
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 11: Container classes 2

Mark Hall

 Container
taxonomy

 Collection
functionality

 Iterators
 Set functionality
 List functionality
 Adapter design

pattern
 Map functionality

The University of Waikato COMP241 Lecture 11 Slide 2

Beyond Arrays
• Containers in Java encompass two distinct concepts

(interfaces):
– Collection: a group of individual elements, often

with some rule applied to them
• A List must hold the elements in a particular sequence
• A Set cannot have any duplicate elements

– Map: a group of key-value object pairs
• Could have been implemented as a Collection of pairs, but

is clearer as a separate concept
• Can be convenient to look at portions of a Map by creating a
Collection to represent that portion

– Eg. can get a Set of keys or Collection of values

Container Taxonomy

The University of Waikato COMP241 Lecture 11 Slide 4

Container Taxonomy

• Three container components
– Map, List and Set—each with two or three implementations

• Dotted boxes represent interfaces
• Dashed boxes represent abstract classes
• Solid boxes are concrete classes
• Interfaces concerned with holding objects

– Collection, Map, List and Set
– Typically write most of your code to talk polymorphically to

these interfaces
– Specify precise type at point of creation:

List x = new LinkedList();

The University of Waikato COMP241 Lecture 11 Slide 5

Container Taxonomy
• In the class hierarchy there are a number of abstract

classes
– They are tools that partially implement a particular interface
– To implement your own container you would inherit from

one of these abstract classes and do the minimal necessary
work to make your new class

• The containers library is sufficiently powerful to
satisfy almost all needs
– Therefore, we can ignore abstract classes

• Can simplify the class hierarchy by focusing on
interfaces and concrete classes

The University of Waikato COMP241 Lecture 11 Slide 6

Simplified Container Taxonomy



2

Collection Functionality
• Collection interface (i.e. everything you can do with a List or
Set)
– boolean add(Object)—ensure that container holds the argument (returns

false if not added)
– boolean addAll(Collection)—adds all the elements in the argument

(returns true if any are added)
– void clear()—remove all elements
– boolean contains(Object)—true if the container holds the argument
– boolean containsAll(Collection)
– boolean remove(Object)/removeAll(Collection)

– boolean retainAll(Collection)—performs an intersection with the
elements in the argument

– Object [] toArray()/ <T> T[] toArray(T[] a)—return array
containing all elements in the container

– Iterator iterator() — returns an Iterator that can be used access the
elements in the collection The University of Waikato COMP241 Lecture 11 Slide 8

Collection Functionality

• Notice that there is no get() method for
random access in Collection
– Collection also includes Set, which maintains

its own internal ordering (making random access
lookup meaningless)

• Iterators are the only way to fetch things
back from a Collection

The University of Waikato COMP241 Lecture 11 Slide 9

Iterators

• An Iterator provides a useful abstraction
for moving through the sequence of objects
held in a container
– Allows the programmer to obtain objects without

knowing or caring about the underlying structure of
the sequence

– Write generic code that can work on may types of
containers

The University of Waikato COMP241 Lecture 11 Slide 10

Iterators
• The Java Iterator is very simple, you can:

– Ask a container to hand you an Iterator
– Get the next object in the sequence by calling the
next() method

– See if there are any more objects in the sequence with
hasNext()

– Remove the last element returned by the iterator with
remove()

• There is a more powerful ListIterator for
Lists

The University of Waikato COMP241 Lecture 11 Slide 11

Set Functionality
• Set has exactly the same interface as Collection, so

there isn’t any additional functionality
• Sets have different behaviour from Lists

– Hold only one instance of each object value
– Set interface does not guarantee it will maintain its elements in any

particular order
• Two concrete implementations:

– HashSet—for Sets where fast lookup time is important
• Requires that stored Objects also define hashCode()
• Provides constant time performance for basic operations (add, remove,

contains), provided the hash function disperses elements properly
– TreeSet—an ordered set backed by a tree structure

• Provides log(n) time performance for basic operations

The University of Waikato COMP241 Lecture 11 Slide 12

List Functionality
• Most commonly used methods in List

– add(int index, Object o)—insert at the specified position
– set(int index, Object o)—replace at the specified

position
– get(int index)—return the object at specified position
– iterator()—get an iterator to the sequence

• Other useful methods:
– indexOf(Object o)—return the index of the first occurrence

of the element or -1
– subList(int fromIndex, int toIndex)—return a view

of this list from fromIndex (inclusive) to toIndex (exclusive)
– listIterator()—get a ListIterator for this list



3

The University of Waikato COMP241 Lecture 11 Slide 13

List Types
• There are two concrete implementations of List

– ArrayList
• Excels at randomly accessing elements
• Slow when inserting and removing elements from the middle of

the List
– LinkedList

• Provides optimal sequential access (slow for random access)
• Inexpensive insertions and deletions from the middle of the
List

• Also has addFirst, addLast, getFirst, getLast,
removeFirst and removeLast methods

– Allow LinkedList to be used as a stack, a queue, and a deque

The University of Waikato COMP241 Lecture 11 Slide 14

Adapter Design Pattern

• Since the interface of LinkedList allows for the
concepts of stack, queue and deque it is not great in
terms of cohesion

• We can apply the Adapter design pattern and make
our own Stack and Queue classes
– Make use of LinkedList, but adapt its interface to a more

conventional interface that clients expect

The University of Waikato COMP241 Lecture 11 Slide 15

Adapter Design Pattern
• Adapter is similar to Decorator

– Both make use of object composition
• Composition is preferable to inheritance because enclosing

objects can only manipulate the enclosed object via its
interface
– This results in loose coupling between objects

• Inheritance results in classes that are tightly coupled to their
base class
– Internals of the base class are visible to the sub-classes

Loose coupling results in more flexible systems

The University of Waikato COMP241 Lecture 11 Slide 16

Adapter Design Pattern
• Adapter is very similar to the Decorator design pattern

– Both delegate work to another object
– With Adapter, the relationship is typically set at compile time
– With Decorator, the relationship is dynamically set at runtime

• However, the intent is different:
Adapter converts the interface of a class into another interface

clients expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

• InputStreamReader and OutputStreamWriter
apply the Adapter design pattern
– Provide a bridge (or adapt) between byte streams and character streams

Adapting LinkedList to a Stack
• Stack—LIFO (last in, first out) container
// Adapt a linked list to a Stack interface using
// composition
public class Stack {
  private LinkedList mList = new LinkedList();
  public void push(Object o) {
    mList.addFirst(o);
  }
  public Object top() {
    return mList.getFirst();
  }
  public Object pop() {
     return mList.removeFirst();
  }
  public boolean isEmpty() {
    return mList.isEmpty();
  }
} The University of Waikato COMP241 Lecture 11 Slide 18

Adapting LinkedList to a Stack

• To have only stack behaviour, inheritance would
have been inappropriate here
– Result in a class with all the rest of the LinkedList

methods
– This was the very mistake made made by the Java 1.0

library designers with the Stack class (legacy class)
• Java 1.0 Stack extends Vector (another legacy class,

superceded in the new libraries by ArrayList)



4

The University of Waikato COMP241 Lecture 11 Slide 19

Map Functionality

• ArrayList allows you to select from a sequence
using a number (i.e. associates numbers to objects)

• A map (or dictionary or associative array) allows
you to look up an object by using another object

The University of Waikato COMP241 Lecture 11 Slide 20

Map Functionality

• Some methods in Map:
– put(Object key, Object val)—adds a value

and associates it with a key
– get(Object key)—returns the value with the

corresponding key (or null if the key is not in the map)
– containsKey(Object key),
containsValue(Object val)—test to see if
map contains key/value

The University of Waikato COMP241 Lecture 11 Slide 21

Map Functionality
• There are two different types of Map

– HashMap—implementation based on a hash table
• Provides constant time performance for inserting and locating pairs (key,

value)
• Performance can be adjusted via constructors that allow you to set the

capacity and load factor of the hash table
– TreeMap

• Maintains pairs in sorted order
• Guarantees log(n) time performance for basic operations by using a balanced

binary tree
• Keys must implement Comparable or a Comparator must be supplied

when constructing a TreeMap

The University of Waikato COMP241 Lecture 11 Slide 22

Map Example

• Program to check the randomness of
Math.random()
– Random numbers should be uniformly distributed
– Generate a bunch of random numbers and count the

ones that fall into the various ranges
– HashMap will help us associate <random num,

count> pairs

Map Example
class Counter {
  int mCount = 1; // initialize count to 1
  public String toString() { return “”+mCount; }
}
public class Statistics {
  public static void main(String [] args) {
    Map<Integer, Counter> hm = new HashMap<Integer, Counter>();
    for (int i = 0; i < 10000; i++) {
      // produce a number between 0 and 20
      Integer r = new Integer((int)(Math.random() * 20));
      if (hm.containsKey(r)) {
        hm.get(r).mCount++;
      } else {
        hm.put(r, new Counter());
      }
    }
    System.out.println(hm);
  }
} The University of Waikato COMP241 Lecture 11 Slide 24

Map Example
• Why use Counter instead of int or Integer to hold

values?
– Can’t use int because containers can only store objects
– Can’t use Integer because we need to update counts and

Integer is an immutable class
• We can use TreeMap (which is a SortedMap) instead of
HashMap in order to print out sorted pairs. SortedMap
gives us:
– Object firstKey()/lastKey()—lowest and highest key

values
– SortedMap subMap(fromKey, toKey)
– SortedMap headMap(toKey)
– SortedMap tailMap(fromKey)



5

The University of Waikato COMP241 Lecture 11 Slide 25

Hashing and Hash Codes
• In the previous example we used Integer as a key for

HashMap
– Library classes (such as Integer and String) work fine as keys in

hashed containers because hashCode() and equals() have
already been implemented for us

• To use our own classes as keys we must provide suitable
hashCode and equals methods

• Can’t just use hashCode and equals inherited from
Object as these use object addresses
– An object that we use for lookup will not have the same address

(and therefore will not hash to the same location) as the one stored
in the container

– Furthermore, equals is used to determine if the lookup key is equal
to any in the table—again, this won’t work for addresses

Hashing and Hash Codes

myKey.hashCode()

Processed by
Container

int

bucket
index

Maps to one
location in the

hash table

equals() is used to
determine if the

key is in the table

Hashing to a location
that already has
a value is called

A “collision”

The University of Waikato COMP241 Lecture 11 Slide 27

Hashing and Hash Codes

• The most important factor in creating a
hashCode() is that it produces the same value for
a given object regardless of when it is called
– Otherwise you won’t be able to retrieve the objects from a

hashing-based container
– If your hashCode depends on mutable data in the object

then the user must be made aware that changing the data
will change the key

The University of Waikato COMP241 Lecture 11 Slide 28

Hashing and Hash Codes
• Don’t use unique object info for hashCode (eg. object

address), use info that identifies the object in a meaningful
way
– Eg. String uses the contents of the string to compute hashCode:

System.out.println(“Hello”.hashCode());
System.out.println(“Hello”.hashCode());
// two separate “Hello” String objects, same
// hashCode

• A good hashCode should result in an even distribution of
values for optimal performance
– Worst case: all hashCodes are equal—HashMap or HashSet

degenerates to a linked list!

The University of Waikato COMP241 Lecture 11 Slide 29

HashMap Performance Factors

• Terminology
– Capacity—the number of buckets (locations) in the

table
– Initial capacity—the number of buckets when the

table is created
•HashMap and HashSet have constructors that allow you

to specify the initial capacity

– Size—the number of entries currently in the table

The University of Waikato COMP241 Lecture 11 Slide 30

HashMap Performance Factors

• Terminology (cont.)
– Load factor—size/capacity (empty table = 0, half full = 0.5 etc)

• A lightly loaded table will have fewer collisions and so is optimal for lookups
and insertions, but is slower for traversing with an Iterator

• HashMap and HashSet have constructors that allow you to specify the load
factor

• When the load factor is reached the container automatically increases the
capacity (roughly doubles it) and re-distributes the contents (re-hashing

• High load factors decreases space requirements but increases the lookup cost
• The default load factor (0.75) is a reasonable tradeoff between time and space

costs



6

The University of Waikato COMP241 Lecture 11 Slide 31

The Collections Class
• There are a number of useful static utility methods in the
Collections class
– Methods to sort and search Lists—have same names and

signatures as those in Arrays
– max/min(Collection)—produces the maximum or minimum

element in the argument using the natural comparison method of
objects in the Collection

– max/min(Collection, Comparator)—produces the
maximum or minimum element in the Collection using the
supplied Comparator

– reverse(List)—reverses the elements of a List
– copy(List dest, List src)
– shuffle(List l, Random r)—randomly permute the list


