
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 14: GUIs & Event
Handling 2

Mark Hall

Readings: Horstmann Chap 4

 Inner classes
 Anonymous inner

classes
 Containers as event

listeners
 More event handling

 Handling mouse events
 Adapter classes
 Processing text input

The University of Waikato COMP241 Lecture 14 Slide 2

Handling action events for two
different buttons

• Solution—inner classes
• Classes declared within the scope of an

enclosing class
– Can use all the methods and variables of the outer

class, even the private ones

The University of Waikato COMP241 Lecture 14 Slide 3

Inner classes

• Simple inner class: • Inner class using outer
class variable:

The University of Waikato COMP241 Lecture 14 Slide 4

Inner classes

• An inner class instance must be tied to an outer
class instance*
– An inner object must be tied to a specific outer

object on the heap
• Make an instance of the outer class
• Make an instance of the inner class by using the instance

of the outer class
• The outer and inner objects are now linked

*Exception: inner class declared as static

The University of Waikato COMP241 Lecture 14 Slide 5

How to make an instance of an
inner class

The University of Waikato COMP241 Lecture 14 Slide 6

How to make an instance of an
inner class

• You can instantiate an inner class from code
running outside the outer class
– Have to use a special syntax



2

Returning to the two button example

The University of Waikato COMP241 Lecture 14 Slide 8

Two buttons example

The University of Waikato COMP241 Lecture 14 Slide 9

Anonymous Inner Classes

• An entity is anonymous if it doesn’t have a name
– In a program, something that is used once usually doesn’t

need a name
• Eg. A static label:

add(new JLabel("x = "));

– If the Jlabel’s text does not need to change then we do not need
a reference to it—it is an anonymous object

• Inner classes often give rise to a similar situation

Anonymous Inner Classes

• The LabelListener and ColorListener inner
classes are only instantiated once in the TwoButton’s
go() method; after that they are never used again

• In Java, it is possible to define an anonymous inner class if
all you ever need is a single object of that class

• Anonymous inner classes are typically used quite
extensively in gui event handling code

The University of Waikato COMP241 Lecture 14 Slide 11

Anonymous Inner Classes

The University of Waikato COMP241 Lecture 14 Slide 12

Common Error: forgetting to attach
a Listener

• You run your program and find that your buttons
(and other UI components) seem dead
– Probable cause—you’ve programmed the listener class

and the event handler action but have forgotten to attach
it to the event source

• Using anonymous inner classes can help here
because you typically declare and instantiate the
listener in the statement that adds it to the event
source



3

Productivity Hint: don’t use a
Container as a Listener

• We’ve made use of inner classes for event listeners
– This approach works for many different event types
– Is simple and intuitive once you master the technique

• It is bad practice to bypass separate event listener classes and
turn a Container (such as a JPanel) into a Listener (like we
did for the simple examples last lecture)
– E.g. a subclass of JPanel implements ActionListener for

buttons (actionPerformed method now becomes part of the
JPanel)

– Bad because it separates the button definition from the button
action

– Bad because it doesn’t scale well—for multiple buttons the
actionPerformed method must investigate the event source

• Leads to messy, hard to understand code
The University of Waikato COMP241 Lecture 14 Slide 14

More event handling: Mouse
Example

• Write a program to spy on MouseEvents and print them to
the console as they occur. Three classes are involved:
– The event source—the component that generates the mouse event

and that manages the listeners
• We will use a JPanel for this

– The listener class—for mouse clicks we need a class that implements
the MouseListener interface

• Contains methods that are called when the mouse button is depressed, released
etc.

– The event class—MouseEvent
• Each listener method takes a MouseEvent parameter that tells you details

about the event (e.g. x and y position of the mouse pointer)

Mouse entered. x = 239 y = 2
Mouse pressed. x = 226 y = 61
Mouse released. x = 226 y = 61
Mouse clicked. x = 226 y = 61
Mouse pressed. x = 196 y = 108
Mouse released. x = 196 y = 108
Mouse clicked. x = 196 y = 108
Mouse exited. x = 303 y = 176
Mouse entered. x = 289 y = 184
Mouse exited. x = 318 y = 188
. . .

The University of Waikato COMP241 Lecture 14 Slide 18

Processing Mouse Input

• In real programs you will want to actually do
something useful when the user presses the
mouse

• Mouse example 2
– Write a program that moves a rectangle to the

mouse press position



4

The University of Waikato COMP241 Lecture 14 Slide 20

The University of Waikato COMP241 Lecture 14 Slide 22

MouseExample2
• MouseExample2 introduces the use of an adapter

class (MouseAdapter)
– We extended MouseAdapter when implementing our

mouse listener
•MouseAdapter is an abstract class, so we have to extend it
•MouseAdapter provides empty implementations of
MouseListener methods; we can just override the methods
that we’re interested in

MouseExample2
• MouseExample2 extends the functionality of JPanel

– We overide the paintComponent method in JPanel in order
to render the Rectangle

– Notice that we also call JPanel’s paintComponent method so
that the panel gets cleared between updates

• After processing a mouse pressed event we call
repaint()
– This tells the component to repaint itself at the next convenient

moment
– There is a paint() method but we should never call this

directly—the window manager will call this for us with an
appropriate Graphics object

The University of Waikato COMP241 Lecture 14 Slide 24

Processing Text Input
• Most graphical programs collect text input through text fields
• The Java Swing GUI libraries have a JTextField class for text

input
– When you construct a text field, you supply the width (approx number of

characters)
JTextField mXField = new JTextField(5);

– You can type additional characters, but then part of the content of the field
becomes invisible

• You will want to label each text field
– Use a JLabel:

JLabel mXLabel = new JLabel(“x = ” );

• Finally, you want to give the user an opportunity to enter information
in all text fields before processing it
– Need a button that the user can press to indicate that the input is ready for

processing



5

The University of Waikato COMP241 Lecture 14 Slide 25

Processing Text Input
• TextInputExample

– Similar to MouseExample2, but has text fields to allow the user to set the x
and y coordinates of the box


