Last time...

* We introduced Java’s Thread class
— Saw how to create a thread but...
— The thread needs a job to execute

* With more than one thread of execution, we
have more than one call stack

The University of Waikato COMP241 Lecture 20 Slide 2

More than one call stack

® The JVM calls the main() method
public static void main(String [] args) {
}
main() starts a new thread. The main thread is temporarily
frozen while the new thread starts running.
Runnable r = new MyThreadJob();
Thread t = new Thread(r);

t.start();
Dog d = new Dog();

The JVM switches between the new thread (user thread A)
and the original main thread, until both threads complete.

The University of Waikato COMP241 Lecture 20

the active thread

main thread

Anew thread starts
and becomes the
active thread

{ t.start() ‘)

 mee——

(_maing)
main thread user thread A

The active thread again

prittatl)

main thread user thread A

Slide 3

Launching a new thread

1. Make a Runnable object (the thread’s job)
Runnable threaddob = new MyRunnable();
2. Make a Thread object (the worker) and give it
the Runnable (the job)
Thread myThread = new Thread(threaddob);
3. Start the Thread
myThread.start();

¢ The thread calls the run () method defined in the
Runnable interface

The University of Waikato COMP241 Lecture 20 Slide 4

public class MyRunnable implements Runnable {

public void run() {
go();

}

public void go() {
doMore();
}

class ThreadTester {
public static void main(string [] args) {

Runnable threa
Thread myThread

@ myThread.start();

System.out.println("back in main");
}
}

new MyRunnable();
new Thread(threadJob);

The University of Waikato COMP241 Lecture 20

main thread
new thread
Slide 5

States of a new thread

* New
— After construction, waiting be started
— Thread object, but no thread of execution
* Runnable
— After starting (start () called) it moves into the runnable state
— Waiting to be chosen for execution
— Has a new call stack at this point
* Running
— The currently running thread

— Only the JVM thread scheduler decides which thread to
executed
* You can sometimes influence the decision, but not force a thread to move
from runnable to running
The University of Waikato COMP241 Lecture 20 Slide 6

States of a thread

* Once a thread becomes runnable, it can move back and
forth between runnable, running and an additional
state: blocked (temporarily not runnable)

— The thread scheduler can move a thread to a blocked state for
various reasons

« E.g. Thread might be reading from a Socket input stream, but there
isn’t any data to read

« E.g. executing code may have told the thread to put itself to sleep
(sleep())

« E.g. Thread might be trying to call a method on an object, and that
object was ‘locked”

The University of Waikato COMP241 Lecture 20 Slide 7

Thread Scheduler

Controls the moving of threads from runnable to

running

* There are no guarantees about scheduling
Do not base your program’s correctness on the scheduler
working in a particular way!

— Implementations of the scheduler are different for different
JVMs

« Even running the same program on the same machine can give
different results

— Use sleep () to give another thread a chance to run

* A sleeping thread will not become the currently-running thread
before the length of the sleep time has expired

The University of Waikato COMP241 Lecture 20 Slide 8

Unpredictability example

public class MyRunnable implements Runnable {

Terminal — 42x37
all

public void run() {
go();
}

public void go() {
doMore();
}

public void doMore() {
system.out.printin(“top o' the stack");
}
}

class ThreadTester {
public static void main(String [] args) {

Runnable threadJob = new MyRunnable();
Thread myThread = new Thread(threadJob);

myThread.start();
System.out.println(“back in main");
}
}
The University of Waikato COMP241 Lecture 20 Slide 9

Sometimes it runs like this:

main() starts the new | The scheduler sends The scheduler lets The new thread goes
hread the main thread out the new thread run away, because its
of running and back to completion, printing | run() completed. The
10 runnable, so that out "op o' the stack’ main thread once again
the new thread can becomes the running
un

thread, and prints "back

Y

T | G

main thread main thread new thread main thread

main() <

Time —— —

And sometimes it runs like this:

main() starts the new | The scheduler sends The scheduler lets | The scheduler The scheduler | The new thread
thread the main thread out the new thread run | sends the new selects the main retumns to the
of running and back for a lttie while, not | threadbackto threadtobethe | running state and
to runnable, so that ong enough for the | runnable running thread | prints out "top o'
the new thread can run() method to again. Main prints | the stack’
un complete out "back in main"

S

main thread main thread new thread new thread main thread new thread

Time -

Putting a thread to sleep

* One of the best ways to help your threads take turns is to
put them to sleep periodically
— For example:
Thread.sleep(2000);
— Will knock a thread out of the running state, and keep it out of
the runnable state for two seconds

— sleep() throws an InterruptedException
try {
Thread.sleep(2000);
} catch (InterruptedException ex) {
ex.printStackTrace();

The University of Waikato COMP241 Lecture 20 Slide 11

Using sleep to make our program more
public class MyRunnable implements Runnable { predl'ctable

public void run() {
go();
)

public void go() {
try {

Thread.sleep (2000

} catch (Interrupte

x.printstackTrace()
domore();
public void doMore() {
system.out.printin(“top o' the stack”);
}
}
class ThreadTester {
public static void main(String [] args) {

Runnable threadJob = new MyRunnable();
Thread myThread = new Thread(threadJob);

myThread.start();
system.out.println(“back in main”);

}

Concurrency Issues

* Consider the following:
— We have two threads, Ryan and Monica, who share
a singe object, the BankAccount
— Two classes: BankAccount and
RyanAndMonicaJob
—RyanAndMonicaJdob implements Runnable

* Behaviours of checking the balance and making
withdrawals

The University of Waikato COMP241 Lecture 20 Slide 13

Make one instance of RyanAndMonicaJob
The RyanAndMonicaJob class is the Runnable,
and since both Monica and Ryan do the same
thing, we need only one instance.

RyanAndMonicaJob theJob = new RyanAndMonicaJob();

(2) Make two threads with the same runnable e ru) meihod chedkhe
balance and, if there's enough

Thread one = new Thread(theJob); money, make the withdrawal

Thread two = new Thread(theJob);
This should protect against
@ Name and start the threads ovenianing the apcou.
Except... Ryan and Monica
always fall asleep after they
check the balance but before
they finish the withdrawal.

one.setName(“Ryan”);
two.setName("Monica");
one.start(); two.start();

@ Watch both threads execute the run() method
One thread represents Ryan, the other represents Monica.
Both threads continually check the balance and then make
a withdrawal, but only if its safe!

if (account.getBalance() >= amount) {
try {
Thread.sleep(500);
) catch (InterruptedException ex) {
ex.printstackTrace();
)
)

class Bankaccount {

shate omiee -0 Ryan and Monica Example

public int getBalance() {
return balance;

)

public void withdraw(int amount) {
balance -= amount;
}
y

public class RyanandMonicaJob implements Runnable {
private BankAccount account = new BankAccount();

public static void main(string (] args) {
RyanAndMonicaJob theJob = new RyanAndMonicadob();
Thread one = new Thread(theJob);
Thread two = new Thread(theJob);
one.setName("Ryan");
two.setName("Monica");
one.start();
two.start();

)

public void run() {
for (int x = 0; x < 10; x++) {
makewithdrawal(10);
if (account.getBalance() < 0) {
System.out.println(“Overdrawn!");
}
)
)

Ryan and Monica Example

private void makewithdrawal(int amount) {
if (account.getBalance() >= amount) {
// use the static currentThread method to access the currently running
// thread
system.out.println(Thread.currentThread().getName()
+ " is about to withdraw");

try {
System.out.println(Thread.currentThread().getName()
+ " is going to sleep");
Thread.sleep(500);
} catch (InterruptedException ex) {
ex.printstackTrace();
}

System.out.println(Thread.currentThread().getName()

+ " woke up");
account.withdraw(amount);
System.out.println(Thread.currentThread().getName()

+ " completes the withdrawal");

} else {
system.out.println("sorry, not enough for
+ Thread.currentThread().getName());

The makeWithdrawal() method always
checks the balance before making a
withdrawal, but still we overdraw the
account.

Here is one scenario:

Ryan checks the balance, sees that there is
enough money, and then falls asleep.

Meanwhile, Monica comes in and checks the
balance. She, too, sees that there is enough
money. She has no idea that Ryan is going
to wake up and complete a withdrawal

Monica falls asleep.

Ryan wakes up and completes his
withdrawal

Monica wakes up and completes her
withdrawal. Big problem! In between the time
when she checked the balance and made the
withdrawal, Ryan woke up and pulled money
from the account

Monica's check of the account was not valid,
because Ryan had already checked and was
in the middle of making a withdrawal.

Monica must be stopped from getting into
the account until Ryan wakes up and finishes
his transaction. And vice-versa.

Need a lock for account access

* We need to make the makeWithdrawal () method to
run as one atomic thing

— Make sure that once a thread enters makeWithdrawal (), it
must be allowed to finish the method before any other thread
can enter

— The synchronized keyword means that a thread needs a key
in order to access the synchronized code

« To protect your data, synchronize the methods that act on that data

Public synchronized void makeWithdrawal(int amount) {

The University of Waikato COMP241 Lecture 20 Slide 18

Using an object’s lock

* Every object has a lock
— Most of the time, the lock is unlocked, and you can
imagine a virtual key sitting with it
* Object locks come into play when there are one
or more synchronized methods

A thread can enter a synchronized method only if
the thread can get the key to the object’s lock

The University of Waikato COMP241 Lecture 20 Slide 19

Using an object’s lock

» The locks are not per method, they are per object
+ If an object has two synchronized methods...

— Not simply the case that you can’t have two threads entering
the same method

— It means you can’t have two threads entering any of the
synchronized methods
* If you have multiple methods that can potentially act
on instance variables, all those methods need to be
protected with synchronized
— The goal of synchronization is to protect critical data

The University of Waikato COMP241 Lecture 20 Slide 20

The dreaded “Lost Update™”
problem

* Classic concurrency problem from the database world
— Closely related to the Ryan and Monica example
* Revolves around one process:
— Step 1: Get the balance of the account
int i = balance;
— Step 2: Add 1 to that balance
balance = i + 1;
— Force the computer to take two steps to complete the change
« Of course, we’d normally do this via balance++;

The University of Waikato COMP241 Lecture 20 Slide 21

The dreaded “Lost Update”
problem

By forcing two steps, the process becomes non-
atomic
— We could imagine that the two steps involved are
more complex and couldn’t be done in one
statement
* In the “Lost Update” problem we have two
threads, both trying to increment the balance

The University of Waikato COMP241 Lecture 20 Slide 22

class TestSync implements Runnable {
private int balance;

public void run() {
for (int i = 0; 1 < 50; i++) {
increment();
System.out.println("balance is " + balance);
}
}

public void increment() {
int i = balance; Here is the critical part! We increment
balance = i + 1; «—— |le balance by adding 1 to whatever
) the value of the balance was AT THE
TIME WE READ IT (rather than adding
t 1 to whatever the CURRENT value is)

public class TestSyncTest {
public static void main(string []) args) {
TestSync job = new TestSync();

Thread a = new Thread(job);
Thread b = new Thread(job);
a.start();
b.start();

Lost Update

* The problem occurs when one of the threads is
sent back to runnable after reading the value of
balance but before writing it

— Any updates from another thread are lost when this
one returns to complete its update

* Solution: make the increment () method
atomic by synchronizing it

The University of Waikato COMP241 Lecture 20 Slide 24

Synchronize the bare minimum

* A good rule of thumb is to synchronize only the
bare minimum that should be synchronized

doStuff() doesnt need to be
s0 we don't
‘ the whole method

public void go() {
dostuff();

synchronized(this) {

criticalstuff();
Now only these two method calls

morecriticalgtnss (‘)\ are grou{uea into one atomic unit.

} When you use the synchronized

} keyword WITHIN a method, rather

than in a method declaration, you

have to provide an argument that is

the object whose key the thread

needs to get.

The University of Waikato COMP241 Lecture 20 Slide 25

The deadly side of synchronization

« Allit takes for a deadlock are two objects and two
threads
* A simple deadlock scenario:
1. Thread A enters a synchronized method of object foo, and
gets the key
« Thread A goes to sleep holding the foo key
2. Thread B enters a synchronized method of object bar, and
gets the key

« Thread B tries to enter a synchronized method of object foo, but
can’t get that key

« B waits until the foo key is available
* B keeps the bar key

The University of Waikato COMP241 Lecture 20 Slide 26

The deadly side of synchronization

* A simple deadlock scenario cont.

3. Thread A wakes up and tries to enter a
synchronized method on object bar, but can’t get
that key because B has it

* A waits until the bar key is available (never will be)

Thread A can’t run until it gets the bar key and
thread B can’t run until it gets the foo key

The University of Waikato COMP241 Lecture 20 Slide 27

