
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 15: GUIs & Event
Handling 3

Mark Hall

Readings: Horstmann Chap 4 & 5

 Processing text
input

 Layout managers
 BorderLayout
 FlowLayout
 BoxLayout

 Composite design
pattern

 Model-view-
controller
 Improved text input

example

 Observer design
pattern

The University of Waikato COMP241 Lecture 15 Slide 2

Processing Text Input
• Most graphical programs collect text input through text fields
• The Java Swing GUI libraries have a JTextField class for text

input
– When you construct a text field, you supply the width (approx number of

characters)
JTextField mXField = new JTextField(5);

– You can type additional characters, but then part of the content of the field
becomes invisible

• You will want to label each text field
– Use a JLabel:

JLabel mXLabel = new JLabel(“x = ” );

• Finally, you want to give the user an opportunity to enter information
in all text fields before processing it
– Need a button that the user can press to indicate that the input is ready for

processing

The University of Waikato COMP241 Lecture 15 Slide 3

Processing Text Input
• TextInputExample

– Similar to MouseExample2, but has text fields to allow the user to set the x
and y coordinates of the box

The University of Waikato COMP241 Lecture 15 Slide 6

Swing Components

• Components can be nested
– In Swing, virtually all components are capable of holding

other components
– Most of the time, you’ll add user interactive components

(e.g. buttons, lists etc.) into background components (e.g.
frames and panels)

• With the exception of JFrame, though, the distinction between
interactive and background components is artificial

– Just about all Swing widgets extend from
javax.swing.JComponent



2

The University of Waikato COMP241 Lecture 15 Slide 7

Layout Managers
• Control the size and placement of components

The University of Waikato COMP241 Lecture 15 Slide 8

How does the layout manager
decide?

• Layout scenario:
1. Make a panel and add three buttons to it
2. The panel’s layout manager asks each button how big the button prefers

to be
3. The panel’s layout manager uses its layout policies to decide whether it

should respect all, part, or none of the button’s preferences
4. Add the panel to a frame
5. The frame’s layout manager asks the panel how big the panel prefers to

be
6. The frame’s layout manager uses its layout policies to decide whether it

should respect all, part, or none of the panel’s preferences

• Different layout managers have different polices
– Using layout managers is another example of the

Strategy design pattern

The University of Waikato COMP241 Lecture 15 Slide 9

Three layout managers: border,
flow and box

• BorderLayout
– A BorderLayout manager divides a background

component into five regions
– You can only add one component per region
– Components layed out by this manager usually

don’t get to have their preferred size
– BorderLayout is the default layout manager for

a fame

The University of Waikato COMP241 Lecture 15 Slide 10

Three layout managers: border,
flow and box

• FlowLayout
– Acts kind of like a word processor, except with components

rather than words
– Each component is the size it wants to be and are laid out left

to right in the order that they are added
– “Word wrap” is turned on, so when a component won’t fit

horizontally, it drops to the next “line” in the layout
– FlowLayout is the default layout manager for a panel

The University of Waikato COMP241 Lecture 15 Slide 11

Three layout managers: border,
flow and box

• BoxLayout
– A BoxLayout manager is like FlowLayout in

that each component gets to have its own size, and
the components are placed in the order that they are
added

– BoxLayout can stack the components vertically or
horizontally

– Instead of having automatic “component wrapping”
you can force the components to start a new line

The University of Waikato COMP241 Lecture 15 Slide 12

Layout Manager Policies

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));



3

The University of Waikato COMP241 Lecture 15 Slide 13

Composite Design Pattern
• The creation of GUI layouts in Java is a good example of the

Composite design pattern
• The intent of the Composite design pattern is to allow the creation of

complex objects using simple parts; individual objects and
compositions of objects can be treated uniformly
– That is, a complex object (composed of many simple parts) can itself be treated

as a simple object
• The key to the Composite pattern is an abstract class that represents

both simple objects and their containers
– Swing objects are both Containers and JComponents
– JComponents can be nested arbitrarily (with the aid of layout managers)

The University of Waikato COMP241 Lecture 15 Slide 14

Improving TextInputExample
• One problem with TextInputExample from before is that we

added text fields and a button to the same area that the rectangle gets
drawn on
– Setting y to zero results in the rectangle getting drawn over top of the text fields

and button!
• In this case the controls should not be part of the drawing area

– The responsibility of the JPanel should just be to draw the rectangle
– If we separate the controls from the view then we can easily change the controls

without having to modify the view code

The University of Waikato COMP241 Lecture 15 Slide 15

Model-View-Controller

• Design pattern that advocates separating data
(model) from user interface (controller/view)
concerns
– Changes to the UI do not affect data handling
– Data can be reorganized without changing the UI
– Decouple data access and application logic from

data presentation and user interaction

The University of Waikato COMP241 Lecture 15 Slide 16

Model-View-Controller
• Model — holds the information in some data structure
• View — renders the information in some way
• Controller — each view has a controller that processes

user interaction
• Example interaction:

– Controller tells model to change/update data
– Model notifies all views of a change in the model
– All views repaint themselves
– During painting, each view asks the model for the current data

values
• Improved TextInputExample

– In the spirit of model-view-controller—model & view collapsed
into one



4

The University of Waikato COMP241 Lecture 15 Slide 20

Observer Design Pattern

• In model-view-controller, the views are
observers of the model
– That is, they are interested in knowing about

changes to the model
• Model notifies all views of changes

– This is basically the event/listener mechanism we
have seen with GUI events

The University of Waikato COMP241 Lecture 15 Slide 21

RectangleApplication2
• Replace the RectangleApplication’s
RectangleController with one that uses
JSliders

The University of Waikato COMP241 Lecture 15 Slide 22

The University of Waikato COMP241 Lecture 15 Slide 23 The University of Waikato COMP241 Lecture 15 Slide 24


