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Readings: Horstmann Chap 4

 Inner classes
 Anonymous inner

classes
 Containers as event

listeners
 More event handling

 Handling mouse events
 Adapter classes
 Processing text input
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Handling action events for two
different buttons

• Solution—inner classes
• Classes declared within the scope of an

enclosing class
– Can use all the methods and variables of the outer

class, even the private ones
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Inner classes

• Simple inner class: • Inner class using outer
class variable:
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Inner classes

• An inner class instance must be tied to an outer
class instance*
– An inner object must be tied to a specific outer

object on the heap
• Make an instance of the outer class
• Make an instance of the inner class by using the instance

of the outer class
• The outer and inner objects are now linked

*Exception: inner class declared as static
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How to make an instance of an
inner class
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How to make an instance of an
inner class

• You can instantiate an inner class from code
running outside the outer class
– Have to use a special syntax



2

Returning to the two button example
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Two buttons example
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Anonymous Inner Classes

• An entity is anonymous if it doesn’t have a name
– In a program, something that is used once usually doesn’t

need a name
• Eg. A static label:

add(new JLabel("x = "));

– If the Jlabel’s text does not need to change then we do not need
a reference to it—it is an anonymous object

• Inner classes often give rise to a similar situation

Anonymous Inner Classes

• The LabelListener and ColorListener inner
classes are only instantiated once in the TwoButton’s
go() method; after that they are never used again

• In Java, it is possible to define an anonymous inner class if
all you ever need is a single object of that class

• Anonymous inner classes are typically used quite
extensively in gui event handling code

The University of Waikato COMP241 Lecture 14 Slide 11

Anonymous Inner Classes
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Common Error: forgetting to attach
a Listener

• You run your program and find that your buttons
(and other UI components) seem dead
– Probable cause—you’ve programmed the listener class

and the event handler action but have forgotten to attach
it to the event source

• Using anonymous inner classes can help here
because you typically declare and instantiate the
listener in the statement that adds it to the event
source
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Productivity Hint: don’t use a
Container as a Listener

• We’ve made use of inner classes for event listeners
– This approach works for many different event types
– Is simple and intuitive once you master the technique

• It is bad practice to bypass separate event listener classes and
turn a Container (such as a JPanel) into a Listener (like we
did for the simple examples last lecture)
– E.g. a subclass of JPanel implements ActionListener for

buttons (actionPerformed method now becomes part of the
JPanel)

– Bad because it separates the button definition from the button
action

– Bad because it doesn’t scale well—for multiple buttons the
actionPerformed method must investigate the event source

• Leads to messy, hard to understand code
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More event handling: Mouse
Example

• Write a program to spy on MouseEvents and print them to
the console as they occur. Three classes are involved:
– The event source—the component that generates the mouse event

and that manages the listeners
• We will use a JPanel for this

– The listener class—for mouse clicks we need a class that implements
the MouseListener interface

• Contains methods that are called when the mouse button is depressed, released
etc.

– The event class—MouseEvent
• Each listener method takes a MouseEvent parameter that tells you details

about the event (e.g. x and y position of the mouse pointer)

Mouse entered. x = 239 y = 2
Mouse pressed. x = 226 y = 61
Mouse released. x = 226 y = 61
Mouse clicked. x = 226 y = 61
Mouse pressed. x = 196 y = 108
Mouse released. x = 196 y = 108
Mouse clicked. x = 196 y = 108
Mouse exited. x = 303 y = 176
Mouse entered. x = 289 y = 184
Mouse exited. x = 318 y = 188
. . .
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Processing Mouse Input

• In real programs you will want to actually do
something useful when the user presses the
mouse

• Mouse example 2
– Write a program that moves a rectangle to the

mouse press position
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MouseExample2
• MouseExample2 introduces the use of an adapter

class (MouseAdapter)
– We extended MouseAdapter when implementing our

mouse listener
•MouseAdapter is an abstract class, so we have to extend it
•MouseAdapter provides empty implementations of
MouseListener methods; we can just override the methods
that we’re interested in

MouseExample2
• MouseExample2 extends the functionality of JPanel

– We overide the paintComponent method in JPanel in order
to render the Rectangle

– Notice that we also call JPanel’s paintComponent method so
that the panel gets cleared between updates

• After processing a mouse pressed event we call
repaint()
– This tells the component to repaint itself at the next convenient

moment
– There is a paint() method but we should never call this

directly—the window manager will call this for us with an
appropriate Graphics object
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Processing Text Input
• Most graphical programs collect text input through text fields
• The Java Swing GUI libraries have a JTextField class for text

input
– When you construct a text field, you supply the width (approx number of

characters)
JTextField mXField = new JTextField(5);

– You can type additional characters, but then part of the content of the field
becomes invisible

• You will want to label each text field
– Use a JLabel:

JLabel mXLabel = new JLabel(“x = ” );

• Finally, you want to give the user an opportunity to enter information
in all text fields before processing it
– Need a button that the user can press to indicate that the input is ready for

processing
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Processing Text Input
• TextInputExample

– Similar to MouseExample2, but has text fields to allow the user to set the x
and y coordinates of the box


