Start with a window

* Making a GUI is easy:

1. Make a frame (a JFrame)
JFrame frame = new JFrame();

2. Make a widget (button, text field etc.)
JButton button = new JButton(“click me”);

3. Add the widget to the frame
frame.getContentPane().add(button);

4. Display it (give it a size and make it visible)
frame.setSize (300, 300);
frame.setVisible(true);

The University of Waikato COMP241 Lecture 13 Slide 2

First GUI

import javax.swing.*;
public class SimpleGuil {
public static void main(String [] args) {
JFrame frame = new JFrame();
JButton button = new JButton(“click me”);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.getContentPane().add(button);
frame.setSize (300, 300);
frame.setVisible(true);

This makes the program quit as
soon as you close the window (if
you leave this out it will just sit there
on the screen forever)

The University of Waikato COMP241 Lecture 13 Slide 3

Run it

java SimpleGuil

‘806
dlick me
Whoa! That'’s a really big button.
The button fills all the available
space in the frame.
The University of Waikato COMP241 Lecture 13 Slide 4

Events

* In console-based applications user input is under the
control of the program
— i.e. the program will ask the user for input in a specific order
* In programs with a modern graphical user interface the
user is in control
— The user can use both the mouse and keyboard

— Can manipulate many parts of the UI in any desired order (click
buttons, pull down menus, scroll bars etc.)

« Java’s AWT provides us with mechanisms that allow our
programs to respond to various different types of Ul events

The University of Waikato COMP241 Lecture 13 Slide 5

Events

* In SimpleGuil, nothing happens when we click it
* Need two things:
1. A method to be called when the user clicks
2. A way to know when to trigger that method (i.e. a way to
know when the user clicks the button)
* If you want to know about the button’s events then
we need to implement a listener interface

¢ Provides the button with a callback method(s) and is
another example of the Strategy design pattern

The University of Waikato COMP241 Lecture 13 Slide 6

Getting a button’s ActionEvent

1. Implement the ActionListener <<AcHonLIsenars>
interface actionPerformed(ActionEvent e]

[<dtemListeners> |

2. Register with the button (tell it you
want to listen for events)

flemStaleChanged(llemEvent e]

3. Define the event-handling method

— Implement the actionPerformed ()
method from the ActionListener
interface

<<KeyListener>>

KeyPressed(KeyEvent e)
keyReleased(KeyEvent &)

keyTyped(KeyEvent &)

The University of Waikato COMP241 Lecture 13 Slide 7

oid go() {
frame =
= new

Register your interest with
the button. The argument must
be an object from a class that

/ implements ActionListener.
@ button.addActionListener (this) ;

ck me");

public void actionPerformed (ActionEvent e) {
button.setText ("I've been clicked!");

Listeners, Sources and Events

* Source

— Accepts registrations (from listeners)

— Generates events and call listener’s event-handling method
* Listener

— Implements the appropriate interface

— Register with a source

— Provide event-handling
* Event

— Argument to the call-back method

— Cary data about the event to the listener

The University of Waikato COMP241 Lecture 13 Slide 9

Listeners, Sources and Events

The Java window manager sends a program an event
notification when

— User types characters

— Uses the mouse inside one of the program’s windows
* The window manager can generate a huge amount of
events
— Eg. whenever the mouse moves a tiny interval over a
window a “mouse move” event is generated
* Most programs have no interest in many of these
events
— The Source/Listener model prevents a program being

flooded with boring events that it is not interested in
The University of Waikato COMP241 Lecture 13 Slide 10

Getting back to graphics...

» Three ways to put things on your GUI:

— Put widgets on a frame
* Add buttons, menus, radio buttons etc.
+ frame.getContentPane().add(myButton);

— Draw 2D graphics on a widget
* Use a graphics object to paint shapes
+ graphics.fillOval(70, 70, 100, 100);

— Put a JPEG on a widget
* You can put your own images on a widget
- graphics.drawImage(myPic, 10, 10, this);

The University of Waikato COMP241 Lecture 13 Slide 11

Make your own drawing widget

Make a subclass of JPanel and override one method,
paintComponent ().

Make a subclass of JPanel, a
widget that you can add to a
.. frame just like anything else.

im

import

public cl

Panel exte

5 JPanel

ss MyDr {

public void paintComponent(Graphics g) {

This is the BIG important Graphics method.
You will NEVER call this yourself. The system
calls it and passes in a drawing surface of type
} Graphics, that you can paint on

The University of Waikato COMP241 Lecture 13 Slide 12

Further things to do in
paintComponent()

* Displaying an image is easy

public void paintComponent(Graphics g) {
Image image = new Imagelcon(“mypic.Jjpg”).getImage();
g.drawImage(image, 3, 4, this);

}

The University of Waikato COMP241 Lecture 13 Slide 13

Graphics/Graphics2D

* The argument to paintComponent () is declared as
type Graphics (java.awt.Graphics)
public void paintComponent (Graphics g) { }
* The parameter ‘g’ IS-A Graphics object
— Which means it could be a subclass of Graphics
(polymorphically speaking), in fact it is
* The object referenced by the ‘g’ parameter is actually an
instance of Graphics2D

The University of Waikato COMP241 Lecture 13 Slide 14

Graphics/Graphics2D

* If you need to use a method from Graphics2D, then
cast ‘g’
Graphics2D g2d = (Graphics2D) g;

» Some methods you can call on a Graphics reference:

drawImage(), drawLine(), drawPolygon(), drawRect(),
drawOval(), fillRect(), fillRoundRect(), setColor()

* Some methods you can call on a Graphics2D

reference:

fill3DRect(), draw3DRect(), rotate(), scale(),
shear(), transform(), setRenderingHints()

The University of Waikato COMP241 Lecture 13 Slide 15

Graphics2D

e Gradient blend

public void paintComponent(Graphics g) {
Graphics2D g2d = (Graphics2D) g;

GradientPaint grad =
new GradientPaint(70,70,Color.blue,150,150,Color.orange);

g2d.setPaint(grad);

g2d.filloval(70,70,100,100);
}

The University of Waikato COMP241 Lecture 13 Slide 16

Painting in response to Events

» Fame with drawing panel and a button
— Create and register listener with button
 User clicks the button, the button creates an
event object and calls the listener’s event
handler

» The event handler calls repaint () on the
frame. The system calls paintComponent ()
on the drawing panel

The University of Waikato COMP241 Lecture 13 Slide 17

Sidetrack

* GUI layouts: putting more than one widget on a frame
frame.getContentPane().add(button);
— Isn’t really the way you’re supposed to do it (the one-arg method)
frame.getContentPane().add(BorderLayout.CENTER, button);
— Two-arg method takes a region and the widget to add
— This is the better (and usually mandatory way to add to a frame’s

default content pane

— Calling the single-arg add method puts the widget in the center

region North

8606

West Center East

South

Change colors

public SimpleGui3C implements ActionListener {

> void main(String [] args) {

C gui = new SimpleGui3cC();

t me.EXIT ON_CLOSE) ;
JButton("Change col ;
er (this);

awPanel () ;

at.C R, d anel) ;
When the user clicks, tell the frame to

E repaint() itself. That means

} paintComponent() is called on every widget

in the frame!

vent) {

actionPerformed
-

class MyDrawPanel extends JPanel |

public void paintComponent (Graphics g) {
g.fillRect (0, 0, this.getWidth(), this.getHeight());
int red = (int) (b
int green = (int)
int blue = (int)

d, green,\blue);

- Choose the RGB values of a new
colour randomly and draw/redraw the
circle.

The University of Waikato COMP241 Lecture 13 Slide 20

Version with two buttons

* Add a second button to change the text on a label
* Now need four widgets

* And we need two events

— How do we handle two button events when we have only one
actionPerformed () method?
JCYCYE)

ma label Change Label

Change Circle

Handling action events for two
different buttons

+ Option 1: implement two actionPerformed () methods

class MyGui implements ActionListener {
// lots of code here and then:

public void actionPerformed (ActionEvent e) {
frame.repaint () ;

4
}
public void actionPerformed (ActiopEvent e) {
label.setLabel ("That hurt!");
) \
\
But this is impossible!!

The University of Waikato COMP241 Lecture 13 Slide 22

* Option 2: register the same listener with both buttons

Register the same listener with
both buttons.

1 actionPerformed (Ac

0 &= rButtor

0

Source

" Query the event object to find out
which button actually fired it

setLabel ("That hurt!");

The University of Waikato COMP241 Lecture 13 Slide 23

» Option 2: register the same listener with both
buttons
* This works, but in most cases isn’t very OO
— Not very cohesive—a single event handler (method)
is doing many different things
— If you need to change how one source is handled,
you need to mess with everybody’s event handler

— Hurts maintainability and extensibility

The University of Waikato COMP241 Lecture 13 Slide 24

« Option 3: create two separate ActionListener classes

class MyGui {
JFrame frame;
JLabel label;
void gui() {
// code to instantiate the two listeners and
// register one with the color button and the other
// with the label button

class ColorButtonListener implements Actionlistener {
public void actionPerformed (ActionEvent e) {

frame.repaint();
) —————— 1 Wontwork! This class doesn't have
areference 1o the ‘frame’ variable of
} the MyGui class.

class LabelButtonListener implements ActionListener (
public void actionPerformed (ActionEvent e) {
label.setText ("That hurt!");
)

Agaln, no reference to the 'label’ variable.

