
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 13: GUIs & Event
Handling

Mark Hall

Readings: Horstmann Chap 4

 First GUI
 Events

 ActionEvent
 Listeners, sources and

Events
 Graphics

 paintComponent
 Grapics/Graphics2D

 Handling two buttons

The University of Waikato COMP241 Lecture 13 Slide 2

Start with a window
• Making a GUI is easy:

1. Make a frame (a JFrame)
JFrame frame = new JFrame();

2. Make a widget (button, text field etc.)
JButton button = new JButton(“click me”);

3. Add the widget to the frame
frame.getContentPane().add(button);

4. Display it (give it a size and make it visible)
frame.setSize(300, 300);
frame.setVisible(true);

The University of Waikato COMP241 Lecture 13 Slide 3

First GUI
import javax.swing.*;
public class SimpleGui1 {

public static void main(String [] args) {
 JFrame frame = new JFrame();
 JButton button = new JButton(“click me”);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(button);
 frame.setSize(300, 300);
 frame.setVisible(true);
}

}

This makes the program quit as
soon as you close the window (if

you leave this out it will just sit there
on the screen forever)

The University of Waikato COMP241 Lecture 13 Slide 4

Run it

java SimpleGui1

Whoa! That’s a really big button.

The button fills all the available
space in the frame.

The University of Waikato COMP241 Lecture 13 Slide 5

Events
• In console-based applications user input is under the

control of the program
– i.e. the program will ask the user for input in a specific order

• In programs with a modern graphical user interface the
user is in control
– The user can use both the mouse and keyboard
– Can manipulate many parts of the UI in any desired order (click

buttons, pull down menus, scroll bars etc.)
• Java’s AWT provides us with mechanisms that allow our

programs to respond to various different types of UI events

The University of Waikato COMP241 Lecture 13 Slide 6

Events
• In SimpleGui1, nothing happens when we click it
• Need two things:

1. A method to be called when the user clicks
2. A way to know when to trigger that method (i.e. a way to

know when the user clicks the button)

• If you want to know about the button’s events then
we need to implement a listener interface
• Provides the button with a callback method(s) and is

another example of the Strategy design pattern

2

The University of Waikato COMP241 Lecture 13 Slide 7

Getting a button’s ActionEvent

1. Implement the ActionListener
interface

2. Register with the button (tell it you
want to listen for events)

3. Define the event-handling method
– Implement the actionPerformed()

method from the ActionListener
interface

The University of Waikato COMP241 Lecture 13 Slide 8

The University of Waikato COMP241 Lecture 13 Slide 9

Listeners, Sources and Events

• Source
– Accepts registrations (from listeners)
– Generates events and call listener’s event-handling method

• Listener
– Implements the appropriate interface
– Register with a source
– Provide event-handling

• Event
– Argument to the call-back method
– Cary data about the event to the listener

The University of Waikato COMP241 Lecture 13 Slide 10

Listeners, Sources and Events
• The Java window manager sends a program an event

notification when
– User types characters
– Uses the mouse inside one of the program’s windows

• The window manager can generate a huge amount of
events
– Eg. whenever the mouse moves a tiny interval over a

window a “mouse move” event is generated
• Most programs have no interest in many of these

events
– The Source/Listener model prevents a program being

flooded with boring events that it is not interested in

The University of Waikato COMP241 Lecture 13 Slide 11

Getting back to graphics…
• Three ways to put things on your GUI:

– Put widgets on a frame
• Add buttons, menus, radio buttons etc.
•frame.getContentPane().add(myButton);

– Draw 2D graphics on a widget
• Use a graphics object to paint shapes
•graphics.fillOval(70, 70, 100, 100);

– Put a JPEG on a widget
• You can put your own images on a widget
•graphics.drawImage(myPic, 10, 10, this);

The University of Waikato COMP241 Lecture 13 Slide 12

Make your own drawing widget
Make a subclass of JPanel and override one method,
paintComponent().

3

The University of Waikato COMP241 Lecture 13 Slide 13

Further things to do in
paintComponent()

• Displaying an image is easy

public void paintComponent(Graphics g) {
 Image image = new ImageIcon(“mypic.jpg”).getImage();
 g.drawImage(image, 3, 4, this);
}

The University of Waikato COMP241 Lecture 13 Slide 14

Graphics/Graphics2D
• The argument to paintComponent() is declared as

type Graphics (java.awt.Graphics)
public void paintComponent(Graphics g) { }

• The parameter ‘g’ IS-A Graphics object
– Which means it could be a subclass of Graphics

(polymorphically speaking), in fact it is

• The object referenced by the ‘g’ parameter is actually an
instance of Graphics2D

The University of Waikato COMP241 Lecture 13 Slide 15

Graphics/Graphics2D

• If you need to use a method from Graphics2D, then
cast ‘g’
Graphics2D g2d = (Graphics2D) g;

• Some methods you can call on a Graphics reference:
drawImage(), drawLine(), drawPolygon(), drawRect(),
drawOval(), fillRect(), fillRoundRect(), setColor()

• Some methods you can call on a Graphics2D
reference:

fill3DRect(), draw3DRect(), rotate(), scale(),
shear(), transform(), setRenderingHints()

The University of Waikato COMP241 Lecture 13 Slide 16

Graphics2D

• Gradient blend

public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;

 GradientPaint grad =
 new GradientPaint(70,70,Color.blue,150,150,Color.orange);

 g2d.setPaint(grad);
 g2d.fillOval(70,70,100,100);
}

The University of Waikato COMP241 Lecture 13 Slide 17

Painting in response to Events

• Fame with drawing panel and a button
– Create and register listener with button

• User clicks the button, the button creates an
event object and calls the listener’s event
handler

• The event handler calls repaint() on the
frame. The system calls paintComponent()
on the drawing panel

Sidetrack
• GUI layouts: putting more than one widget on a frame
• frame.getContentPane().add(button);

– Isn’t really the way you’re supposed to do it (the one-arg method)
• frame.getContentPane().add(BorderLayout.CENTER, button);

– Two-arg method takes a region and the widget to add
– This is the better (and usually mandatory way to add to a frame’s

default content pane
– Calling the single-arg add method puts the widget in the center

region North

South

West EastCenter

4

The University of Waikato COMP241 Lecture 13 Slide 19 The University of Waikato COMP241 Lecture 13 Slide 20

Version with two buttons
• Add a second button to change the text on a label
• Now need four widgets
• And we need two events

– How do we handle two button events when we have only one
actionPerformed() method?

The University of Waikato COMP241 Lecture 13 Slide 22

Handling action events for two
different buttons

• Option 1: implement two actionPerformed() methods

The University of Waikato COMP241 Lecture 13 Slide 23

• Option 2: register the same listener with both buttons

The University of Waikato COMP241 Lecture 13 Slide 24

• Option 2: register the same listener with both
buttons

• This works, but in most cases isn’t very OO
– Not very cohesive—a single event handler (method)

is doing many different things
– If you need to change how one source is handled,

you need to mess with everybody’s event handler
– Hurts maintainability and extensibility

5

• Option 3: create two separate ActionListener classes

