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 First GUI
 Events

 ActionEvent
 Listeners, sources and

Events
 Graphics

 paintComponent
 Grapics/Graphics2D

 Handling two buttons
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Start with a window
• Making a GUI is easy:

1. Make a frame (a JFrame)
JFrame frame = new JFrame();

2. Make a widget (button, text field etc.)
JButton button = new JButton(“click me”);

3. Add the widget to the frame
frame.getContentPane().add(button);

4. Display it (give it a size and make it visible)
frame.setSize(300, 300);
frame.setVisible(true);
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First GUI
import javax.swing.*;
public class SimpleGui1 {

public static void main(String [] args) {
  JFrame frame = new JFrame();
  JButton button = new JButton(“click me”);

  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

  frame.getContentPane().add(button);
  frame.setSize(300, 300);
  frame.setVisible(true);
}

}

This makes the program quit as
soon as you close the window (if

you leave this out it will just sit there
on the screen forever)
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Run it

java SimpleGui1

Whoa! That’s a really big button.

The button fills all the available
space in the frame.
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Events
• In console-based applications user input is under the

control of the program
– i.e. the program will ask the user for input in a specific order

• In programs with a modern graphical user interface the
user is in control
– The user can use both the mouse and keyboard
– Can manipulate many parts of the UI in any desired order (click

buttons, pull down menus, scroll bars etc.)
• Java’s AWT provides us with mechanisms that allow our

programs to respond to various different types of UI events
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Events
• In SimpleGui1, nothing happens when we click it
• Need two things:

1. A method to be called when the user clicks
2. A way to know when to trigger that method (i.e. a way to

know when the user clicks the button)

• If you want to know about the button’s events then
we need to implement a listener interface
• Provides the button with a callback method(s) and is

another example of the Strategy design pattern
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Getting a button’s ActionEvent

1. Implement the ActionListener
interface

2. Register with the button (tell it you
want to listen for events)

3. Define the event-handling method
– Implement the actionPerformed()

method from the ActionListener
interface
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Listeners, Sources and Events

• Source
– Accepts registrations (from listeners)
– Generates events and call listener’s event-handling method

• Listener
– Implements the appropriate interface
– Register with a source
– Provide event-handling

• Event
– Argument to the call-back method
– Cary data about the event to the listener
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Listeners, Sources and Events
• The Java window manager sends a program an event

notification when
– User types characters
– Uses the mouse inside one of the program’s windows

• The window manager can generate a huge amount of
events
– Eg. whenever the mouse moves a tiny interval over a

window a “mouse move” event is generated
• Most programs have no interest in many of these

events
– The Source/Listener model prevents a program being

flooded with boring events that it is not interested in
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Getting back to graphics…
• Three ways to put things on your GUI:

– Put widgets on a frame
• Add buttons, menus, radio buttons etc.
•frame.getContentPane().add(myButton);

– Draw 2D graphics on a widget
• Use a graphics object to paint shapes
•graphics.fillOval(70, 70, 100, 100);

– Put a JPEG on a widget
• You can put your own images on a widget
•graphics.drawImage(myPic, 10, 10, this);
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Make your own drawing widget
Make a subclass of JPanel and override one method,
paintComponent().
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Further things to do in
paintComponent()

• Displaying an image is easy

public void paintComponent(Graphics g) {
  Image image = new ImageIcon(“mypic.jpg”).getImage();
  g.drawImage(image, 3, 4, this);
}
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Graphics/Graphics2D
• The argument to paintComponent() is declared as

type Graphics (java.awt.Graphics)
public void paintComponent(Graphics g) { }

• The parameter ‘g’ IS-A Graphics object
– Which means it could be a subclass of Graphics

(polymorphically speaking), in fact it is

• The object referenced by the ‘g’ parameter is actually an
instance of Graphics2D

The University of Waikato COMP241 Lecture 13 Slide 15

Graphics/Graphics2D

• If you need to use a method from Graphics2D, then
cast ‘g’
Graphics2D g2d = (Graphics2D) g;

• Some methods you can call on a Graphics reference:
drawImage(), drawLine(), drawPolygon(), drawRect(),
drawOval(), fillRect(), fillRoundRect(), setColor()

• Some methods you can call on a Graphics2D
reference:

fill3DRect(), draw3DRect(), rotate(), scale(),
shear(), transform(), setRenderingHints()
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Graphics2D

• Gradient blend

public void paintComponent(Graphics g) {
  Graphics2D g2d = (Graphics2D) g;

  GradientPaint grad =
    new GradientPaint(70,70,Color.blue,150,150,Color.orange);

  g2d.setPaint(grad);
  g2d.fillOval(70,70,100,100);
}
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Painting in response to Events

• Fame with drawing panel and a button
– Create and register listener with button

• User clicks the button, the button creates an
event object and calls the listener’s event
handler

• The event handler calls repaint() on the
frame. The system calls paintComponent()
on the drawing panel

Sidetrack
• GUI layouts: putting more than one widget on a frame
• frame.getContentPane().add(button);

– Isn’t really the way you’re supposed to do it (the one-arg method)
• frame.getContentPane().add(BorderLayout.CENTER, button);

– Two-arg method takes a region and the widget to add
– This is the better (and usually mandatory way to add to a frame’s

default content pane
– Calling the single-arg add method puts the widget in the center

region North

South

West EastCenter
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Version with two buttons
• Add a second button to change the text on a label
• Now need four widgets
• And we need two events

– How do we handle two button events when we have only one
actionPerformed() method?
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Handling action events for two
different buttons

• Option 1: implement two actionPerformed() methods
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• Option 2: register the same listener with both buttons
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• Option 2: register the same listener with both
buttons

• This works, but in most cases isn’t very OO
– Not very cohesive—a single event handler (method)

is doing many different things
– If you need to change how one source is handled,

you need to mess with everybody’s event handler
– Hurts maintainability and extensibility
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• Option 3: create two separate ActionListener classes


