
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 10: Java I/O 1

Mark Hall

 Overview
 IO Zoo
 Stream I/O
 File I/O
 Beyond Bytes

 Decorator design
pattern

 Buffering
 Example
 File Class
 Object

Serialization
The University of Waikato COMP241 Lecture 10 Slide 2

Overview
• IO provides communication with devices (files, console, networks etc.)
• Communication varies (sequential, random-access, binary, char, lines,

words, objects, …)
• Java provides a “mix and match” solution based around byte-oriented

and character-oriented I/O streams – ordered sequences of data (bytes
or chars).

• System streams System.in, (out and err) are available to all Java
programs (console I/O) – System.in is an instance of the
InputStream class, System.out is an instance of PrintStream

• So I/O involves creating appropriate stream objects for your task.

The University of Waikato COMP241 Lecture 10 Slide 3

The IO Zoo

• More than 60 different stream types.
• Based around four abstract classes: InputStream,
OutputStream, Reader and Writer.
– Streams read and write 8 bit values

• Input streams can be divided intot those that read from physical
input sources (eg.file) and those that add functionality to
another input stream

– Readers and Writers read and write 16 bit Unicode
characters

The University of Waikato COMP241 Lecture 10 Slide 4

Reading Bytes
• Abstract classes provide basic common operations which are

used as the foundation for more concrete classes, eg
InputStream has
– int read() — reads a byte and returns it or –1 (end of input)
– long skip(long n) — skip over and discard the next n bytes
– int available() — num of bytes still to read
– void close()

• Concrete classes override these methods
– eg FileInputStream reads one byte from a file, System.in is

a subclass of InputStream that allows you to read from the
keyboard

The University of Waikato COMP241 Lecture 10 Slide 5

InputStream hierarchy

 InputStream

ByteArray File Filter Piped Object Sequence
InputStream InputStream InputStream InputStream InputStream InputStream

 Data Buffered LineNumber PushBack
 InputStream InputStream InputStream InputStream

The University of Waikato COMP241 Lecture 10 Slide 6

Writing Bytes
• Abstract class OutputStream provides basic common

operations for output
– void write(int b) — writes a single byte (least

significant byte of an integer) to an output location.
– void write(byte[] b) — writes an array of bytes to an

output location
– flush() — force any buffered output to be written

• Java IO programs involve using concrete versions of
OutputStream because most data contain numbers, strings
and objects rather than individual bytes

2

The University of Waikato COMP241 Lecture 10 Slide 7

OutputStream hierarchy

 OutputStream

ByteArray File Filter Piped Object
OutputStream OutputStream OutputStream OutputStream OutputStream

 Data Buffered PrintStream
 OutputStream OutputStream

The University of Waikato COMP241 Lecture 10 Slide 8

File Processing

• Typical pattern for file processing is:
• OPEN A FILE
• CHECK FILE OPENED
• READ/WRITE FROM/TO FILE
• CLOSE FILE
• Input and Output streams have close()

method (output may also use flush())

The University of Waikato COMP241 Lecture 10 Slide 9

File/Stream Processing (reading
bytes)

• Use InputStream’s read() method to read a single
byte
– Read() returns an int, namely either the byte that was

input (0-255) or the integer -1 (indicates the end of the
input stream)

– Should test the return value and, if it is not -1 cast it to a
byte

The University of Waikato COMP241 Lecture 10 Slide 10

File/Stream Processing (reading
bytes)

InputStream myIn = new FileInputStream(“input.bin”);
boolean done = false;

while (!done) {
 int next = myIn.read();
 if (next == -1) {
 done = true;
 } else {
 byte b = (byte)next;
 // process input…
 }
}
myIn.close();

The University of Waikato COMP241 Lecture 10 Slide 11

Common Error

• Negative byte values
– In Java, the byte type is a signed type — 256 values

from -128 to 127
– The first bit of the byte is the sign bit
– When converting an integer to a byte, only the least

significant byte of the integer is taken
• The result can be negative even if the integer is positive

int n = 233; //binary 00000000 00000000 00000000 11101001
byte b = (byte)n; //binary 11101001, sign bit is set
if (b == n)… //not true! b is negative, n is positive

Moving beyond bytes
• FileInputStream and FileOutputStream give you IO from a

disk file:
FileInputStream myInFile =

new FileInputStream(“in.txt”);

• We can now read bytes from a file but not much else!
– Java’s IO package is built on the principal that each class should have a very

focussed responsibility (cohesion)
– FileInputStream interacts with files — its job is to get bytes, not to analyse

them
• To read numbers, strings, objects etc., you have to combine
FileInputStream with other classes whose responsibility is to
group bytes or characters together

3

The University of Waikato COMP241 Lecture 10 Slide 13

Moving beyond bytes
• To get a file stream that can process data means making use

of a virtual input stream
– Don’t actually directly access a physical input source (eg. file)
– Instead, they add functionality to an underlying input stream

• FilterInputStream is the superclass of a number of
virtual input streams that add various functionality
– Demonstrates the combination of OO mechanisms inheritance and

composition
– Is an example of the Decorator (Filter or Wrapper) design pattern

• See discussion of Decorator in Section 5.6 of Horstmann

The University of Waikato COMP241 Lecture 10 Slide 14

Moving beyond bytes
• Say we wanted to add the ability to read data (floats, ints, reals etc) to

InputStream?
– Could use inheritance, but we end up duplicating functionality

InputStream

FileInputStream

DataFileInputStream

ByteArrayInputStream

DataByteArrayInputStream

…
Note that these two

classes at the bottom
here are fictitious!

The University of Waikato COMP241 Lecture 10 Slide 15

Moving beyond bytes
The Decorator design pattern is a recipe that we can follow to
allow additional behaviour or responsibilities to be added to an
object dynamically

InputStream

FilterInputStream

DataInputStream InputStream

DataInputStream can be used wherever
an InputStream can, but delegates the actual
reading of bytes to another InputStream that
it contains. DataInputStream acts as a filter
between the client and the physical input
stream producing the values

The University of Waikato COMP241 Lecture 10 Slide 16

Moving beyond bytes
FileInputStream fin =
new FileInputStream(“in.bin”);

DataInputStream din =
new DataInputStream(fin);
– double s = din.readDouble();
– boolean b = din.readBoolean();
– int i = din.readInt();
– etc…

• Note that these methods read multiple bytes from the underlying
stream and return them as a primitive type

• Much nicer interface to a file!

The University of Waikato COMP241 Lecture 10 Slide 17

Buffering
• By default streams are not buffered, so every read or write

results in a call to the OS (= very slow!).
• Buffering can be added (to any input stream) by using the

BufferedInputStream
– Another example of a FilteredInputStream
– Values are read from the underlying input stream in large blocks
– Calls to read() return bytes from BufferedInputStream’s internal

buffer
– mark() can be used to mark a location in the internal buffer;
reset() can be used to reset the input back to the marked location,
allowing values to be read again

The University of Waikato COMP241 Lecture 10 Slide 18

Buffering
DataInputStream din =
new DataInputStream(new
 BufferedInputStream(new

 FileInputStream(“in.txt”)));

• DataInputStream is last in the chain here because we
want to use its methods and we want them to use the
buffered methods (eg read()).

DataInputStream BufferedInputStream FileInputStream

4

Example: An Encryption Program
• Read a file and write out another file that is a

scrambled copy of the first
• The Caesar Cipher (substitution cipher)

– Simple method that uses an encryption key (number) that
indicates the shift to be used in encrypting each byte

– If our bytes hold characters and we use a key of 3:

– Can reverse the process (decrypt) by applying the negative
key value

M e e t m e a t t h e

P h h w # p h # d w # w k h #

The University of Waikato COMP241 Lecture 10 Slide 20

Encryptor.java: Encrypting Binary
Data

public void encryptStream(InputStream in, OutputStream out)
 throws IOException {
 boolean done = false;
 while (!done) {
 int next = in.read();
 if (next == -1) {
 done = true;
 } else {

byte b = (byte)next;
byte c = encrypt(b); // call method to encrypt byte
out.write(c);

 }
 }
}

The University of Waikato COMP241 Lecture 10 Slide 21

Encryptor.java: The encrypt()
method

 /**
 Encrypts a byte.
 @param b the byte to encrypt
 @return the encrypted byte
 */
 public byte encrypt(byte b) {
 return (byte)(b + mKey);
 }

Note that mKey is an
integer, so we have

to cast back to a
byte after the addition

Encryptor.java: Setting up the input and
output streams

 public void encryptFile(File inFile, File outFile)
 throws IOException {
 InputStream in = null; OutputStream out = null;
 try {
 in = new BufferedInputStream(

 new FileInputStream(inFile));
 out = new BufferedOutputStream(

 new FileOutputStream(outFile));
 encryptStream(in, out); //process the data
 } finally {
 if (in != null) {

 in.close();
 }
 if (out != null) {

 out.flush(); out.close();
 }
 }
 }

The University of Waikato COMP241 Lecture 10 Slide 23

The File Class
• Encryptor.java sets up input streams using File objects rather than file

names as strings
• File class describes disk files and directories

– Uses abstract pathnames — conversion to and from abstract pathnames is
system dependent

– Some methods:
• static char pathSeparator — system dependent path separator character
• boolean exists()
• boolean canRead() — returns true if file exists and application can read it (ie.

depends on security restrictions)
• boolean isFile() — returns false if the File object corresponds to a directory
• boolean delete()
• boolean mkdir() — create a directory named by the pathname

– File myFile = new File(“input.dat”);

The University of Waikato COMP241 Lecture 10 Slide 24

Object Serialization
• So far we’ve seen sequential reading/writing of binary data
• In Java there is an even easier way to write sequential data

— object serialization
– Entire objects can be written to disk in binary form with almost

no extra work on the part of the programmer
• Serialization — is the ability to save the state of an object

(or several objects) to a stream
– The stream is typically associated with a file, but need not be (eg

sending serialized objects over a network connection)
• Deserialization — is the ability to restore the state of an

object (or several objects) from a stream

5

The University of Waikato COMP241 Lecture 10 Slide 25

Object Serialization
• If an object contains references to other objects, these are

also saved
– The process is automatic and recursive
– Ensures that only a single copy of each referenced object is saved

to the stream

A

B
C

D E

1 2

3
4

5 6
7

8

9 The University of Waikato COMP241 Lecture 10 Slide 26

Object Serialization
• To save object data we need to use the
ObjectOutputStream class

Scores myScore = new Scores(“Chris Harris”,135,”India”);
ObjectOutputStream os =

new ObjectOutputStream(new FileOutputStream(“scores.dat”));
os.writeObject(myScore);

• The object output stream automatically saves
all instance variables of the object

The University of Waikato COMP241 Lecture 10 Slide 27

Object Serialization
• To read the object back in, use the readObject method of the
ObjectInputStream class

ObjectInputStream is =
new ObjectInputStream(new FileInputStream(“scores.dat”));

Scores myScore = (Scores)is.readObject();

• readObject returns an Object reference, so we need to cast to the
appropriate type

• readObject can throw a ClassNotFoundException as well
as the normal IOException
– ClassNotFoundException gets thrown if the virtual machine cannot find the class

of the read object in the classpath
The University of Waikato COMP241 Lecture 10 Slide 28

Object Serialization

• Now if we want to save a collection of Scores
all we have to do is write out the collection
object

ArrayList<Scores> myScoresList = new ArrayList<Scores>();
// add a whole bunch of scores into the ArrayList
os.writeObject(myScoresList);

Object Serialization
• To place objects of a particular class into an object stream, the class must implement

the java.io.Serializable interface
– Is an indicator interface (ie. has no methods)
– A java.io.NotSerializableException is thrown if a class does not implement Serializable

Public class Scores implements Serializable {
protected String mName;
protected int mScore;
protected String mCountry;

public Scores(String name, int score, String country) {
 mName = name; mScore = score; mCountry = country;
}

} The University of Waikato COMP241 Lecture 10 Slide 30

Object Serialization

• Only nonstatic and nontransient parts of an
object’s state are saved by serialization
– Static fields are considered part of the state of the

class, not the state of an object
– Transient fields are not saved, since they contain

temporary data not needed to correctly restore the
object later

6

The University of Waikato COMP241 Lecture 10 Slide 31

Object Serialization

• Many of the classes provided with the JDK libraries
have been designed to be serializable

• However, there are some that are not serializable
– Almost none of the classes in java.io are serializable

• Ridiculous to consider “freezing” info about file handles, read/ write
positions etc and expect to use it later - even on the same machine

– Objects of type Thread are not serializable
• Implementation of threads is tightly coupled with the particular

platform on which the JVM (java virtual machine) is running

