Start with a window

* Making a GUI is easy:

1. Make a frame (a JFrame)
JFrame frame = new JFrame();

2. Make a widget (button, text field etc.)
JButton button = new JButton(“click me”);

3. Add the widget to the frame
frame.getContentPane( ).add(button);

4. Display it (give it a size and make it visible)
frame.setSize (300, 300);
frame.setVisible(true);
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First GUI

import javax.swing.*;
public class SimpleGuil {
public static void main(String [] args) {
JFrame frame = new JFrame();
JButton button = new JButton(“click me”);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.getContentPane().add(button);
frame.setSize (300, 300);
frame.setVisible(true);

This makes the program quit as
soon as you close the window (if
you leave this out it will just sit there
on the screen forever)
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Run it

java SimpleGuil

‘806
dlick me
Whoa! That'’s a really big button.
The button fills all the available
space in the frame.
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Events

* In console-based applications user input is under the
control of the program
— i.e. the program will ask the user for input in a specific order
* In programs with a modern graphical user interface the
user is in control
— The user can use both the mouse and keyboard

— Can manipulate many parts of the UI in any desired order (click
buttons, pull down menus, scroll bars etc.)

« Java’s AWT provides us with mechanisms that allow our
programs to respond to various different types of Ul events
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Events

* In SimpleGuil, nothing happens when we click it
* Need two things:
1. A method to be called when the user clicks
2. A way to know when to trigger that method (i.e. a way to
know when the user clicks the button)
* If you want to know about the button’s events then
we need to implement a listener interface

¢ Provides the button with a callback method(s) and is
another example of the Strategy design pattern
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Getting a button’s ActionEvent

1. Implement the ActionListener <<AcHonLIsenars>
interface actionPerformed(ActionEvent e]

[ <dtemListeners> |

2. Register with the button (tell it you
want to listen for events)

flemStaleChanged(llemEvent e]

3. Define the event-handling method

— Implement the actionPerformed ()
method from the ActionListener
interface

<<KeyListener>>

KeyPressed(KeyEvent e)
keyReleased(KeyEvent &)

keyTyped(KeyEvent &)
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oid go() {
frame =
= new

Register your interest with
the button. The argument must
be an object from a class that

/ implements ActionListener.
@ button.addActionListener (this) ;

ck me");

public void actionPerformed (ActionEvent e) {
button.setText ("I've been clicked!");

Listeners, Sources and Events

* Source

— Accepts registrations (from listeners)

— Generates events and call listener’s event-handling method
* Listener

— Implements the appropriate interface

— Register with a source

— Provide event-handling
* Event

— Argument to the call-back method

— Cary data about the event to the listener
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Listeners, Sources and Events

The Java window manager sends a program an event
notification when

— User types characters

— Uses the mouse inside one of the program’s windows
* The window manager can generate a huge amount of
events
— Eg. whenever the mouse moves a tiny interval over a
window a “mouse move” event is generated
* Most programs have no interest in many of these
events
— The Source/Listener model prevents a program being

flooded with boring events that it is not interested in
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Getting back to graphics...

» Three ways to put things on your GUI:

— Put widgets on a frame
* Add buttons, menus, radio buttons etc.
+ frame.getContentPane().add(myButton);

— Draw 2D graphics on a widget
* Use a graphics object to paint shapes
+ graphics.fillOval(70, 70, 100, 100);

— Put a JPEG on a widget
* You can put your own images on a widget
- graphics.drawImage(myPic, 10, 10, this);
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Make your own drawing widget

Make a subclass of JPanel and override one method,
paintComponent ().

Make a subclass of JPanel, a
widget that you can add to a
.. frame just like anything else.

im

import

public cl

Panel exte

5 JPanel

ss MyDr {

public void paintComponent(Graphics g) {

This is the BIG important Graphics method.
You will NEVER call this yourself. The system
calls it and passes in a drawing surface of type
} Graphics, that you can paint on
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Further things to do in
paintComponent()

* Displaying an image is easy

public void paintComponent(Graphics g) {
Image image = new Imagelcon(“mypic.Jjpg”).getImage();
g.drawImage(image, 3, 4, this);

}
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Graphics/Graphics2D

* The argument to paintComponent () is declared as
type Graphics (java.awt.Graphics)
public void paintComponent (Graphics g) { }
* The parameter ‘g’ IS-A Graphics object
— Which means it could be a subclass of Graphics
(polymorphically speaking), in fact it is
* The object referenced by the ‘g’ parameter is actually an
instance of Graphics2D
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Graphics/Graphics2D

* If you need to use a method from Graphics2D, then
cast ‘g’
Graphics2D g2d = (Graphics2D) g;

» Some methods you can call on a Graphics reference:

drawImage(), drawLine(), drawPolygon(), drawRect(),
drawOval(), fillRect(), fillRoundRect(), setColor()

* Some methods you can call on a Graphics2D

reference:

fill3DRect(), draw3DRect(), rotate(), scale(),
shear(), transform(), setRenderingHints()
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Graphics2D

e Gradient blend

public void paintComponent(Graphics g) {
Graphics2D g2d = (Graphics2D) g;

GradientPaint grad =
new GradientPaint(70,70,Color.blue,150,150,Color.orange);

g2d.setPaint(grad);

g2d.filloval(70,70,100,100);
}
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Painting in response to Events

» Fame with drawing panel and a button
— Create and register listener with button
 User clicks the button, the button creates an
event object and calls the listener’s event
handler

» The event handler calls repaint () on the
frame. The system calls paintComponent ()
on the drawing panel
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Sidetrack

* GUI layouts: putting more than one widget on a frame
frame.getContentPane().add(button);
— Isn’t really the way you’re supposed to do it (the one-arg method)
frame.getContentPane().add(BorderLayout.CENTER, button);
— Two-arg method takes a region and the widget to add
— This is the better (and usually mandatory way to add to a frame’s

default content pane

— Calling the single-arg add method puts the widget in the center

region North

8606

West Center East

South

Change colors




public SimpleGui3C implements ActionListener {

> void main(String [] args) {

C gui = new SimpleGui3cC();

t me.EXIT ON_CLOSE) ;
JButton("Change col ;
er (this);

awPanel () ;

at.C R, d anel) ;
When the user clicks, tell the frame to

E repaint() itself. That means

} paintComponent() is called on every widget

in the frame!

vent) {

actionPerformed
-

class MyDrawPanel extends JPanel |

public void paintComponent (Graphics g) {
g.fillRect (0, 0, this.getWidth(), this.getHeight());
int red = (int) (b
int green = (int)
int blue = (int)

d, green,\blue);

- Choose the RGB values of a new
colour randomly and draw/redraw the
circle.
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Version with two buttons

* Add a second button to change the text on a label
* Now need four widgets

* And we need two events

— How do we handle two button events when we have only one
actionPerformed () method?
JCYCYE)

ma label Change Label

Change Circle

Handling action events for two
different buttons

+ Option 1: implement two actionPerformed () methods

class MyGui implements ActionListener {
// lots of code here and then:

public void actionPerformed (ActionEvent e) {
frame.repaint () ;

4
}
public void actionPerformed (ActiopEvent e) {
label.setLabel ("That hurt!");
) \
\
But this is impossible!!
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* Option 2: register the same listener with both buttons

Register the same listener with
both buttons.

1 actionPerformed (Ac

0 &= rButtor

0

Source

" Query the event object to find out
which button actually fired it

setLabel ("That hurt!");
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» Option 2: register the same listener with both
buttons
* This works, but in most cases isn’t very OO
— Not very cohesive—a single event handler (method)
is doing many different things
— If you need to change how one source is handled,
you need to mess with everybody’s event handler

— Hurts maintainability and extensibility
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« Option 3: create two separate ActionListener classes

class MyGui {
JFrame frame;
JLabel label;
void gui() {
// code to instantiate the two listeners and
// register one with the color button and the other
// with the label button

class ColorButtonListener implements Actionlistener {
public void actionPerformed (ActionEvent e) {

frame.repaint();
) —————— 1 Wontwork! This class doesn't have
areference 1o the ‘frame’ variable of
} the MyGui class.

class LabelButtonListener implements ActionListener (
public void actionPerformed (ActionEvent e) {
label.setText ("That hurt!");
)

Agaln, no reference to the 'label’ variable.




