
Digital Technical Journal Vol. 9 No. 4 1997 61

The Ethernet supported large 100-node networks in
1976.1 By 1985, 10 Mb/s Ethernet had been available
for a while, even for PCs. However, high-performance
hardware and software lagged, due to system bottle-
necks above the physical layer. The premier implemen-
tations for UNIX were achieving only 800 kb/s (8 % of
10 Mb/s) in benchmark scenarios on common system
platforms of the day.2

The deployment of 100 Mb/s fiber distributed data
interface (FDDI) provided an order of magnitude
bandwidth increase in the link speed around 1987.
However, the end system could not saturate the link
on generally available machines and operating systems
until 1993,3 when Transmission Control Protocol
(TCP) improvements and a CPU capable of 400 mil-
lion operations per second became available.a Once
again, high-performance hardware and software
lagged the potential provided by the physical layer.

The current technological approach is switching.
Gigabit-class links and adapters, such as 622 Mb/s
asynchronous transfer mode (ATM), are becoming
available. Since ATM links are dedicated point-to-
point connections, the use of 622 Mb/s in switch-to-
switch links and at the periphery implies that one
ought to be able to move data at gigabit rates.

Switched capacity promises a lot to servers; how-
ever, mainstream systems are not currently capable of
effectively using the bandwidth. The DART project
attempts to avoid the Ethernet and FDDI scenarios
where end-system performance lags physical-layer
potential.

One of the early goals was to go beyond simple
benchmark scenarios where line rate communication
connects a phony bit source to a phony bit sink, with
the CPU saturated. The context for the work was to
connect two applications at high speed, leaving CPU

DART: Fast Application-
level Networking via
Data-copy Avoidance

Robert J. Walsh

The goal of DART is to effectively deliver high-
bandwidth performance to the application,
without a change to the operating system call
semantics. The DART project was started soon
after the first DART switch was completed, and
also soon after line-rate communication over
DART was achieved. In looking forward to giga-
bit class networks as the next hurdle to conquer,
we foresaw a need for an integrated hardware-
software project that addressed fundamental
memory bandwidth bottleneck issues through
a system-level perspective.

©1997 IEEE. Reprinted, with permission, from IEEE Network,
July/August 1997, pages 28–38.

aThe TCP improvements included a small architectural update,
the window scaling extension, to abstractly support the advertise-
ment of more than 64 kbytes of receive buffering. The rest of the
improvements derived from implementation efforts to increase
the actual buffering allocated to advertised TCP windows, and to
improve the segmentation of the TCP byte stream into packets.

62 Digital Technical Journal Vol. 9 No. 4 1997

resources available to execute the applications. In the
past, the CPU had been saturated in Ethernet and
FDDI quests for line rate communication.

Layering

The motivation for DART arises from the specific lay-
ering and abstraction used in BSD-derived UNIX sys-
tems, but the context is sufficiently general that the
problem and solution have wide applicability. Since
various layers within system software will be refer-
enced repeatedly, we introduce them using Figure 1.

The application generates and consumes data. It
tells the operating system which data to communicate
when, by using read and write system calls.

The socket layer moves data between the operating
system and the application. It also synchronizes the
application with the networking protocols based on
data and buffer availability.

The transport protocol layer provides a connection
to the remote peer. In the case of TCP, the connection
is a reliable byte stream. TCP takes on the responsibil-
ity of retransmitting lost or corrupted data, and of
ignoring reception of retransmitted data that was pre-
viously received.

The network protocol layer provides an abstract
address and path to the remote host. It hides the vari-
ous hardware-specific addresses used by the various
media in existence. In the case of IP, fragmentation
allows messages to traverse media which have different
frame sizes.

A conventional driver layer moves data between the
network and the system. It uses buffers and data struc-
tures whose representation percolates throughout all
the operating system networking layers.

The DART Concept

DART increases network throughput and decreases
system overheads, while preserving current system call
semantics. The core approach is data copy avoidance,
to better utilize memory bandwidth.

Memory bandwidth is a scarce resource that must
not be squandered. In DIGITAL’s transition from
MIPS processor systems to Alpha processor systems,
CPU performance increased more rapidly than main
memory bandwidth. It took approximately 340 ms to
move 4500 bytes on the MIPS-based DECstation
5000/200, and approximately 200 ms on the Alpha-
based DEC 3000/500. In the same time, the fixed
per-packet costs were reduced by a factor of three or
more. (General trends are also stated in Reference 4.)

One breakdown of networking costs is reported in
Reference 5. The variable per-byte costs reported
there are all associated with memory bandwidth,
which is improving slowly. The fixed per-packet costs
in the driver, protocol, and operating system overhead
are all generally associated with the CPU, which is
improving rapidly. Thus, we focus on the per-byte
memory bandwidth issues as those most needing
architectural improvement.

A traditional system follows the networking subsys-
tem model implemented within the BSD releases of
UNIX, shown in Figure 2. An application uses the
CPU to create data (1), the socket portion of the sys-
tem call interface copies the data into operating system
buffers (2 and 3), the network transport protocol
checksums the data for error detection purposes (4),
and the device driver uses programmed input/output
(I/O) or direct memory access (DMA) to move the
data to the network (5). Graphs showing the domi-
nant costs of checksumming and kernel buffer copies
are presented in Reference 6.

These five memory operations are a profligate waste
of memory bandwidth. A system with a 300 Mbyte/s
memory system would achieve at most 300*8/5 =
480 Mb/s I/O rates. The system would be saturated.

The DART model is shown in Figure 3. The DART
model is that data is created (1) and sent (2). Two
memory operations make efficient use of the memory
bandwidth.

APPLICATION

TRANSPORT PROTOCOL
(TCP, UDP)

NETWORK PROTOCOL
(IP)

DRIVER

SOCKET

OPERATING
SYSTEM

Figure 1
Software Layering

TRADITIONAL
DEVICE

MEMORYCPU

1
2

3
5

4

Figure 2
BSD Copy-based Architecture

DARTMEMORYCPU
1 2

Figure 3
DART Zero-copy Architecture

Digital Technical Journal Vol. 9 No. 4 1997 63

Squandering of memory bandwidth is avoided. A
system with a 300-Mbyte/s memory system would
encounter the larger bound of 300*8/2 = 1200 Mb/s
for I/O rates. Resources are available for the applica-
tion even when running at line rate.b

To support the DART concept, we need a system
perspective that integrates the hardware and software
changes implied by the DART model. Hardware is
responsible for checksumming instead of software.
Hardware is solely responsible for data movement,
instead of redundant actions by both hardware and
software. These hardware changes are bounded and
generic.

Operating system software retains the application
interface and general coding of the BSD UNIX imple-
mentation. Extensive changes are unnecessary, since
the focus is the core lines that represent data move-
ment consumption of memory bandwidth. Extensive
changes are also undesirable, since there is a large base
of software written to the current properties of the
BSD networking subsystem.

The DART Hardware

The first implementation of the DART concept is a
high-performance 622-Mb/s ATM network adapter
for the PCI bus called DART. DART’s design reflects
an awareness of the interactions of the components of
the system in which it is placed. The PCI bus, main
memory, cache, and system software can all be used
efficiently.

Store-and-Forward Buffering and DMA
DART is an adapter that connects a gigabit-class net-
work to a gigabit-class I/O bus, and is appropriate for
systems with gigabit-class memory systems. DART is
focused on the server market where a slight increase in
adapter cost can be acceptable if the system perfor-
mance is significantly improved, since main memory
and other costs dominate the cost of the DART
adapter.

DART alleviates main memory bottlenecks through
a store-and-forward design, as shown in Figure 4.
Traditional networking software subsystems and appli-
cations perform at least five memory operations to cre-
ate, copy, checksum, and communicate data. DART’s
exposed buffering allows data to be created and com-
municated with just two main memory operations.

The adapter memory is a resource that can be better
utilized by exposing it to the operating system, and
better performance results as well. This is similar to the
exposure of the CPU-internal mechanism in the CISC-
RISC (complex to reduced instruction set) transition.

DART contains a number of features to make the
store-and-forward design effective. DART’s bus mas-
ter and receiver summarize network transport proto-
col checksums for software. DART’s bus master
provides byte-level scatter-gather data movement to
support communication out of application buffers,
not just operating system buffers. DART provides
packet headers for software to parse so that software
can direct the bus master to place received data in the
application’s buffers when the application desires,
without operating system copy overhead.

Buffering Design An ATM segmentation and reassem-
bly (SAR) chip accesses virtual circuit state for each
cell, and operates on 48-byte cell payloads. The pay-
load naturally corresponds to a burst-mode operation,
leading to the use of synchronous dynamic DRAM
(SDRAM) to buffer cells. The circuit state is generally
smaller and randomly accessed, leading to the use of
static RAM (SRAM) for control information. Dividing
the data storage architecture into two parts allows the
interface designs to be tailored to the characteristics of
the data type in question.

The DART prototype uses 16 Mbytes of SDRAM
for the data memory. The prototype uses 1 Mbyte of
SRAM for the control memory. The SDRAM supports
hardware-generated transmissions, aggregation of
data for efficient PCI and host memory interactions,c

and buffering for received data until the application
indicates the proper destination for it. The SRAM con-
tains the SAR intermediate state; with a large number
of virtual circuits and ATM’s interleaving of packet
contents, there is too much state to be recorded on-
chip at this time.

Packet Summarization for Software The receiver parses
the cells for the various packets which are interleaved
on the network connection, and reassembles the cells
into packets. Once all the cells composing a packet
have been received, a packet descriptor is prepended
to the packet. The descriptor contains length, circuit
number, checksum, and all other information that the
driver may need to parse and process the packet.

Upon packet reassembly, a hardware-initiated DMA
operation moves software-configured amounts of
descriptor and packet contents to host memory. WhenbThe 1200-Mb/s figure includes the cost of having the application

write the data to memory. Some memory bandwidth might be
consumed to fill the CPU’s cache in order to execute the applica-
tion and operating system. In this scenario, if non-network band-
width is greater than 300*8 — 2*1000 = 400 Mb/s, data
production would be the bottleneck and the network would
run at less than line rate. This is beneficial; the bottleneck has
been moved to the application.

cSome adapters segment (or reassemble) from host memory,
leading to 48-byte payload transactions with host memory.
Transaction size should be an integral multiple of the cache
block size, and should be aligned, in order to avoid wasting
system bandwidth.

64 Digital Technical Journal Vol. 9 No. 4 1997

properly configured, the hardware provides the net-
work and transport headers, allowing software to
determine where to place the packet data. Software
data copies are avoided by allowing software to initiate
a DMA operation to move the data to its final application-
desired location, rather than to some expedient, but
inefficient, operating system buffer.

Receive Buffering DART’s store-and-forward receive
buffers are divided into two classes. The per-circuit
class guarantees each circuit forward progress. Each
circuit is individually allocated some buffers in which
to store cells. No other circuit can prevent data from
passing through such buffers. The shared class is pref-
erentially used, and avoids resource fragmentation
problems. Any circuit can consume a shared buffer for
an incoming cell.

Since software specifies when and where to store
packet data, adapter buffers are recycled when soft-
ware decides to do so, and not independently by hard-
ware. Part of a packet may be stored in application
buffers at one time, and other parts of the same packet
may be stored in application buffers at later times.
Hardware cannot assume a one-to-one correspon-
dence between receive DMA and complete packet
consumption.

Flow control occurs in the socket layer based on
transmit buffer availability, in the transport layer based
on remote receive buffer availability, in the driver
based on adapter resource availability, and in the ATM
layer based on cell buffer availability within the net-
work. Credit-based flow-control protocols for ATM
are based on the source of a cell stream on a link
decreasing a counter (quota) when a cell is sent, and
increasing a counter when a credit is received.7 The
decrement represents buffer consumption at the next
hop. The credit advertises buffer availability to the
source; the next hop has forwarded a cell and thus
freed a buffer.d

With FLOWmaster, the credit is conveyed across the
link to the source of the cell stream by overlaying the
virtual path identifier (VPI) field with the circuit to
credit. This is a nonstandard optional use of the ATM
cell header. Quantum Flow Control is a credit-based
flow-control protocol for ATM that batches the credits
into cells instead of overlaying the VPI field.

Since credit-based flow-control is based on buffer
availability, credits advertising free buffers can poten-
tially be held up by software actions. The shared class
allows immediate credit advertisement, and best
enables line rate communication. The per-circuit class
involves software packet processing in the credit
advertisement latency. To advertise a credit for a cir-
cuit whose per-circuit quota is exhausted, either the
circuit must recycle an adapter-buffered packet, or any
circuit must recycle a shared-class, adapter-buffered
packet.

A minimal memory that constantly ran out of per-
circuit buffers and flow-controlled the source would
exhibit poor performance. DART uses a large data
memory. Advertising (shared) buffers via credits keeps
the data flowing through the overall network and sys-
tems with high performance.

Transmit Buffering Software performs all transmit
buffer management. Software creates a free buffer list
of its own design, allocates buffers from the list to hold
packet data, and recycles buffers after observing packet
completion events. Software makes the trade-off
between large efficient buffers which may be incom-
pletely filled, and small buffers which waste less stor-
age but incur increased allocation, free, DMA
specification, and transmit description overheads.

Peer-to-Peer I/O
DART avoids system resource consumption in server
designs by supporting peer-to-peer I/O. A traditional
server would consume PCI bus and main memory
bandwidth twice by using main memory as the store-
and-forward resource between two I/O devices, as
shown in Figure 5. The PCI bus is consumed during
steps 2 and 5. The main memory is consumed during

CONTROL
MEMORY
INTERFACE

BUS MASTER
AND BUS
SLAVE

DATA
MEMORY
INTERFACE

TRANSMIT RECEIVE

CONTROL
MEMORY

DATA
MEMORY

Figure 4
DART Block Diagram

dForwarding the cell is required for (per-circuit) buffers of which
the transmitter on the link was made aware during link initialization.
The receiver on the link can generate credits immediately for (shared)
buffers hidden from the transmitter during link initialization.

Digital Technical Journal Vol. 9 No. 4 1997 65

steps 3 and 4. On some systems, I/O operations com-
pete for cache cycles during steps 3 and 4, whether
the cache is external to or internal to the CPU. Such
resource consumption can cause the CPU to stall even
though the CPU will never examine such data.

DART allows a single PCI bus transaction to move
the data, as shown in Figure 6. This also avoids any
main memory bandwidth consumption when a bridge
isolates the PCI I/O bus from the main system bus.
The cache is not consumed with nuisance coherence
loads for data the CPU will never examine, and the
CPU does not have to contend with I/O for cache or
main memory cycles.

For peer-to-peer I/O over DART, the CPU is only
involved in initiating packet transmission. This is a rel-
atively small burden, since only a little bit of control
information needs to be computed and communi-
cated to the adapter.

To enable efficient peer-to-peer I/O, DART
includes a bus slave as well as a bus master. The bus
slave makes the internal resources of the adapter visi-
ble on the PCI bus through DART’s PCI configuration
space base address registers. Therefore, on the PCI
bus, the data memory looks like a linear contiguous
region of memory, just as main memory does. The bus
slave supports both read and write operations for these
typically internal resources.

DART provides efficient handling of small packets.
Typically, describing a number of small packets for
transmission is onerous for software, limiting the peak
packet rate. DART’s transmitter can automatically
subdivide a large amount of data into small packets,
eliminating a lot of per-packet overhead. This feature
is appropriate for a video server, whose software can-
not possibly fill the network pipe if it must operate on
8-cell packets.

PCI Interface
DART supports both 64- and 32-bit variants of the
PCI bus. The network interface and DART memories
provide prodigious bandwidth. To fully take advan-
tage of them, a 64-bit PCI bus is recommended, but
DART will also operate on a 32-bit PCI bus.

Bus Reads and Writes The DART architecture sup-
ports memory write-and-invalidate hints to the bridge
between the system bus and the PCI I/O bus. Such a
hint informs the bridge that the I/O device is only
writing complete cache blocks. There is no need for
read-modify-write operations on main memory cache
blocks in such circumstances.

Write operations within a system are generally
buffered. A path from the origin of the write to the
final destination can be viewed as a sequence of seg-
ments. As data flows through each segment, each
recipient accepts data with the promise of completing
the operation, allowing each source to free resources
and proceed to new operations. Thus, write paths are
generally not performance-limiting as long as there is
sufficient buffering to accept burst operations. In the
DART context, the bridge between the system bus and
the PCI I/O bus accepts DART’s writes and provides
buffering for high throughput.

However, read operations are more problematic.
When memory locations are shared between CPUs,
caches may or may not be kept coherent by hardware.
Here, the memory locations are shared between the CPU
and I/O device, and there is no coherence support. Each
DART read suffers a round-trip time through the bridge
to access the main memory. DART addresses this latency
through large read transactions (up to 512 bytes).

As an example, consider a simplified 64-bit bus
where 540 Mb/s of data are written in 64-byte bursts,
reads suffer 15 stall cycles until the data starts to
stream, and writes require a stall cycle for the target
to recognize its address. Address and data are time-
multiplexed at 33 MHz. Then writes consume 540 *
(1 + 1 + 8)/ 8 = 675 Mb/s of bus bandwidth. Reads
have 33 * 8 * 8 — 675 = 1437 Mb/s of bus band-
width into which they must fit. Thus, the minimum
burst length L required is 540 * (1 + 15 + L) = L ≤ 1437.
The burst must be at least 9 cycles, 72 bytes, in the
ideal case. DART’s large read burst size compensates
for overheads like large read latencies.

PCI BUS

I/O
CONTROLLER

TRADITIONAL
ADAPTER BRIDGE

CPU, CACHE,
MEMORY

I/O
DEVICE

1
6 3

4

5
25

2

Figure 5
Traditional Server Architecture

PCI BUS

I/O
CONTROLLER

DART BRIDGE

CPU, CACHE,
MEMORY

I/O
DEVICE

1
3

2
2

Figure 6
DART Server Architecture

66 Digital Technical Journal Vol. 9 No. 4 1997

Interrupt Strategy As noted above, on-chip access
rates for the CPU increase more quickly than off-chip
access rates. Interrupt processing and context switching
are fundamentally off-chip actions; new register values
must be loaded into the CPU, and the cache must be
primed with data. Thus, the general system trend is that
interrupt processing and context switching improve
more slowly than raw processing performance.

DART provides a programmable interrupt holdoff
mechanism. By delaying interrupts, events can be
batched to reduce various system overheads. If the
batching mechanism were not present, an interrupt per
packet would swamp system software at gigabit rates.

Since the interrupt delay interval is programmable,
software may use adaptive algorithms to decrease
interrupt latency if the system is idle, or to increase the
amount of batching if the system is busy. The delay
timer starts decrementing as soon as it is written.
Typically, the timer will be written at the end of the
interrupt service routine.

Interrupts can be divided into two classes by
software. Each class has its own delay interval, in
case software assigns distinct importance or latency
requirements to the classes.

The Dart Software

DART provides increased performance with the same
system calls, and with the existing system call seman-
tics. The only change is to the underlying implementa-
tion of the existing system call semantics.

Unmodified existing applications can consume giga-
bit network bandwidth. The application can assist the
system software by using large contiguous data buffers,
but it is not required. System software can specify byte-
level scatter/gather operations to the DART adapter in
order to access arbitrary application buffers.

Changes to the system software are confined to a
few locations above the driver layer, and are generic.
Successive high-bandwidth adapters for other media
can be supported by just writing drivers; no changes
will be needed above the driver layer. The shared set of
upper-layer software changes are only needed to take
maximum advantage of a DART-style adapter; a tradi-
tional copy-based implementation is supported by the
hardware.

Importance of Bus Slave Interface The bus master inter-
face is appropriate for software-generated transmis-
sions. A packet created by an application in main
memory can be moved via DMA to the network.

The bus slave interface is appropriate for hardware-
generated transmissions. Another I/O device which is
designed to always be bus master, like a disk interface,
can move data directly to the DART without interme-
diate staging in a memory. Peer-to-peer I/O, however,
was a by-product of other concerns.

Data transfer within TCP is based on a stream of
large data packets flowing in one direction, and a
stream of small acknowledgments flowing in the
opposite direction. Traffic analysis studies often find a
mix of smaller and larger packets. One of the early
concerns for the DART project was to make transport
protocol generation of acknowledgments inexpensive
by avoiding DMA. A small packet, constructed entirely
by the CPU anyway, could be moved to the I/O
device instead of to main memory. This is fundamen-
tally a short sequence of write operations that could
easily be buffered, allowing the CPU to proceed in par-
allel on other work.

DMA from an application buffer to a device inter-
face is generally specified to hardware by stating the
physical addresses of the application buffer in main
memory. DMA requires a guarantee that the data is at
the specified locations. If the virtual memory system
were to migrate the data to disk and recycle the physi-
cal memory for some other use, the parallel DMA
activity would move the wrong data. Therefore, DMA
operations are surrounded by page lock and unlock
calls to the virtual memory system, to inform it that
certain memory locations should not be migrated.

Additional concerns that led to incorporation of the
bus slave interface were related to the cost of page
locking, and the cost of acquiring and releasing DMA
resources (e.g., in the bridge). An acknowledgment
might be constructed in nonpaged kernel memory,
but a small application packet would likely be con-
structed in application memory subject to paging.
Even if page locks were cached for temporal locality, it
might be cheaper to simply move the data via pro-
grammed I/O.

The break-even point between DMA and pro-
grammed I/O is system-dependent, but can be mea-
sured at boot time in order to learn an appropriate
threshold to use for such a decision. Demands on the
main memory system from its various clients will
change over time, and a single measurement is only
optimal for the sample’s conditions. The suggestion
here is to enable a quick judgment in the software. The
intent is to make large gains and avoid egregious per-
formance errors. We suspect that fine-tuning the deci-
sion is less important, and requires the collection of
excessive information during the normal operation of
the system.e

eGiven the parallel nature of the environment (other I/O, cache
operations, and multiprocessor CPUs), a software system could
only estimate non-DART memory loads. Queued DMA operations
may start later than expected, or finish before their completion has
been noticed. CPU cache activity is dependent on the program
executing at that moment; fine-tuning is problematic. The focus of
DART has been the large gains, like avoiding copies, or allowing
either DMA or programmed I/O to be used. The focus has been
on the structure of the system.

Digital Technical Journal Vol. 9 No. 4 1997 67

We developed a prototype UNIX driver to test the
upper-layer changes, and executed a modified kernel
against a user-level behavioral model of a DART-style
adapter. The code was subjected to constant back-
ground testing on a workstation relied on for daily use.
The prototype driver supports buffer descriptors refer-
encing either kernel buffers or adapter buffers. The
implementation effort to support kernel-buffered
packets was minimal, and enables multiple protocol
families to be layered above the driver.

The software changes modify the existing upper-
level software, rather than bypassing it via a collapsed
socket, transport, network, and driver implementa-
tion. The current UNIX networking subsystem pro-
vides a rich set of features that needs to be completely
supported for backward compatibility.

Transmit Overview
A comparison of traditional transmission with DART
transmission is shown in Table 1. For a traditional
adapter, the system call layer copies application data to
operating system buffers. With a DART adapter, the
data is copied to the adapter. Uiomove is the copy
function typically used within UNIX. The DART
mechanism is to use an indirect function call through a
pointer, rather than a direct function call to an address
specified by the compiler’s linker. High-performance
copy functions are associated with the device driver.
The driver’s copy function is free to use DMA or pro-
grammed I/O, depending on the length of the copy.

For a traditional adapter, software wastes machine
resources computing checksums. With a DART
adapter, the checksum is computed by hardware as the
data flows into the adapter. The adapter can patch the
checksum into the packet header. The adapter can also
move checksum summaries back to host memory so
that they are available for retransmission algorithms.

For a traditional adapter, the driver instigates addi-
tional memory references to copy the data to the
adapter for transmission. With a DART adapter, the
data is already on the adapter, ready to be sent! Much
of the data copy avoidance work is throughput-related.
In this instance, we also create the potential for a
latency advantage for the DART model, since the data
copy overlapped work in the system call, transport, net-
work, and driver layers of the operating system.

Receive Overview
In many ways, the receive path for networking is usu-
ally considered more complicated than the transmit
path, since the various demultiplexing and lookup
steps are based on fields that historically have been
considered too large to use simple table indexing oper-
ations. Also, the receive path requires a rendezvous
between the transport protocol and the application (to
unblock the application process upon data arrival). So
it should come as a pleasant surprise that the DART-
style changes for packet reception can be as simple and
localized as two conditionals in the socket layer and
one in the network transport layer.

Table 2 is a comparison of traditional receive pro-
cessing with DART receive processing. It is almost
identical to the packet transmission comparison. The
distinction is which portion of the DART adapter
computes the checksum on behalf of the software
(receiver instead of DMA engine).

Interrupts
Transmit completion interrupts do not need to be
eagerly processed. Software can piggyback processing
to reclaim transmit buffers upon depletion of transmit
buffer resources, upon unrelated packet reception
events (e.g., User Datagram Protocol, UDP), and
upon related packet reception events (e.g., TCP
acknowledgment). The transmit completion events
can be masked, or the hardware interrupt holdoff
mechanism can be used to give them a longer latency.

Receive interrupts are batched to reduce overheads.
Short packets are fully contained in the initial packet
summary which would be deposited in a kernel buffer.
Adapter buffers for short packets can be recycled
immediately by system software. Long packets are not
fully contained in the initial packet summary provided
software for parsing and dispatch. The summary is
noticed during one interrupt, and scatter/gather I/O
completion into application buffers is noticed during
another interrupt if performed asynchronously.

The side-effect of the decision to create a store-and-
forward adapter is that a received packet is related to
two interrupts. The intent is not to burden a system
and cause multiple interrupts per packet. The distinc-
tion between relation and causality is important.

When the system is under load, there is a steady
stream of packets, and thus a steady stream of batched

Table 1
Transmit Overview

Traditional DART

System call layer Uiomove user buffer to kernel buffer *Uiomove user buffer to adapter buffer
Protocol layer For all buffers for all bytes, update checksum For all buffers, update checksum
Driver layer Programmed I/O or DMA Data is already on the adapter!

68 Digital Technical Journal Vol. 9 No. 4 1997

interrupts. If 3 Mbytes were transferred using a burst
of 1-kbyte packets, there would be 3000 packets.
Batching 20 packets/interrupt, there would be 150
interrupts to report packet arrivals. The first interrupt
is just for packet arrival events, to allow header parsing.
The intent is for the next 149 interrupts to report 20
new arrivals and the DMA completion for 20 previous
arrivals. A final interrupt would take care of the final
DMA requests. In this case, the additional interrupt
load for a DART adapter is minor: one interrupt for
3000 packets. The interrupt load is not doubled (even
if one chooses to move received data asynchronously).

Store-and-forward latency is incurred because of
the memory write and read on the adapter (to store
data from the network and to later move it to the
application’s buffers). DART adapter memory oper-
ates at a high rate, over 4 Gb/s, to minimize this. Due
to the intervening software decision concerning where
to place DART data for large packets, the data may be
placed at its initial location in host memory later than
for a traditional adapter which fills kernel buffers.
However, store-and-forward reduces main memory
bandwidth consumption, and quickly places the data
at its final location within the application buffers in
host memory. The correct metric is latency to data
availability to the application, not data latency to first
reaching the system bus.

CSR Operations
Control and status registers (CSRs) are used within
hardware implementations to allow software to con-
trol the action of hardware, and for hardware to pre-
sent information to software. For example, a CSR can
inform a device of the device’s address on a bus. In this
case, the CSR’s definition is generic in the context of
the bus definition. Alternatively, a CSR can be used to
initialize a state machine within the hardware imple-
mentation. In that case, the CSR’s definition is specific
to that version of the device.

CSR reads are very expensive. Generally, a single CSR
read is required for DART interrupt processing, and
that CSR is placed in the PCI clock domain of DART in
order to avoid operation retries on the PCI bus.

Most packet processing information is written to
host memory by the adapter for quick and easy CPU
access. For example, packet summaries are placed in

one or more arrays in host memory, and software can
use an ownership bit in each array element to termi-
nate processing of such an array.

CSR writes are buffered; nevertheless, they can be
minimized. The packet summaries in host memory are
managed with a single-producer, single-consumer
model. When the consumer and producer indices into
an array are equal, the array is empty. When hardware’s
producer index is greater, there are entries to be
processed by software. (Redundant information in
array element ownership bits means that software does
not actually need to read the DART adapter to perform
the producer-consumer comparison.) When the hard-
ware’s producer index reaches the software’s consumer
index minus one, the array is fully utilized. When soft-
ware has processed a number of packet summaries, the
hardware can be informed that they can be recycled by
a single write of the consumer index to the adapter.

The DMA engine processes a list of “copy this from
here to there” commands. By supporting a list of
operations instead of a single operation, software can
quickly queue an operation and move along to its next
action without a lot of overhead. The copy commands
reside in an array within host memory, with a software-
specified base and a software-specified length.

DMA commands also follow the producer-consumer
model. However, since instructions are only read by
DART, there are no ownership-bit optimizations. To
compensate for this, software can allocate a large array
and cache a pessimistic value for the hardware’s con-
sumer index in order to avoid CSR reads. Alternatively,
the DMA engine could periodically be given instruc-
tions to DMA such information to host memory.

A typical DART interrupt involves one CSR read and
three CSR writes, yielding an efficient interface. One
read determines interrupt cause. One write informs the
DMA engine of new copy commands for newly received
data. Another write informs the DMA engine that the
CPU processed a number of the packet summaries
DART placed in main memory. A third write initializes
the interrupt delay register to batch future events.

Occasionally, an interrupt also involves an extra CSR
read. The read discovers a large number of commands
processed by the DMA engine, allowing software to
recycle entries in the command queue and thereby
issue more commands.

Table 2
Receive Overview

Traditional DART

Driver layer Programmed I/O or DMA Data stays on adapter!
Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver

hardware as packet was reassembled
System call layer Uiomove kernel buffer to user buffer Uiomove adapter buffer to user buffer

Digital Technical Journal Vol. 9 No. 4 1997 69

As a result, the driver modifies the hardware checksum
to account for:

■ Contributions made by IP options
■ Construction of the pseudo-header which is not

transmitted on the network
■ The transport layer checksum, which was zero

when the checksum was computed but may be
nonzero on the network

To transmit a packet, the transport and network lay-
ers operate on protocol headers in main memory. The
driver moves the headers to the adapter as part of
transmitting a packet whose encapsulated data is in
adapter buffers.

The ifnet structure is the interface between the pro-
tocol layers and the driver. It contains, for example,
fields expressing the maximum packet size on the
directly connected network, the network-layer address
of the interface, and function pointers used to enter
the driver.

We add an (* if_ uiomove)() field to be associated
with buffers as described below. It represents a driver
entry to copy data to or from the adapter. We also add
an (* if_ xmtbufalloc)() field to be used within the
mbuf allocation loop of the transmit portion of the
socket layer. This allows the socket layer to give prece-
dence to allocating (large) adapter buffers over main
memory buffers.

The driver always retains some transmit adapter
buffers for its own use. When the system is busy, there
will be TCP packets consuming adapter buffers. The
packets are associated with the socket send queue.
There will also be packets on the interface send queue,
which may or may not use adapter buffers. If the first
item on the interface queue uses just kernel buffers,
then the driver must have reserved adapter buffers in
order to complete the transmission and avoid transmit
deadlock. At least one packet of adapter buffering
must be reserved for the driver output routine.

UDP
UDP motivates many of the changes without getting
involved in the complexity of retransmission and relia-
bility. Many of these changes are generic to UDP and
TCP: augmenting the buffer and interface descrip-
tions, discovering the availability of efficient buffers
for a connection, and allocating and filling the efficient
buffers.

One portion of the mbuf is the struct pkthdr, which
is used only in the first mbuf of a packet. It summarizes
interesting information about the packet, like its total
length.

We add a protocolSum field to the pkthdr of the
mbuf so that the driver can communicate the received
transport-layer checksum to the upper layers. The
transport-layer checksum is not ignored, as it would

Driver
The driver classifies received packets, and decides
whether to continue to use adapter buffers for them,
or to copy the data into kernel buffers. For the proto-
type, adapter-buffered packets are:

■ Long enough to contain maximal-length IP and
transport protocol headers.

■ Version 4 IP packets (buffering assumptions perco-
late throughout the layers of the system, so a proto-
col family must be updated and tested to support
adapter-buffered packets).

■ TCP or UDP protocol packets. Other protocols lay-
ered over IP do not use adapter buffers, to make the
scope of the effort manageable by handling just the
common case.

The operating system uses a single mbuf to describe
a single set of contiguous bytes in a buffer which may
be within or external to the mbuf structure. Mbufs can
be placed in lists to form packets from a number of
noncontiguous buffers.

Received adapter-buffered packets are two mbufs
long. The first mbuf contains the initial contents of the
packet DMAed into memory by the adapter, that is the
protocol headers and summary information from the
adapter.

The second mbuf refers to the packet in adapter
memory. For ATM, the received packet is stored in a
linked list of buffers on the adapter. Programmed I/O
access to the buffers requires software to traverse the
links, but this would not be done in practice since the
CPU read path to the I/O device is unbuffered and
high-latency. The DART DMA hardware would be
used, and it would traverse the links as-needed. The
DMA hardware allows the software to pretend the
packet is contiguous.

Fields of the second mbuf are used in specific ways.
The length of the second mbuf does not contain the
initial portion of the packet copied into the first mbuf,
even though the adapter memory buffers the entire
packet. The initial portion is replicated, but only the
copy local to the CPU is accessed. The pointers of the
second mbuf point to bogus virtual addresses, even
though the adapter looks like an extension of main
memory. This speeds software debugging by trapping
inefficient accesses to the adapter. Adjusting the
length and pointer fields is still allowed in order to
drop data from the front or back of the mbuf. The
m_ext fields record the location and amount of
adapter buffering used to hold the packet. They also
point to a driver-specific buffer reclamation routine.

For TCP, or for UDP packets with nonzero check-
sums, the driver makes incremental modifications to
the DART receive hardware’s checksum. The hard-
ware computes the 1’s complement checksum over all
the cell payloads except for the final ATM trailer bytes.

70 Digital Technical Journal Vol. 9 No. 4 1997

be if checksums were negotiated away or cavalierly
disregarded. The checksum is verified by the trans-
port layer as usual, but without accessing all the bytes
of the packet. The protocolSum field is valid if an
M_PROTOCOL_SUM bit is set in the mbuf m_flags field.

Another portion of the mbuf is the struct m_ext,
which is used to describe data buffers external to the
mbuf structure. We add an (*uiomove_ f)() field so
that the driver can communicate a buffer- or driver-
specific copy routine to the socket layer. Socket layer
usage of the standard pre-existing uiomove routine
assumes that the received data is in the address space
and should be moved by CPU byte-copying. The indi-
rection allows the data to be moved by programmed
I/O or DMA. The uiomove_f field is valid if an
M_UIOMOVE bit is set in the mbuf m_flags field.
Parameters to the uiomove_f function are an mbuf, an
offset into the packet at which to start copying bytes, a
number of bytes to copy, and the standard uio struc-
ture that describes where the application wants the
data.

The UDP input routine performs protocol process-
ing on received UDP packets. Before the pseudo-
header is constructed for checksum verification, the
M_PROTOCOL_SUM bit is tested in order to skip
CPU-based checksumming.

if (m->m_flags & M_PROTOCOL_SUM) {
NETIO_COUNT(rch_hw_sum);
assert(m->m_flags & M_PKTHDR);
if (ui->ui_sum != m->m_pkthdr.protocolSum) {
NETIO_COUNT(rch_hw_sum_bad);
goto badsum;

}
goto ok;
}

Error processing can be based on packets reformat-
ted into kernel buffers. The UDP output routine per-
forms protocol processing on transmitted UDP
packets.

Checksum overhead avoidance is similar to the receive
path; but instead of testing the M_PROTOCOL_SUM
bit, the mbuf checksum field is assumed to be valid for
all transmit mbufs referencing adapter buffers (they
have the M_UIOMOVE bit set). We assume that no
adapter which saves the operating system the effort of
data copying would forget to save the operating sys-
tem the effort of checksumming. It does not make
sense to eliminate some, but not all, of the per-byte
overhead operations.

For UDP transmission, software recycles (adapter)
buffering after the packet has been transmitted.

Changes like checksum avoidance are based on
adding a conditional to the existing code paths. For a
DART adapter, the test and branch penalty are small
relative to the gain. For large external buffers, there
are one or two M_PROTOCOL_ SUM tests per
packet, depending on packet length and buffer size.
This could be viewed as a constant-time overhead.

The gain is avoiding the linear-time access of each byte
within each packet.

For a traditional adapter, the test and branch repre-
sent overhead for each packet. The cost of the added
conditionals occurs in the context of a large code base
between the system call interface and the driver, and
that networking code provides a rich feature set
through the use of conditionals. If the added condi-
tionals are viewed as significant, consider the approach
of generating two binary files from a single source
module. To avoid penalizing systems populated solely
with traditional adapters, operating system software
configuration procedures can choose not to incorpo-
rate the DART-conditionalized version of the code. A
DART adapter installed at a later date would still oper-
ate under such a software configuration, but would not
reach its peak performance until the software is recon-
figured to use the DART-conditionalized version.

TCP
The TCP input routine performs protocol processing
on received TCP packets. Before the pseudo-header is
constructed for checksum verification, the M_PRO-
TOCOL_SUM bit is tested in order to skip CPU-based
checksumming. The only differences with the UDP
input processing change are the names of the TCP
header structure and TCP header checksum field.

All the adapter resources represented by the second
mbuf of a received packet are consumed until the final
reference to the packet is freed. If large packets are
exchanged and the application is doing small reads,
not until the final read is any storage reclaimed. This
space consumption is represented on the socket
receive queue, and therefore affects the advertised
TCP window.

The TCP output routine performs protocol pro-
cessing on transmitted TCP packets. The checksum
overhead avoidance is similar to that done for UDP.
Checksum computations for transport-layer retrans-
missions are simplified by the association of checksum
contributions with mbufs, rather than an association
of checksums with packets. The association with
buffers instead of packets also simplifies handling of
packets using a mix of kernel and adapter buffers.

For TCP transmission, software recycles (adapter)
buffering after the packet has been acknowledged by
the remote end of the connection. Between transmis-
sion and acknowledgment, the data is held on the
socket’s send queue. Previously, the socket code
copied data from one mbuf into another whenever
both mbufs’ contents fit into one, trading increased
CPU load for space efficiency. For DART adapters, the
copy decision is cut short.

We add a bytesSummed field to the mbuf so that
when a packet is transmitted or retransmitted by the
transport layer, code can double-check that all the data
the checksum is supposed to cover is still present in the

Digital Technical Journal Vol. 9 No. 4 1997 71

buffer. For example, a TCP acknowledgment of part of
an original packet generally leads to the sender delet-
ing its copy of the acknowledged data retransmitting
the rest. The software implementation handles the
generality of acknowledgments which are not com-
plete transmit mbufs, the unit covered by the
protocolSum field. A retransmission must not send a
packet with an improper transport-layer checksum,
even if it means using an algorithm linear in the num-
ber of bytes remaining in the buffer to recompute the
checksum.

The transmitter’s socket layer buffers data in seg-
ments convenient for both the network-layer protocol
and the driver. Checksum contributions remembered
for retransmission are recorded at a similar level of
granularity. The transmitter is liberal in what the
receiver can acknowledge; the receiver’s implementa-
tion affects efficiency, but not correctness.

Socket Data Movement
The copy from the network buffers to the application
data space occurs in the soreceive routine, which uses
information left in the mbuf by the device driver. The
call(s) to uiomove become conditionalized as follows:

if (m->m_flags & M_UIOMOVE) {
assert(m->m_flags & M_EXT);
error = (*m->m_ext.uiomove_f)(m, moff, len, uio);

} else
error = uiomove(mtod(m, caddr_t) + moff, len, uio);

The reverse copy in sosend is similar.
The standard uiomove function makes the opti-

mistic assumption that the addresses of user buffers
provided by the application are valid. If addresses are
not valid, a trap occurs and situation-specific code is
called.

To support drivers that use programmed I/O
movements with the application’s buffer, an additional
code point is added to the error processing so that an
EFAULT error is returned to the application.

Note that the changes are generic, and can be used
with existing devices. The uiomove_f function can per-
form both copies to kernel buffers and protocol check-
summing for transmission over traditional adapters.

In the transmit portion of the socket layer, the appli-
cation data is moved to kernel buffers or to adapter
buffers by sosend. In order to take advantage of DART
adapters, sosend needs to know:

■ That the protocol layers between the socket and
driver support DART-style buffering

■ That the driver supports DART-style buffering

In general, formatting data efficiently for transmis-
sion can require knowing the amount of headers that
will be prepended by the various layers below the
socket layer, so device alignment restrictions can be
met. Due to protocol options and to the variety of

media in existence, the amount prepended may vary
from socket to socket. Given a socket, we introduced a
function that computes:

■ A function pointer for allocating adapter-based
buffers

■ A function pointer for moving data from user
buffers to adapter buffers

■ The number of bytes required to prepend all headers

To simplify the prototype implementation effort,
the function disallows the use of adapter buffers for IP
multicast packets.

When allocating adapter buffers, sosend uses the
if_xmtbufalloc entry to allocate adapter buffers. Each
time it does so, it passes a maximum number of bytes
of buffering that attempts to allocate a buffer for the
entire (remaining portion of the) packet. The driver
indicates the actual amount of buffering allocated;
sosend loops until all the necessary buffering is allo-
cated. The driver may decline to allocate an adapter
buffer if the requested amount of buffering is small. At
that time the driver can best decide if CPU-based byte
copying from user buffers to kernel buffers, and also
copying kernel buffers to the adapter, is preferable to
programmed I/O or DMA from user buffers.

Once an adapter buffer allocation fails, no further
allocations are attempted within a segment that will be
passed to the lower layers. This ensures that drivers will
see, at worst, an (internal) mbuf containing headers,
one or many adapter buffers containing data, and
potentially one or many kernel buffers containing the
rest of the packet. This simplifies the driver, and
ensures that alignment restrictions are met without
shuffling data around on the adapter. It also simplifies
transport-layer checksum computation algorithms.

There is an unusual boundary case in which a long
segment of transmit data may not immediately be
copied to adapter buffers, even though the driver
would prefer to do so. If the driver has many free
transmit adapter buffers when the socket code starts to
prepare a segment, it may not have any free buffers
when the segment nears completion. This is because
the socket layer runs at a lower interrupt priority level
than the device driver, and buffers are allocated indi-
vidually. A device interrupt can lead to servicing the
device output queue, consuming adapter buffers in
order to transmit traditional kernel-buffered packets.
Rather than block and wait for transmit adapter buffer
availability, the prototype software uses kernel buffers.

Both the socket and network protocol (TCP) layers
contain segmentation algorithms. In the socket layer,
the segmentation process is confused with the (cluster
mbuf) buffer choice decision procedure. As part of
eliminating that confusion, we introduce an if_buflen
field to the ifnet structure.

72 Digital Technical Journal Vol. 9 No. 4 1997

If the socket layer creates segments longer than the
device frame size, excess work occurs in the lower lay-
ers (e.g., TCP segmentation or IP fragmentation). If
the socket layer creates segments shorter than the
device frame size, the system foregoes large packet
efficiencies. A large 8-kbyte write that leads to eight 1-
kbyte cluster mbufs being individually processed by
the lower layers might benefit from overlapped I/O of
the first segment with computation of the last, but the
CPU would be wasted for a benefit that is only rele-
vant when a large number of such poorly chosen seg-
ments are constructed. Such a write could go out as a
single packet over an ATM network.

Socket Buffering and Flow Control
A number of papers have commented on the require-
ment for a reasonable amount of socket buffering to
enable applications to “fill the pipe” with a “band-
width times delay” amount of data.1 Delay includes
the link distance, device interrupt latency, software
processing, and I/O queuing delays. It also includes
interrupt delays that aggregate events for efficient soft-
ware processing.

The requirement for sufficient socket buffering is a
lesson learned over and over again. Traditional solu-
tions include marginal increases in systemwide
defaults, and application modification to request more
buffering than the default. Facilities like rsh imply that
anything can become a network application, unbe-
knownst to the application author; so changes to
applications are a poor solution. Also, applications are
insulated from the network by the network protocol
and socket abstractions; no application should need to
know the buffering requirements for high throughput
for the media du jour.

We introduce an (*if sockbuf)() entry that allows
the driver to increase socket buffering. When local
network-layer addresses are bound to socket connec-
tions, an interface is associated with the connection, and
the driver is allowed to adjust the socket buffer quota.

For TCP server connections, the server may not be
restricting incoming connections to a particular inter-
face. Overriding the default buffering value must be
done on the socket created when the incoming SYN
arrives, not on the placeholder server socket. The
buffer allocation needs to be determined as soon as
possible, because the initial SYN packet also triggers
the determination of the proper window scaling value.

UDP does not queue packets on the socket send
queue. Although calls to if_sockbuf from the socket
layer are independent of the protocol, the buffer quota
only affects the maximum UDP packet size sent, not
the number of UDP packets that can be in flight at the
same time. The socket is not charged for UDP packets
queued on the driver output queue or UDP packets in
the hardware transmit queues.

The adapter buffer resources are distinct from main
memory mbuf and cluster resources. The socket data
structure and support routines support consumption
and quota numbers for adapter buffering that are dis-
tinct from the current main memory consumption
and quota numbers. For example, a connection re-
directed from a DART adapter to a traditional adapter
is quickly flow-controlled in the socket layer as a result.
The large adapter buffer allocation does not enable it
to hog main memory buffers and adversely affect
other connections.

IP
The prototype software contains conditionals to
enable or disable the use of adapter buffers for mes-
sages undergoing IP fragmentation. This only affects
UDP, since the socket layer segments appropriately for
the TCP and driver layers. Software computes the
amount of header space for the first fragment, and also
the amount of header space for the following frag-
ments (which will not contain transport protocol
headers). This information is used during the socket
layer’s movement of application data to kernel or
adapter buffers. UDP and IP receive the segments as a
single message; the IP fragmentation code uses the
fragment boundaries precomputed in the socket layer.

IP reassembly of received adapter-buffered packets
was implemented in the prototype code to keep up
with a transmitter using adapter buffers for IP frag-
mentation. The driver adjusts the hardware-computed
checksum to ignore the contribution to the hardware
sum caused by the successive IP fragment headers,
which are not presented to the transport layer.

Resource Exhaustion
The hardware provides a scalable data memory. The
memory holds received data until the application
accepts it, and transmits data until the acknowledg-
ment arrives. The prototype provides 16 Mbytes,
which was considered a significant quantity after
examining network subsystem buffering at centralized
servers for several large “campus” sites.

When adapter memory is scarce, it should be allo-
cated to connections whose current data flows are
high-bandwidth flows. Low-bandwidth connections,
connections blocked by a closed remote window, and
connections over extremely loss-prone paths will not
be significantly impacted by the copying overhead
associated with the use of kernel buffers.

Data Relocation
Reformatting data from adapter buffers to kernel
buffers allows existing code to be ignorant of adapter-
buffered data. Socket-based TCP communication can
use adapter buffers for high throughput, and other

Digital Technical Journal Vol. 9 No. 4 1997 73

protocol environments can simultaneously use the
familiar kernel buffers. DART support can be phased
in by protecting legacy code with a conditional reloca-
tion call before entering or queuing data to the legacy
code. Cache fill operations should be targeted to main
memory, not adapter memory, for best performance in
legacy code.

Relocation is also appropriate for error handling
and other rarely executed code paths. For example,
a multi-homed host may lose TCP connectivity
through the first-hop router associated with a DART
link, and be forced to send packets over another link.
The new communication path could use any network
interface, DART or otherwise. The software needs
to be able to handle the scenario where the new
adapter, or some system resource, has a constraint
preventing it from transmitting packets located in
DART memory.

We selected a lazy evaluation solution which
assumes that data sent over an old route will be deliv-
ered and acknowledged. An eager solution would
incur a large burst of data relocation when the new
route takes precedence, with the disadvantages that
the work would be wasted for data which is acknowl-
edged, and the burst of activity consumes resources
and incurs increased latency for other activities.

For TCP connections marked as using adapter
buffers, a driver entry through (*if_ pktok)() allows
the driver to comment on each outgoing packet. This
implies that the driver also comments on TCP retrans-
mission packets. The driver has a chance to double-
check constraints and trigger data relocation, if
necessary. Drivers not supporting if_ pktok always trig-
ger data relocation, and also lead to unmarking the
TCP connection.

Comparison to Other Methods
Traditional adapters contain minimal onboard mem-
ory and hide their buffering from the CPU. Unable to
manage a traditional adapter’s buffers, a copy of data
must be kept in host memory until it is acknowledged
in case it needs to be retransmitted.

We felt copy-on-write approaches to using a tradi-
tional adapter would be inadequate due to book-
keeping overheads experienced by other projects.
Also, the application may commonly reuse the same
application buffer before the transport protocol
semantics allow. For an unmodified application, this
would lead to blocking the application, or incurring
both copy-on-write and data copy overheads. All
applications are network-based when one considers
networked file systems and pipes to remote program
invocations; architectures that require applications to
be recoded to interact with page mapping schemes
(e.g., 8) are inadequate. Another objection is that
copy-on-write focuses on packet transmission, ignor-
ing packet reception.

When a write is performed by an application using
DART, the application blocks only long enough to
buffer the data, as for a traditional adapter. The copy
of the application’s data on DART enables retransmis-
sion for reliable communication. The application is
free to immediately dirty its write buffer, and no per-
formance impact is associated with that action.

Van Jacobson’s WITLES paper design uses the CPU
to copy data to and from the adapter via programmed
I/O.9 Reading the adapter is an expensive operation, and
in practice would provide worse receive performance
than even a traditional adapter. The Medusa design is a
WITLES variant that uses programmed I/O transmis-
sion and addresses the receive penalty with system block-
move resources for reception.10 The Afterburner design
used the same approach, achieving 200 Mb/s.4 The
WITLES approach keeps the packet in adapter memory
until it is copied to the application buffer.

To minimize resource consumption, the checksum
and copy loop are combined. This means that the TCP
acknowledgment is deferred until the application con-
sumes the data, which might be much later than nec-
essary. Applications read data at a rate of their own
choosing. Care must be taken that this deferral does
not lead to TCP messages to the data source that cause
unnecessary data retransmission.

Unlike WITLES, DART supports DMA to and from
the adapter. Software can use DMA where appropriate,
intelligently balancing the costs of programmed I/O
and DMA.

Since DART provides the IP checksum with the
packet, the TCP acknowledgment can be sent as soon
as the packet is reassembled and reported to the CPU.
The acknowledgment contents and transmission time
are traditional BSD UNIX; it states that the data has
been received, and the offered window reflects buffer
consumption until the application receives the data at
its leisure.

Adapters have been built that offload protocol pro-
cessing.1 However, the cost of TCP processing is low,
and such an architecture introduces message-passing
overheads that counterbalance the offloaded protocol
processing efficiencies. CPU execution rates are scal-
ing well. The issue to address is the main memory
bandwidth bottleneck. Also, it is expensive and diffi-
cult to create, maintain, and augment the firmware for
such an adapter. The firmware is tied to a single
adapter, and replicates work done within the operating
system that can be shared by a number of adapters.

DART provides assist via checksumming methods.
It does not attempt to offload network- or protocol-
layer processing.

Performance

The simulation environment used to debug and test
the chip design was also used to extract performance

74 Digital Technical Journal Vol. 9 No. 4 1997

information. The chip model used to fabricate the part
is connected to a PCI bus simulation, some generic
bus master devices, and some generic bus slave
devices. The simulation environment is connected to
and controlled by a TCL-based environment.

Within the TCL environment, the hardware design-
ers wrote a device driver. With this driver, DART
copied packets from host memory, looped packets on
an external interface, reported packet summaries, and
copied packets into host memory. Both 64- and 32-bit
PCI buses were exercised. Target read latency of host
memory was incorporated into the simulation (the
data presented in Figure 7 is based on a 16-cycle
latency). Credit-based flow-control operations were
enabled since they consume additional control mem-
ory bandwidth, and therefore represent worst-case-
scenario operation, Similarly, a large number of virtual
circuits were used to loop data, to prevent the use of
on-chip, cached circuit state.

Because the TCL driver was written by hardware
designers, and they were focused on designing and
testing the chip, performance numbers extracted from
their work suffer from a lot of CSR accesses. A real
driver would reduce the CSR operations and have
increased batching of interrupts and other actions.

CSR reads are costly, since they involve a round-trip
time within the chip which crosses clock boundaries,
in addition to the round-trip time between the CPU
and the pins on the device. Crossing clock boundaries
means that there are internal first-in first-out (FIFO)
delays involved to deal with synchronization and
meta-stability issues. To meet PCI latency specifica-
tions, the bus master is told to retry such operations,
freeing the PCI bus for other use during the internal
round-trip time. CSR writes are efficient, since they
are buffered throughout the levels of the system.

The dip in Figure 7 is near the 512-byte burst size
used to read from host memory. Packet transmissions
no longer fit in a single DMA burst, and incur the extra
cost of an additional short fetch. This incurs additional
overhead cycles to place the address on the bus and for
the target to start to respond with the first bytes.

For each simulation we extract numerous detailed
statistics. Table 3 contains a few for 32-cell packets
(1536 bytes) on a 32-bit PCI bus. These particular fig-
ures are for the TCL driver, and include time intervals
to initialize the adapter, to transmit before the first
packets are received, and to receive after the last packet
was transmitted.

90%

80%

70%

60%

50%

40%

30%

20%

10%

0 10 20 30 40 50 60 70

PACKET LENGTH IN CELLS

KEY:

PERCENT OF LINE RATE (64-BIT BUS)
PERCENT OF LINE RATE (32-BIT BUS)

DART 4 OR MORE VC, BIDIRECTIONAL,
FLOW-CONTROLLED PERFORMANCE

Figure 7
DART Performance

Digital Technical Journal Vol. 9 No. 4 1997 75

Table 3
Examples of Additional Statistics

Control memory idle 79%
Data memory idle 48%
PCI busy (frame or irdy asserted) 75%
PCI transferring data (irdy and trdy asserted) 60%
CSR operations share of bus operations 41%

Future Work

Due to the large amount of onboard buffering, we do
not expect DART to encounter resource exhaustion
issues. However, some work will be appropriate to
determine the best solution should buffering require-
ments exceed the electrical capabilities of the high-
speed SAR-SDRAM interface. Is it efficient to move
unacknowledged data off the adapter so that new
transmit data can be moved from user space to the
adapter in the socket layer? Is it efficient to block in the
socket layer, waiting for adapter buffers to be freed by
a future, or arrived but unprocessed, acknowledg-
ment? Is it efficient to use conventional kernel buffers
to transmit when the space allocated to DART-style
transmissions is exhausted?

DART structures the system software so that the
operating system does not examine the application’s
data, which should be private to the application any-
way. This separation of control operations (on head-
ers) from data operations (primarily movement) is a
common theme in embedded system design for
bridges and routers. DART provides a generic struc-
ture that enables high-performance networking in a
variety of systems.

With features like peer-to-peer I/O, one can con-
ceive of a system with multiple gigabit links, where the
bottlenecks have shifted from the system software to
the application or service. We think DART-style
adapters will enable and accomplish the delivery of
high-bandwidth service to the application.

Acknowledgments

Robert Walsh implemented the transmitter and PCI
bus interface. Kent Springer implemented the receiver
and packet reporting functions. Steve Glaser imple-
mented the DMA engine. Tom Hunt implemented
the external control RAM interface, the external data
RAM interface, and the board design. Robert Walsh
developed the prototype UNIX changes. Phil Pears,
Mark Mason, James Ma, and Ken-ichi Satoh provided
significant assistance in placing and routing the ASIC.

We also had assistance from Joe Todesca, Elias
Kazan, and Linda Strahle. Bob Thomas participated in
the initial concept and design. K.K. Ramakrishnan pro-
vided some information on networking performance.

References

1. Metcalfe, “Computer/Network Interface Design:
Lessons from Arpanet and Ethernet,” IEEE JSAC, vol.
11, no. 2 (Feb. 1993).

2. Walsh and Gurwitz, “Converting the BBN TCP/IP
to 4.2BSD,” USENIX 1984 Summer Conf. Proc. (June
1984).

3. Chang et al., “High-Performance TCP/IP and
UDP/IP Networking in DEC OSF/1 for Alpha AXP,”
Digital Technical Journal, vol. 5, no. 1 (Winter 1993).

4. Dalton et al., “Afterburner,” IEEE Network (July 1993).

5. Clark et al., “An Analysis of TCP Processing Over-
head,” IEEE Commun. Mag. (June 1989).

6. Kay and Pasquale, “Measurement, Analysis, and
Improvement of UDP/IP Throughput for the
DECstation 5000,” USENIX 1993 Winter Conf. Proc.
(1993).

7. Owicki, “AN2: Local Area Network and Distributed
System,” Proc. 12th Symp. Principles of Dist. Comp.
(Aug. 1993).

8. Smith and Traw, “Giving Applications Access to Gb/s
Networking,” IEEE Network (July 1983).

9. Van Jacobson, “Efficient Protocol Implementation,”
ACM SIGCOMM 1990 tutorial (Sept. 1990).

10. Banks and Prudence, “A High-Performance Network
Architecture for a PA-RISC Workstation,” IEEE JSAC,
vol. 11, no. 2 (Feb. 1993).

Additional Reading

1. Kay and Pasquale, “The Importance of Non-Data Touch-
ing Processing Overheads in TCP/IP,” Proc. SIGCOMM
’93 Symp. Commun. Architectures and Protocols (1993).

2. Ramakrishnan, “Performance Considerations in
Designing Network Interfaces,” IEEE JSAC, vol. 11,
no. 2 (Feb. 1993).

Biography

Robert J. Walsh
Robert Walsh has been working on high-speed networking
since the beginning of the 1980s. He developed network-
ing software for BSD UNIX, BBN’s Butterfly multiproces-
sor, and DIGITAL’s GIGAswitch/FDDI.

