Chat Program

‘@006 Ludicrously Simple Chat Client

Here is a message
And here is my response

Cool! send)

The University of Waikato COMP241 Lecture 19 Slide 2

Chat Program Overview

e The client has to know -

about the server }“

Client B

Client C

e The server has to know
about ALL the clients

server

The University of Waikato COMP241 Lecture 19 Slide 3

Chat Program Overview
* How it works:

Client connects to the server Server, 1'd like to connect
to the chat service

server:
Client A waiting for
client requests
@ The server makes a connection OK, you're in
and adds the client to the list - —
of participants -
Client A
Participants:

client A

server, 1'd like to connect
to the chat service
_———————»|

OK, you're in

(3) Anotner clent connects

Client B
rarticipants:
Client A
client B

Chat Program Overview
* How it works:

@ Client A sends a message to
the chat service
server:

Client A nessage recieved

"Hey, what's happening?”

@ The server distributes the
message to ALL participants
(including the original sender)
"Hey, what's happening?”

server:
message
distributed to
all participants

Client B

The University of Waikato COMP241 Lecture 19 Slide 5

Connecting, Sending and Receiving

* Connect

— Client connects to the server by establishing a Socket

connection

Send o
BESH

Nake a socket connection to
196.164.1.103 at port 5000

— Client sends a message to the server

* Receive e e o

— Client gets a message from the server

String s = reador.readLine()

Clont A
chat server at
196.164.1.103
port 5000

Make a network Socket connection

Socket chSock = new Socket(“196.164.1.103”, 5000);
* A Socket connection means the two machines have
information about each other
— Network location (IP address)
— TCP port
* TCP port
— 16 bit number that identifies a specific program (service) on
the server

— 0 -1023 are reserved for well-known services
« 20 (FTP), 23 (Telnet), 25 (SMTP), 80 (HTTP), 443 (HTTPS) etc.

The University of Waikato COMP241 Lecture 19 Slide 7

Reading from a Socket

* Socket provides an InputStream for reading
(and an OutputStream for writing) from the
network

» Last time we saw InputStreamReader—a
bridge between byte-level and text input

— We can use this to read text from the Socket

— For writing text to a Socket we can use a
PrintWriter

The University of Waikato COMP241 Lecture 19 Slide 8

Reading from a Socket

Socket chSock = new Socket(“196.164.1.103", 5000);
InputStreamReader strm =

new InputStreamReader (chSock.getInputStream());
BufferedReader buffR = new BufferedReader(strm);
String message = reader.readLine();

- buffered characters converted to characters bytes from the server
Buffered
(Cna’mm characters 010011100)a—o)
But feredreader Inputstreankeader Socket's input

stream
Client Data on the

server

The University of Waikato COMP241 Lecture 19 Slide 9

Simple Example

* The DailyAdvice server
— A program that offers up practical, inspirational tips
to get you through the day :-)

* E.g. “Treat yourself to a cold one! You deserve it!”, “Tell
your boss the report will have to wait. There’s powder at
Aspen!”, “That shade of green isn’t really workin” for
you...” etc.

* DailyAdviceClient

— Pulls a message from the server each time it

connects
The University of Waikato COMP241 Lecture 19 Slide 10

import java.io.*;

import java.net.*;

public class DailyAdviceClient {

public void go() {
try {
Socket s = new Socket("127.0.0.1", 4242);
InputStreamReader sR =
new InputStreamReader(s.getInputStream());

BufferedReader bR = new BufferedReader(sR);

String advice = bR.readLine();
System.out.println("Today you should: " + advice);

bR.close();
catch (IOException ex) {
ex.printStackTrace();

}

-~

}

public static void main(String [] args) {
DailyAdviceClient client = new DailyAdviceClient();
client.go();
}
}

Writing a simple server

e How it works:

@ Server application makes a Serversocket Serversocket
on a specific port

This starts the server application listening for
client requests coming in on port 4242

socket. serversocket

Client makes a Socket connection to the server
application

socket s = new Socket("190.165.1.103", 4242);

The University of Waikato COMP241 Lecture 19 Slide 12

Writing a simple server

@ Server makes a new socket to communicate with this serversocket
client (waiting for the
next client)
Socket s = sS.accept();

L]
The accept () method blocks while its watting for Cazaz)
aclient socket connection. When a client finally tries —
o connect, the method returs a plain old socket (on >

a different port) that knows how to communicate with = = S
the client (i.e. knows the client's IP address and port]

number). The Socket is on a different port than the e

Serversocket, 5o thal the Serversocket can go back

o waiting for other clients.

The University of Waikato COMP241 Lecture 19 Slide 13

import java.io.*;
import java.net.*;
public class DailyAdviceServer {
// daily advice comes from this array
String [] adviceList = {"Take smaller bites", "Treat
yourself to a cold one!", Tell your boss what you *really*
think"};

DailyAdviceServer code

public void go() {
try {
ServerSocket sS = ServerSocket(4242);
// The server goes into a permanent loop, waiting for
// (and servicing) client requests |uiSeeicl imes in aen e meinod
while(true) { retums a socket (on some anonymous port) for
Socket s = sS.accept();

with the client
PrintWriter w = new PrintWriter(s.getOutputStream());
String advice = getAdvice();
writer.println(advice
writer.close();

‘ . Now We Use The Socket connection 10 The clent 1o
System.out.println(advice); |makearrinvarsiter andsendit (printin())aString

advice message. Then we close the Socket. because
we are done with this client.

-~

catch (IOException ex) {
ex.printStackTrace();

DailyAdviceServer code

private String getAdvice() {
int random = (int) (Math.random() * adviceList.length);
return adviceList[random];

public static void main(String [] args) {
DailyAdviceServer server = new DailyAdviceServer();
server.go();

}

} // end class

The University of Waikato COMP241 Lecture 19 Slide 15

"®06 Ludicrously Simple Chat Client

I Csend)

Writing a Chat Client

public class SimpleChatClientA {
JTextField outgoing;
PrintWriter writer;
Socket sock;

public go() {
// make gui and register a listener with the send button
// call setUpNetworking() method

}

public void setUpNetworking() {
// make a Socket, then make a PrintWriter
// assign the PrintWriter to writer instance variable

}

public class SendButtonListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
// get text from the text field and send it to
// the server using the writer (a PrintWriter)
}
} // close inner class
} // close outer class

import java.io.*;
import java.net.*;
import java.util.=;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleChatClienta {
JTextField outgoing;
PrintWriter writer;
Socket sock;

public static void main(string(] args) {
simplechatClienta client = new simpleChatClientA();
client.go();

}

public void go() {
JFrame frame = new JFrame(“Ludicrously Simple Chat Client");
Jpanel mainPanel = new JPanel();
outgoing = new JTextField(20);
JButton sendButton = new JButton("Send");
sendButton.addActionListener(new SendButtonListener());
mainPanel.add(outgoing);
mainPanel.add(sendButton);
setUpNetworking();
frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
frame.setSize (400,500
frame.setVisible(true
} // close go

private void setUpNetworking() {
try {
sock = new Socket("127.0.0.1", 5000);

writer = new PrintWriter(sock.getOutputStream());
System.out.println(networking established");

} catch(IOException ex) {
ex.printStackTrace();

+
} // close setupNetworking

public class SendButtonListener implements ActionListenmer {
public void actionPerformed (ActionEvent ev) {
try {
writer.println(outgoing.getText());
writer.flush();
} catch(Exception ex) {
ex.printstackTrace();
}
outgoing.setText("");
outgoing.requestFocus();

} // close SendButtonListener inner class
}

The University of Waikato COMP241 Lecture 19 Slide 18

Writing a Chat Client

» Version Two: send and receive

000 Ludicrously Simple Cha Clent

The server sends a message to all
client participants, as soon as the
message is received by the server.
When a client sends a message.

it doesn't appear in the display area
until the server sends it to everyone.

* When do you get messages from the server?
1. Option One: Poll the server every 20 seconds

2. Option Two: Read something in from the server each time the

user sends a message

3. Option Three: Read messages as soon as they’re sent from the

server

Multithreading in Java

+ Java has multiple threading built right into the
fabric of the language

Thread t =
t.start();

new Thread();

* By creating a new Thread object, you’ve
launched a separate thread of execution, with its
own call stack; except...

The thread above doesn’t actually do anything

— The thread “dies” virtually the instant it’s born

The University of Waikato

Need a job for the thread to do

COMP241 Lecture 19 Slide 20

Multithreading

* Java has multiple threads but only one Thread

class

thread

another thread
started by the user

main thread

A thread is a separate thread of
execution

Every Java app starts up a main
thread—the thread that puts the main()
method on the bottom of the stack
— The JVM is responsible for starting
the main thread (and other threads, as
it chooses, e.g. garbage collection
thread

Thread

I
Void join()

void start()

static void sleep()

java.lang.Thread

Thread is a class that represents a
thread of execution
— Methods (amongst others) for starting,
joining one thread with another and
putting a thread to sleep

