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Packages

• A package is a set of classes that have been
grouped together

• The Java API is a huge collection of packages
– java.lang
– java.net
– java.awt.event
– org.img.CORBA
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Packages
• Packages represent a hierarchical directory structure
• Use the import statement to use classes from another

package
– Note, if you don’t import you can still use a class from another

package but you will have to provide the fully qualified name
E.g. javax.swing.JPanel j = new javax.swing.JPanel();

• Use the package statement to put a class into a package
• If the package statement is missing, your class is put into

the “default package”.
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Naming conventions
• The prefix of a package name is always written in all

lowercase ASCII letters
– Recommended that it should be one of the top level domain

names (com, edu, gov, mil, net, org) or two letter country
codes

• Subsequent components of the package name vary
according to an organization’s own internal naming
conventions
– Might  specify that certain directory name components be

division, department, project, etc. names
• E.g. com.sun.eng, com.apple.quicktime.v2
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Access Modifiers

• Access modifiers control who may access
– classes
– methods
– data members

• Java has four access modifiers
– public
– protected

– (friendly)
– private
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Meaning of Access Modifiers

only the same classprivate

anywhere in the same package(friendly)

the same package, or any subclass of
the present class

protected

anywherepublic

Allow access fromKeyword
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JAR-Java ARchive

• Benefits
– Several files in a single archive
– Simpler file transfers
– Compression
– Security
– Portability
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Basic Usage of jar

jar cfm <archive>
<manifest> <files>

Create archive with
manifest

jar xf <archive> <files>Extract specific files

jar xf <archive>Extract contents of archive

jar tf <archive>View archive

jar cf <archive> <files>Create archive

CommandOperation
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The Manifest File

• Each JAR archive includes a file
META-INF/MANIFEST.MF

• Contains Meta-Informaton, e.g. about
– Main class
– Download extensions
– Vendor
– Cryptographic signatures

• Useful to create an executable JAR file:
java -jar <archive>.jar
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Creating an Executable JAR File

• Create a manifest template (e.g. manifest.mf) file
that contains:
– Main-Class: <fully qualified name of class>

E.g. Main-Class: org.groovy.MyFunkyApplication

• Create the jar file
jar cfm funkyapp.jar manifest.mf -C classes org
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Directory Structure

Simple:
• All files in the same

directories
.java
.class
.html

• Hard to maintain
• How to clean up?

Advanced:
• Different directories for files

of different type
– src/ — .java files
– classes/ — .class files
– jar/ — JAR files
– Etc.
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Maven Directory Structure
project/

LICENSE.txt
README.txt
build.xml ANT build file
src/

main/
java/ Application/Library sources
resources/ Application/Library resources
config/ Configuration files
webapps/ Web application sources

test/
java/ Test sources
resources/ Test resources

target/ Holds the output of the build
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Ant

Ant — the Java Build Tool
• Automate the build process
• Like make, but specifically designed for Java
• XML build file
• Platform-independent
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Ant build file: “build.xml”
<project name=“comp241”

    default=“jar”>
<target name=“compile”>

. . .
</target>
<target name=“jar”

     depends=“compile”>
. . .

</target>
</project>

XML Elements:
<name attrib=“value”>…</name>

Or

<name attrib=“value”/>
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Targets
• A target is a set of tasks you want to be

executed
• Each project defines one or more targets
• A target can depend on other targets
• Each target gets executed only once, even when

more than one target depends on it
• Commonly used target names:

– init, compile, jar (dist), run, test, clean
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Targets (example)
<project name=“comp241”

   default=“jar”>
<target name=“compile”>

. . .
</target>
<target name=“jar”
  description=“Create jar file”
  depends=“compile”>

. . .
</target>
<target name=“doc”
  depends=“site, api”>

. . .
</target>

</project>
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Tasks

• A task is a piece of code that can be executed
• Common structure:
<name attribute1=“value1” attribute2=“value2 …/>

• Useful built-in tasks:
– javac Compiles a Java source tree
– jar Jars a set of files
– java Executes a Java class
– mkdir Creates a directory
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Tasks (example)

<javac srcdir=“src”
  destdir=“classes”
  classpath=“jar/xyz.jar”
  debug=“on”
  source=“1.5”/>

Compiles all .java files under the src directory, and
stores the .class files in the classes directory. The
classpath used includes jar/xyz.jar, and compiling with
debug information is on. The source level is 1.5.
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Properties

• A project can have a set of properties (set in the
build file by the properties task, or outside ant)

• A property has a name (case-sensitive) and a
value

• Use a property by placing its name between
“${” and “}”

• Built-in properties
– basedir, ant.file, ant.version etc.
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Path-like structures

• The location attribute of the <pathelement> tag
specifies a single file or directory relative to the
projects base directory (or an absolute name)

• The path attribute of the <pathelement> tag
accepts colon- or semicolon-separated lists of
locations

• Othe possible tags include <dirset>, <fileset>
and <filelist>
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Classpath example
<classpath>

<pathelement path=“${classpath}”/>
<fileset dir=“lib”>

<include name=“**/*.jar”/>
</fileset>
<pathelement location=“classes”/>
<dirset dir=“${build.dir}”>

<include name=“apps/**/classes”/>
<exclude name=“apps/**/Test/**”/>

</dirset>
</classpath>

Builds a path that holds the value of ${classpath}, followed by all jar
files in the lib directory, the classes directory, all directories named
classes under the apps subdirectory of property build.dir, except those
that have the text Test in their name.


