find out what to do about it. Better integration
with DNS would substantially reduce our support
load. 

Overall, we tried to keep the number of controls to
the minimum. In retrospect, we did build in a few that
perhaps should not have been provided. For example,
the administrator has complete control over the SMTP
timeouts. Although this is required by the relevant
RFC documents, we should have had the confidence
to pick values that worked everywhere rather than pro-
vide the control. 

On the other hand, providing more control in cer-
tain areas would have expanded the range of cus-
tomers who could use the product. For example, some
low-end customers need to control the schedule on
which SMTP connections and DNS requests are made,
and the dial-up facilities we provide are too crude to
do this. 

Conclusions 

This section reviews the organizational, design, and
implementation rules we found most helpful in build-
ing the initial AltaVista Mail products. These ideas are
the ones we recommend to engineers who are starting
a new area of work. 

Running a Development Project 
If possible, develop a new application as a product-
quality prototype, not as the implementation of an
architecture. A prototype can be brought to market
quickly and inexpensively and will generate helpful
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feedback from customers. It is much more difficult to
make sure an abstract architecture is not expensively
addressing problems that do not need to be solved. 

Do not develop prototypes that are not product-
quality. A body of unshippable code that has been
built as a proof of concept does not demonstrate the
practicality of building a product. Take shortcuts, but
not in any area that affects the application’s fitness for
use or maintainability. If the outcome is a shippable
prototype, the choice can then be made whether to
ship it or not. 

Accept requirements input from anyone who will
express an opinion but grant veto power only to
those who are funding the project. Do not let a
search for consensus slow the application’s entry into
the market but be very clear about why the applica-
tion is the right thing, keep track of the risks, and be
ready to respond to changes in the market. Do not
use the beta test (open field test) merely to check if
the product works; use it to decide whether the
product needs changes. A change of mind at the last
minute is not a failure. 

Underfund software development. Allow enough
time to produce the core of the solution and no more.
This helps developers in two ways: they concentrate on
what really matters, so they keep looking for the most
effective ways to solve the largest possible parts of the
problem, and they do not start “knitting.” Developers
enjoy developing; given adequate time, they will
increase the functionality of the product. This will
reduce the product’s quality, not increase it. Given
extra resources, it is unlikely that those funding devel-
opment would choose the extra functionality a devel-
oper would like to build. 

Defining a Product 
Technical issues are never the most important consid-
erations in defining a product. The most important
thing to analyze is the customer profile. Instead of
building a product, the goal should be solving prob-
lems for the customer. The more accurately the cus-
tomer’s problems can be characterized, the more
effectively the product will solve them. 

At the beginning, assume that the product will be
sold at a very low price. Think through the implica-
tions; they will indicate the nature of an acceptable
product. Then, if the price is higher, add the extra fea-
tures that the increased price will require. 

Assume that the product will be supported directly
from the engineering group. Imagine what would be
necessary to support the product and define require-
ments to impose on the product that will minimize the
cost of providing support. Then, if the product is sup-
ported elsewhere, add the extra features that the exter-
nal support structure will require. 

Design and Implementation 
Only a limited number of clever and difficult compo-
nents can be designed and built into the product.
Make sure they are the ones that will make the most
difference, and make sure each difficult part is as small
as it can be by encapsulating it in a simple interface.
Outside the most critical areas, use the simplest designs
possible. Do not simplify to spend less time on design:
simplify to improve the quality of the product and to
reduce the cost of implementation and maintenance. 

Early in the project, determine the performance
goals for the product. Choose a small number of areas
in which to be careful and ruthlessly simplify the rest.
Once learned, design for performance is a skill that is
difficult to keep under control. However, time spent
on performance is an investment, and a deliberate
choice of investments is needed. 
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