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Readings: Horstmann Ch 9

 Threads
 Multiple call stacks
 Runnable

 States of a thread
 Thread scheduler
 Thread.sleep()

 Concurrency issues
 Lost update problem

 synchronize
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Last time…

• We introduced Java’s Thread class
– Saw how to create a thread but…
– The thread needs a job to execute

• With more than one thread of execution, we
have more than one call  stack
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More than one call stack
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Launching a new thread

1. Make a Runnable object (the thread’s job)
Runnable threadJob = new MyRunnable();

2. Make a Thread object (the worker) and give it
the Runnable (the job)
Thread myThread = new Thread(threadJob);

3. Start the Thread
myThread.start();
• The thread calls the run() method defined in the

Runnable interface
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States of a new thread
• New

– After construction, waiting be started
– Thread object, but no thread of execution

• Runnable
– After starting (start() called) it moves into the runnable state
– Waiting to be chosen for execution
– Has a new call stack at this point

• Running
– The currently running thread
– Only the JVM thread scheduler decides which thread to

executed
• You can sometimes influence the decision, but not force a thread to move

from runnable to running
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States of a thread
• Once a thread becomes runnable, it can move back and

forth between runnable, running and an additional
state: blocked (temporarily not runnable)
– The thread scheduler can move a thread to a blocked state for

various reasons
• E.g. Thread might be reading from a Socket input stream, but there

isn’t any data to read
• E.g. executing code may have told the thread to put itself to sleep

(sleep())
• E.g. Thread might be trying to call a method on an object, and that

object was ‘locked’
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Thread Scheduler
• Controls the moving of threads from runnable to

running
• There are no guarantees about scheduling

Do not base your program’s correctness on the scheduler
working in a particular way!

– Implementations of the scheduler are different for different
JVMs

• Even running the same program on the same machine can give
different results

– Use sleep() to give another thread a chance to run
• A sleeping thread will not become the currently-running thread

before the length of the sleep time has expired
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Unpredictability example
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Putting a thread to sleep
• One of the best ways to help your threads take turns is to

put them to sleep periodically
– For example:
Thread.sleep(2000);

– Will knock a thread out of the running state, and keep it out of
the runnable state for two seconds

– sleep() throws an InterruptedException
try {
  Thread.sleep(2000);
} catch (InterruptedException ex) {
  ex.printStackTrace();
}

Using sleep to make our program more
predictable
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Concurrency Issues

• Consider the following:
– We have two threads, Ryan and Monica, who share

a singe object, the BankAccount
– Two classes: BankAccount and
RyanAndMonicaJob

– RyanAndMonicaJob implements Runnable
• Behaviours of checking the balance and making

withdrawals
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Ryan and Monica Example
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Ryan and Monica Example
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Need a lock for account access

• We need to make the makeWithdrawal() method to
run as one atomic thing
– Make sure that once a thread enters makeWithdrawal(), it

must be allowed to finish the method before any other thread
can enter

– The synchronized keyword means that a thread needs a key
in order to access the synchronized code

• To protect your data, synchronize the methods that act on that data
Public synchronized void makeWithdrawal(int amount) {
…
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Using an object’s lock

• Every object has a lock
– Most of the time, the lock is unlocked, and you can

imagine a virtual key sitting with it
• Object locks come into play when there are one

or more synchronized methods
A thread can enter a synchronized method only if
the thread can get the key to the object’s lock
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Using an object’s lock
• The locks are not per method, they are per object
• If an object has two synchronized methods…

– Not simply the case that you can’t have two threads entering
the same method

– It means you can’t have two threads entering any of the
synchronized methods

• If you have multiple methods that can potentially act
on instance variables, all those methods need to be
protected with synchronized
– The goal of synchronization is to protect critical data
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The dreaded “Lost Update”
problem

• Classic concurrency problem from the database world
– Closely related to the Ryan and Monica example

• Revolves around one process:
– Step 1: Get the balance of the account

int i = balance;

– Step 2: Add 1 to that balance
balance = i + 1;

– Force the computer to take two steps to complete the change
• Of course, we’d normally do this via balance++;
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The dreaded “Lost Update”
problem

• By forcing two steps, the process becomes non-
atomic
– We could imagine that the two steps involved are

more complex and couldn’t be done in one
statement

• In the “Lost Update” problem we have two
threads, both trying to increment the balance
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Lost Update

• The problem occurs when one of the threads is
sent back to runnable after reading the value of
balance but before writing it
– Any updates from another thread are lost when this

one returns to complete its update
• Solution: make the increment() method

atomic by synchronizing it
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Synchronize the bare minimum

• A good rule of thumb is to synchronize only the
bare minimum that should be synchronized
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The deadly side of synchronization
• All it takes for a deadlock are two objects and two

threads
• A simple deadlock scenario:

1. Thread A enters a synchronized method of object foo, and
gets the key
• Thread A goes to sleep holding the foo key

2. Thread B enters a synchronized method of object bar, and
gets the key
• Thread B tries to enter a synchronized method of object foo, but

can’t get that key
• B waits until the foo key is available
• B keeps the bar key
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The deadly side of synchronization

• A simple deadlock scenario cont.
3. Thread A wakes up and tries to enter a

synchronized method on object bar, but can’t get
that key because B has it
• A waits until the bar key is available (never will be)

Thread A can’t run until it gets the bar key and
thread B can’t run until it gets the foo key


