
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 19: Networking and
Threads

Mark Hall

 Client/Server
 Socket

 Reading/writing

 Simple example
 ServerSocket
 Chat client
 Multithreading

The University of Waikato COMP241 Lecture 19 Slide 2

Chat Program

The University of Waikato COMP241 Lecture 19 Slide 3

Chat Program Overview

• The client has to know
about the server

• The server has to know
about ALL the clients

Chat Program Overview
• How it works:

The University of Waikato COMP241 Lecture 19 Slide 5

Chat Program Overview
• How it works:

Connecting, Sending and Receiving
• Connect

– Client connects to the server by establishing a Socket
connection

• Send
– Client sends a message to the server

• Receive
– Client gets a message from the server



2

The University of Waikato COMP241 Lecture 19 Slide 7

Make a network Socket connection
Socket chSock = new Socket(“196.164.1.103”, 5000);

• A Socket connection means the two machines have
information about each other
– Network location (IP address)
– TCP port

• TCP port
– 16 bit number that identifies a specific program (service) on

the server
– 0 - 1023 are reserved for well-known services

• 20 (FTP), 23 (Telnet), 25 (SMTP), 80 (HTTP), 443 (HTTPS) etc.
The University of Waikato COMP241 Lecture 19 Slide 8

Reading from a Socket

• Socket provides an InputStream for reading
(and an OutputStream for writing) from the
network

• Last time we saw InputStreamReader—a
bridge between byte-level and text input
– We can use this to read text from the Socket
– For writing text to a Socket we can use a
PrintWriter

The University of Waikato COMP241 Lecture 19 Slide 9

Reading from a Socket

Socket chSock = new Socket(“196.164.1.103”, 5000);
InputStreamReader strm =

new InputStreamReader(chSock.getInputStream());
BufferedReader buffR = new BufferedReader(strm);
String message = reader.readLine();

The University of Waikato COMP241 Lecture 19 Slide 10

Simple Example

• The DailyAdvice server
– A program that offers up practical, inspirational tips

to get you through the day :-)
• E.g. “Treat yourself to a cold one! You deserve it!”, “Tell

your boss the report will have to wait. There’s powder at
Aspen!”, “That shade of green isn’t really workin’ for
you…” etc.

• DailyAdviceClient
– Pulls a message from the server each time it

connects

The University of Waikato COMP241 Lecture 19 Slide 11 The University of Waikato COMP241 Lecture 19 Slide 12

Writing a simple server

• How it works:



3

The University of Waikato COMP241 Lecture 19 Slide 13

Writing a simple server
DailyAdviceServer code

The University of Waikato COMP241 Lecture 19 Slide 15

DailyAdviceServer code Writing a Chat Client
• Version One: send only

The University of Waikato COMP241 Lecture 19 Slide 17 The University of Waikato COMP241 Lecture 19 Slide 18



4

Writing a Chat Client
• Version Two: send and receive

• When do you get messages from the server?
1. Option One: Poll the server every 20 seconds
2. Option Two: Read something in from the server each time the

user sends a message
3. Option Three: Read messages as soon as they’re sent from the

server The University of Waikato COMP241 Lecture 19 Slide 20

Multithreading in Java
• Java has multiple threading built right into the

fabric of the language
Thread t = new Thread();
t.start();

• By creating a new Thread object, you’ve
launched a separate thread of execution, with its
own call stack; except…

• The thread above doesn’t actually do anything
– The thread “dies” virtually the instant it’s born

• Need a job for the thread to do

Multithreading

• A thread is a separate thread of
execution

• Every Java app starts up a main
thread—the thread that puts the main()
method on the bottom of the stack
– The JVM is responsible for starting

the main thread (and other threads, as
it chooses, e.g. garbage collection
thread

• Java has multiple threads but only one Thread
class

• Thread is a class that represents a
thread of execution
– Methods (amongst others) for starting,

joining one thread with another and
putting a thread to sleep


