
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 20: Networking and
Threads 2

Mark Hall

Readings: Horstmann Ch 9

 Threads
 Multiple call stacks
 Runnable

 States of a thread
 Thread scheduler
 Thread.sleep()

 Concurrency issues
 Lost update problem

 synchronize

The University of Waikato COMP241 Lecture 20 Slide 2

Last time…

• We introduced Java’s Thread class
– Saw how to create a thread but…
– The thread needs a job to execute

• With more than one thread of execution, we
have more than one call stack

The University of Waikato COMP241 Lecture 20 Slide 3

More than one call stack

The University of Waikato COMP241 Lecture 20 Slide 4

Launching a new thread

1. Make a Runnable object (the thread’s job)
Runnable threadJob = new MyRunnable();

2. Make a Thread object (the worker) and give it
the Runnable (the job)
Thread myThread = new Thread(threadJob);

3. Start the Thread
myThread.start();
• The thread calls the run() method defined in the

Runnable interface

The University of Waikato COMP241 Lecture 20 Slide 5 The University of Waikato COMP241 Lecture 20 Slide 6

States of a new thread
• New

– After construction, waiting be started
– Thread object, but no thread of execution

• Runnable
– After starting (start() called) it moves into the runnable state
– Waiting to be chosen for execution
– Has a new call stack at this point

• Running
– The currently running thread
– Only the JVM thread scheduler decides which thread to

executed
• You can sometimes influence the decision, but not force a thread to move

from runnable to running

2

The University of Waikato COMP241 Lecture 20 Slide 7

States of a thread
• Once a thread becomes runnable, it can move back and

forth between runnable, running and an additional
state: blocked (temporarily not runnable)
– The thread scheduler can move a thread to a blocked state for

various reasons
• E.g. Thread might be reading from a Socket input stream, but there

isn’t any data to read
• E.g. executing code may have told the thread to put itself to sleep

(sleep())
• E.g. Thread might be trying to call a method on an object, and that

object was ‘locked’

The University of Waikato COMP241 Lecture 20 Slide 8

Thread Scheduler
• Controls the moving of threads from runnable to

running
• There are no guarantees about scheduling

Do not base your program’s correctness on the scheduler
working in a particular way!

– Implementations of the scheduler are different for different
JVMs

• Even running the same program on the same machine can give
different results

– Use sleep() to give another thread a chance to run
• A sleeping thread will not become the currently-running thread

before the length of the sleep time has expired

The University of Waikato COMP241 Lecture 20 Slide 9

Unpredictability example

The University of Waikato COMP241 Lecture 20 Slide 10

The University of Waikato COMP241 Lecture 20 Slide 11

Putting a thread to sleep
• One of the best ways to help your threads take turns is to

put them to sleep periodically
– For example:
Thread.sleep(2000);

– Will knock a thread out of the running state, and keep it out of
the runnable state for two seconds

– sleep() throws an InterruptedException
try {
 Thread.sleep(2000);
} catch (InterruptedException ex) {
 ex.printStackTrace();
}

Using sleep to make our program more
predictable

3

The University of Waikato COMP241 Lecture 20 Slide 13

Concurrency Issues

• Consider the following:
– We have two threads, Ryan and Monica, who share

a singe object, the BankAccount
– Two classes: BankAccount and
RyanAndMonicaJob

– RyanAndMonicaJob implements Runnable
• Behaviours of checking the balance and making

withdrawals

The University of Waikato COMP241 Lecture 20 Slide 14

Ryan and Monica Example

The University of Waikato COMP241 Lecture 20 Slide 16

Ryan and Monica Example

The University of Waikato COMP241 Lecture 20 Slide 18

Need a lock for account access

• We need to make the makeWithdrawal() method to
run as one atomic thing
– Make sure that once a thread enters makeWithdrawal(), it

must be allowed to finish the method before any other thread
can enter

– The synchronized keyword means that a thread needs a key
in order to access the synchronized code

• To protect your data, synchronize the methods that act on that data
Public synchronized void makeWithdrawal(int amount) {
…

4

The University of Waikato COMP241 Lecture 20 Slide 19

Using an object’s lock

• Every object has a lock
– Most of the time, the lock is unlocked, and you can

imagine a virtual key sitting with it
• Object locks come into play when there are one

or more synchronized methods
A thread can enter a synchronized method only if
the thread can get the key to the object’s lock

The University of Waikato COMP241 Lecture 20 Slide 20

Using an object’s lock
• The locks are not per method, they are per object
• If an object has two synchronized methods…

– Not simply the case that you can’t have two threads entering
the same method

– It means you can’t have two threads entering any of the
synchronized methods

• If you have multiple methods that can potentially act
on instance variables, all those methods need to be
protected with synchronized
– The goal of synchronization is to protect critical data

The University of Waikato COMP241 Lecture 20 Slide 21

The dreaded “Lost Update”
problem

• Classic concurrency problem from the database world
– Closely related to the Ryan and Monica example

• Revolves around one process:
– Step 1: Get the balance of the account

int i = balance;

– Step 2: Add 1 to that balance
balance = i + 1;

– Force the computer to take two steps to complete the change
• Of course, we’d normally do this via balance++;

The University of Waikato COMP241 Lecture 20 Slide 22

The dreaded “Lost Update”
problem

• By forcing two steps, the process becomes non-
atomic
– We could imagine that the two steps involved are

more complex and couldn’t be done in one
statement

• In the “Lost Update” problem we have two
threads, both trying to increment the balance

The University of Waikato COMP241 Lecture 20 Slide 23 The University of Waikato COMP241 Lecture 20 Slide 24

Lost Update

• The problem occurs when one of the threads is
sent back to runnable after reading the value of
balance but before writing it
– Any updates from another thread are lost when this

one returns to complete its update
• Solution: make the increment() method

atomic by synchronizing it

5

The University of Waikato COMP241 Lecture 20 Slide 25

Synchronize the bare minimum

• A good rule of thumb is to synchronize only the
bare minimum that should be synchronized

The University of Waikato COMP241 Lecture 20 Slide 26

The deadly side of synchronization
• All it takes for a deadlock are two objects and two

threads
• A simple deadlock scenario:

1. Thread A enters a synchronized method of object foo, and
gets the key
• Thread A goes to sleep holding the foo key

2. Thread B enters a synchronized method of object bar, and
gets the key
• Thread B tries to enter a synchronized method of object foo, but

can’t get that key
• B waits until the foo key is available
• B keeps the bar key

The University of Waikato COMP241 Lecture 20 Slide 27

The deadly side of synchronization

• A simple deadlock scenario cont.
3. Thread A wakes up and tries to enter a

synchronized method on object bar, but can’t get
that key because B has it
• A waits until the bar key is available (never will be)

Thread A can’t run until it gets the bar key and
thread B can’t run until it gets the foo key

