
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 12: Tools 1—Packages,
Jar and Ant

Mark Hall

 Packages
 Naming

conventions

 Access modifiers
 JAR

 Exectable jar

 Project directory
structure

 Ant
 build.xml
 Targets
 Tasks
 Properties
 Paths The University of Waikato COMP241 Lecture 12 Slide 2

Packages

• A package is a set of classes that have been
grouped together

• The Java API is a huge collection of packages
– java.lang
– java.net
– java.awt.event
– org.img.CORBA

The University of Waikato COMP241 Lecture 12 Slide 3

Packages
• Packages represent a hierarchical directory structure
• Use the import statement to use classes from another

package
– Note, if you don’t import you can still use a class from another

package but you will have to provide the fully qualified name
E.g. javax.swing.JPanel j = new javax.swing.JPanel();

• Use the package statement to put a class into a package
• If the package statement is missing, your class is put into

the “default package”.

The University of Waikato COMP241 Lecture 12 Slide 4

Naming conventions
• The prefix of a package name is always written in all

lowercase ASCII letters
– Recommended that it should be one of the top level domain

names (com, edu, gov, mil, net, org) or two letter country
codes

• Subsequent components of the package name vary
according to an organization’s own internal naming
conventions
– Might specify that certain directory name components be

division, department, project, etc. names
• E.g. com.sun.eng, com.apple.quicktime.v2

The University of Waikato COMP241 Lecture 12 Slide 5

Access Modifiers

• Access modifiers control who may access
– classes
– methods
– data members

• Java has four access modifiers
– public
– protected

– (friendly)
– private

The University of Waikato COMP241 Lecture 12 Slide 6

Meaning of Access Modifiers

only the same classprivate

anywhere in the same package(friendly)

the same package, or any subclass of
the present class

protected

anywherepublic

Allow access fromKeyword

2

The University of Waikato COMP241 Lecture 12 Slide 7

JAR-Java ARchive

• Benefits
– Several files in a single archive
– Simpler file transfers
– Compression
– Security
– Portability

The University of Waikato COMP241 Lecture 12 Slide 8

Basic Usage of jar

jar cfm <archive>
<manifest> <files>

Create archive with
manifest

jar xf <archive> <files>Extract specific files

jar xf <archive>Extract contents of archive

jar tf <archive>View archive

jar cf <archive> <files>Create archive

CommandOperation

The University of Waikato COMP241 Lecture 12 Slide 9

The Manifest File

• Each JAR archive includes a file
META-INF/MANIFEST.MF

• Contains Meta-Informaton, e.g. about
– Main class
– Download extensions
– Vendor
– Cryptographic signatures

• Useful to create an executable JAR file:
java -jar <archive>.jar

The University of Waikato COMP241 Lecture 12 Slide 10

Creating an Executable JAR File

• Create a manifest template (e.g. manifest.mf) file
that contains:
– Main-Class: <fully qualified name of class>

E.g. Main-Class: org.groovy.MyFunkyApplication

• Create the jar file
jar cfm funkyapp.jar manifest.mf -C classes org

The University of Waikato COMP241 Lecture 12 Slide 11

Directory Structure

Simple:
• All files in the same

directories
.java
.class
.html

• Hard to maintain
• How to clean up?

Advanced:
• Different directories for files

of different type
– src/ — .java files
– classes/ — .class files
– jar/ — JAR files
– Etc.

The University of Waikato COMP241 Lecture 12 Slide 12

Maven Directory Structure
project/

LICENSE.txt
README.txt
build.xml ANT build file
src/

main/
java/ Application/Library sources
resources/ Application/Library resources
config/ Configuration files
webapps/ Web application sources

test/
java/ Test sources
resources/ Test resources

target/ Holds the output of the build

3

The University of Waikato COMP241 Lecture 12 Slide 13

Ant

Ant — the Java Build Tool
• Automate the build process
• Like make, but specifically designed for Java
• XML build file
• Platform-independent

The University of Waikato COMP241 Lecture 12 Slide 14

Ant build file: “build.xml”
<project name=“comp241”

 default=“jar”>
<target name=“compile”>

. . .
</target>
<target name=“jar”

 depends=“compile”>
. . .

</target>
</project>

XML Elements:
<name attrib=“value”>…</name>

Or

<name attrib=“value”/>

The University of Waikato COMP241 Lecture 12 Slide 15

Targets
• A target is a set of tasks you want to be

executed
• Each project defines one or more targets
• A target can depend on other targets
• Each target gets executed only once, even when

more than one target depends on it
• Commonly used target names:

– init, compile, jar (dist), run, test, clean

The University of Waikato COMP241 Lecture 12 Slide 16

Targets (example)
<project name=“comp241”

 default=“jar”>
<target name=“compile”>

. . .
</target>
<target name=“jar”
 description=“Create jar file”
 depends=“compile”>

. . .
</target>
<target name=“doc”
 depends=“site, api”>

. . .
</target>

</project>

The University of Waikato COMP241 Lecture 12 Slide 17

Tasks

• A task is a piece of code that can be executed
• Common structure:
<name attribute1=“value1” attribute2=“value2 …/>

• Useful built-in tasks:
– javac Compiles a Java source tree
– jar Jars a set of files
– java Executes a Java class
– mkdir Creates a directory

The University of Waikato COMP241 Lecture 12 Slide 18

Tasks (example)

<javac srcdir=“src”
 destdir=“classes”
 classpath=“jar/xyz.jar”
 debug=“on”
 source=“1.5”/>

Compiles all .java files under the src directory, and
stores the .class files in the classes directory. The
classpath used includes jar/xyz.jar, and compiling with
debug information is on. The source level is 1.5.

4

The University of Waikato COMP241 Lecture 12 Slide 19

Properties

• A project can have a set of properties (set in the
build file by the properties task, or outside ant)

• A property has a name (case-sensitive) and a
value

• Use a property by placing its name between
“${” and “}”

• Built-in properties
– basedir, ant.file, ant.version etc.

The University of Waikato COMP241 Lecture 12 Slide 20

Path-like structures

• The location attribute of the <pathelement> tag
specifies a single file or directory relative to the
projects base directory (or an absolute name)

• The path attribute of the <pathelement> tag
accepts colon- or semicolon-separated lists of
locations

• Othe possible tags include <dirset>, <fileset>
and <filelist>

The University of Waikato COMP241 Lecture 12 Slide 21

Classpath example
<classpath>

<pathelement path=“${classpath}”/>
<fileset dir=“lib”>

<include name=“**/*.jar”/>
</fileset>
<pathelement location=“classes”/>
<dirset dir=“${build.dir}”>

<include name=“apps/**/classes”/>
<exclude name=“apps/**/Test/**”/>

</dirset>
</classpath>

Builds a path that holds the value of ${classpath}, followed by all jar
files in the lib directory, the classes directory, all directories named
classes under the apps subdirectory of property build.dir, except those
that have the text Test in their name.

