
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 18: Java I/O 2 (text I/O)

Mark Hall

 Text IO
 Writing Text
 Reading Text
 Bridging Text and

Binary Streams
 Tokenizing Text

Input
 Scanner

 Example

The University of Waikato COMP241 Lecture 18 Slide 2

Text IO

• Previously we looked at reading data in binary
format
– Used InputStream and OutputStream classes

and their subclasses to read and interpret 8 bit bytes
• In text format, data items are represented in human-

readable form, as a sequence of characters
– Eg the integer 12,345 is stored as the sequence of five

characters: ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

The University of Waikato COMP241 Lecture 18 Slide 3

Text IO
• Text input and output is more convenient for humans

– Easier to produce input — just use a text editor
– Easier to check output — just look at the output file in an editor

• However, binary storage is more compact and efficient
• If you store information in text form you need to use the
Reader and Writer abstract class and their subclasses to
process input and output
– Read/write characters — not the same as bytes in all languages!
– Convert bytes to/from 16 bit Unicode characters

Common Error
• Reading characters using the read method from an
InputStream

InputStream myIn = . . .
byte next = (byte)myIn.read();
If (next == ‘é’) . . . //never true!

• Previously we saw that bytes hold values in the range
–128—127
– é has the unicode value of 233

• Ok if we cast next to a char instead of a byte in this example, but…
– the read method in InputStream still only returns a value in the range 0-255, so

international programmers who use characters with Unicode values outside this
range would have problems

The University of Waikato COMP241 Lecture 18 Slide 5

Writing Text Files
• FileWriter w = new FileWriter(“output.txt”)

– Now we can send output to a file, one character at a time by calling
the write method

• Typically, we don’t have our output available one character
at a time
– Instead, we have numbers and strings
– Need the PrintWriter class to break up numbers and strings

into individual characters for us
– Can construct a PrintWriter using any Writer
– PrintWriter is another example of the Decorator design pattern

— adds extra functionality to any Writer

The University of Waikato COMP241 Lecture 18 Slide 6

Writing Text Files

• Now you can use the familiar print and println
methods to print numbers, strings and objects

Writer w = new FileWriter(“output.txt”);
PrintWriter pw = new PrintWriter(w);

pw.printlin(29.5);
pw.println(new Rectangle(5,10,15,25));
pw.println(“Hello World!”);

2

The University of Waikato COMP241 Lecture 18 Slide 7

Writing Text Files

• The print and println methods in
PrintWriter are overloaded methods that
– Convert numbers to their decimal string representations
– Use the toString method to convert objects to strings

• Strings are then broken up into individual
characters and passed on to the underlying Writer
(a FileWriter in this example)

The University of Waikato COMP241 Lecture 18 Slide 8

Reading Text Files
• Is there an analogue of DataInputStream (eg.

DataInputReader) that lets you read in data from text files?
– Prior to Java 1.5, No… The best you could do is use the
BufferedReader class

• Has a readLine method that lets you read a line at a time
• readLine keeps calling the read method of the supplied underlying
Reader, until it has collected an entire input line

• readLine returns null when there is no further input
– From Java 1.5 we can use the Scanner class

• Has methods for reading numbers (floats, doubles, ints, shorts), strings, lines
and bytes from the input

• Can tokenize the input on the basis of arbitrary sets of delimiters, including
regular expressions

Reader and Writer hierarchies
Reader

Buffered
Reader

CharArray
Reader

InputStream
Reader

Filter
Reader

Piped
Reader

String
Reader

LineNumber
Reader

File
Reader

Pushback
Reader

Writer

Buffered
Writer

CharArray
Writer

OutputStream
Writer

Filter
Writer

Piped
Writer

Print
Writer

String
Writer

File
Writer

The University of Waikato COMP241 Lecture 18 Slide 10

Bridging Text and Binary Streams
• FileReader

– Assumes that the file is encoded using the default character encoding
for the default locale

– Converts characters from the local encoding to Unicode as it reads
them

– Does the most of the hard work involved in internationalizing the
character set handling of your program

• FileReader extends InputStreamReader
– InputStreamReader is a bridge from byte streams to character

streams
• Another example of the Adapter design pattern

– Allows the specification of a character encoding to use so that files
encoded using a character set other than the default for the locale can
be read

The University of Waikato COMP241 Lecture 18 Slide 11

Bridging Text and Binary Streams
• InputStreamReader allows text to be read from any

underlying byte stream
– Eg. java.net has classes for socket based TCP/IP network communication
– Socket class has getInputStream and getOutputStream

methods — more on this later

• System.in and System.out (standard in and standard out)
are instances of InputStream and OutputStream
respectively
– This is a legacy from Java 1.0 — before Readers and Writers were

introduced
– For top efficiency and Unicode support wrap in/out in
Input/OutputStreamReader/Writer and Buffering

BufferedReader myIn =
 new BufferedReader(new InputStreamReader(System.in));

The University of Waikato COMP241 Lecture 18 Slide 12

Tokenizing Text Input with Scanner

• Not actually an input stream as such
– Can be constructed with a File, InputStream, String or
Reader

Scanner st = new Scanner(r);

• Very useful for breaking a text file into a sequence of tokens
– Has a default delimiter pattern that matches all “whitespace”
– The resulting tokens can be converted into values of different types

using various next methods
• nextInt, nextDouble, nextLine etc.

3

The University of Waikato COMP241 Lecture 18 Slide 13

Scanner

• Has methods to search for patterns that operate
independently of the delimiter pattern
– findInLine — takes a pattern to search for
– findWithinHorizon — takes a pattern to search for and

an integer as arguments
– skip — takes a pattern to skip in the input

import java.util.*;
import java.io.File;

public class ScannerTest {
 public static void main(String [] args) {
 if (args.length != 1) {
 System.err.println("Usage ScannerTest <filename>");
 System.exit(1);
 }
 try {
 Scanner s = new Scanner(new File(args[0]));
 while (s.hasNext()) {
 if (s.hasNextInt() || s.hasNextDouble()) {
 System.out.println("number: " + s.next());
 } else if (s.hasNextBoolean()) {
 System.out.println("boolean: " + s.next());
 } else {
 System.out.println("word: " + s.next());
 }
 }
 } catch (Exception ex) { ex.printStackTrace(); }
 }
}

here is a test 29.3!
Testing my boolean true
** hi there bob!

bash-2.05a$ java ScannerTest scTest
word: here
word: is
word: a
word: test
word: 29.3!
word: testing
word: my
word: boolean
boolean: true
word: **
word: hi
word: there
word: bob!

Input file “scTest”

Running the
ScannerTest.java

program and output
to the console

The University of Waikato COMP241 Lecture 18 Slide 16

Example: A LZ77 Compressor for
Text Files Using Text IO

• Substitution (or dictionary) based compression
– Replace an occurrence of a particular phrase in a piece of data with

a reference to a previous occurrence of that phrase
• LZ77 — invented by two Israeli professors (Ziv and Lempel

– Keep track of the last n symbols seen in a search buffer
– When a sequence of input symbols is encountered that is in the

search buffer output a triple to encode it:
• <position, length, following-symbol>
• position is the index in the search buffer of the match
• length is the length of the match
• following-symbol is the input symbol that occurs immediately after the match

The University of Waikato COMP241 Lecture 18 Slide 17

Example: A LZ77 Compressor for
Text Files Using Text IO

• LZ77
– The reason for outputting the following-symbol is to take

care of the case when there is no match in the search
buffer for the current input symbol

• In this case position and length are set to 0 and the following-
symbol is set to the input symbol

// LZ77 compression algorithm
While there are more input symbols to read {
 match as many consecutive input symbols to the searchBuffer;

 output a (position, length, symbol) triple;
 append processed input symbols to the searchBuffer;
}

The University of Waikato COMP241 Lecture 18 Slide 18

Example: A LZ77 Compressor for
Text Files Using Text IO

• To improve compression we can:
– Omit outputting the position and length when there

is no match for the current input symbol in the
search buffer

– Only output our encoded triple when it comprises
fewer symbols than the raw data

• LZ77 forms the basis of many popular
compression formats such as zip, gif etc.

4

Example: A LZ77 Compressor for
Text Files Using Text IO

Pease porridge hot,
Pease porridge cold,
Pease porridge in the pot,
nine days old.

Some like it hot,
Some like it cold,
Some like it in the pot,
nine days old.

Pease porridge hot,
~0~15~cold~18~17~in the pot,
nine days old.

Some like it~14~6~S~85~12~cold
~100~15~i~57~26

Position, length

Input file 161 bytes Output file 110 bytes

The University of Waikato COMP241 Lecture 18 Slide 20

Example: A LZ77 Compressor for
Text Files Using Text IO

• We’ll use a StringBuffer (from java.lang) to be our search
buffer

• For compressing
– BufferedReader to read characters from an input file
– PrintWriter to write out our encoded text

• For uncompressing
– Scanner to parse words and numbers

• We will use “~” to separate numbers from words
– System.out to write out uncompressed text to the console

LZ77T.java: The compress() method
 public void compress(String infile) throws IOException {
 // set up input and output
 mIn = new BufferedReader(new FileReader(infile));
 mOut = new PrintWriter(new BufferedWriter(

 new FileWriter(infile+".lz77")));

 int nextChar;
 String currentMatch = "";
 int matchIndex = 0, tempIndex = 0;

 // while there are more characters - read a character
 while ((nextChar = mIn.read()) != -1) {
 // look in our search buffer for a match
 tempIndex = mSearchBuffer.indexOf(currentMatch +

 (char)nextChar);
 // continued on next slide

 // if match then append nextChar to currentMatch
 // and update index of match
 if (tempIndex != -1) {

 currentMatch += (char)nextChar;
 matchIndex = tempIndex;

 } else {
 // found longest match, now should we encode it?
 String codedString =
 "~"+matchIndex + "~” + currentMatch.length() +
 "~” + (char)nextChar;
 String concat = currentMatch + (char)nextChar;
 // is coded string shorter than raw text?
 if (codedString.length() <= concat.length()) {
 mOut.print(codedString);
 // append to the search buffer
 mSearchBuffer.append(concat);
 currentMatch = ""; matchIndex = 0;
 } else {

// continued from next slide

 // otherwise, output chars one at a time from
 // currentMatch until we find a new match or
 // run out of chars
 currentMatch = concat; matchIndex = -1;
 while (currentMatch.length() > 1 &&

 matchIndex == -1) {
 mOut.print(currentMatch.charAt(0));
 mSearchBuffer.append(currentMatch.charAt(0));
 currentMatch =

currentMatch.substring(1,
 currentMatch.length());

 matchIndex =
mSearchBuffer.indexOf(currentMatch);

 } // end inner while loop
} // end if/else coded string shorter than raw text
// Adjust search buffer size if necessary
if (mSearchBuffer.length() > mBufferSize) {
 mSearchBuffer = mSearchBuffer.delete(0,

mSearchBuffer.length() - mBufferSize);
}

 } // end if/else found match for next char
 } // end while there are more characters to read

 // flush any match we may have had when EOF encountered
 if (matchIndex != -1) {

// note that there is no following-symbol now,
// nor is there any need to append a final “~”

 String codedString =
 "~” + matchIndex + "~” + currentMatch.length();

 if (codedString.length() <= currentMatch.length()) {
 mOut.print("~"+matchIndex+"~"+currentMatch.length());

 } else {
 mOut.print(currentMatch);

 }
 }
 // close files
 mIn.close();
 mOut.flush(); mOut.close();
 } // end compress()

5

The University of Waikato COMP241 Lecture 18 Slide 25

LZ77T.java: The unCompress()
method

 public void unCompress(String infile) throws IOException {
 Scanner st =
 new Scanner(new FileReader(infile+".lz77")).
 useDelimiter("~");

 int offset, length;

 . . .

 while (st.hasNext()) {
 if (st.hasNextInt()) {
 offset = st.nextInt();
 if (st.hasNextInt()) {
 // Then it's the length
 length = st.nextInt();
 // Also need to read the third part of the triple (following word)
 String following = st.next();
 // Output substring from search buffer
 String output = mSearchBuffer.substring(offset, offset+length);
 System.out.print(output+following);
 mSearchBuffer.append(output+following);
 // Adjust search buffer size if necessary
 trimSearchBuffer();
 } else {
 // the first number must have been part of a normal word
 mSearchBuffer.append(offset + st.next());
 }
 } else {
 String output = st.next();
 mSearchBuffer.append(output);
 System.out.print(output);
 // Adjust search buffer if necessary
 trimSearchBuffer();
 }
 }
 st.close();

