New and improved SimpleChatClient

* Now we can finally put together the complete
multithreaded chat client and server program

import java.io.*;
import java.net.*;
import java.util.*;
import javax.swing.*;
import java.awt.=*;
import java.awt.event.*;

public class simpleChatClient {

JTextArea incoming;
JTextField outgoing;
BufferedReader reader;
PrintWriter writer;
Socket sock;

public static void main(String[]) args) {(
simplechatClient client = new SimpleChatClient();
client.go();

public void go() {

// build gui
JFrame frame = new JFrame("Ludicrously Simple Chat Client");
JPanel mainPanel = new JPanel();

incoming = new JTextArea(15,50);
incoming.setLineWrap(true);
incoming.setwrapStyleWord(true);
incoming.setEditable(false);

JscrollPane gscroller = new JscrollPane(incoming);
gscroller.setverticalscrollBarpolicy(ScrollPaneconstants. VERT ROLLBAR_A);
gscroller.setHorizontalscrollBarPolicy(ScrollPanecConstants. HORIZONTAL SCROLLBAR NEVER);

outgoing = new JTextField(20);

JButton sendButton = new JButton('Send");
sendButton.addActionListener(new SendButtonListener());

We're starting a new thread, using a new inner class as the,
Runnable (job) for the thread. The thread's job is to read from
the server's socket stream, displaying any incoming messages
in the scrolling text area.

mainPanel.add(gscroller
mainPanel.add(outgoing);
mainPanel.add(sendButton);

setuUpNetworking();
Thread readerThread = new Thread(new IncomingReader());
readerThread.start();

frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
frame.setSize(650,450);
frame.setvisible(true);

) // close go

private void setUpNetworking() {

sock = new Socket("127.0.0.1%, 5000);
I W Inputst (sock.getInputstream());
reader = new BufferedReader(streamReader);

writer = new PrintWriter(sock.getoutputStream());

System.out.println(“networking established");
catch(IOException ex) {
ex.printstackTrace();

1
} // close setUpNetworking

public class SendButtonListener implements ActionListenmer {
public void actionPerformed(ActionEvent ev) {
try {
writer.println(outgoing.getText());
writer.flush();

} catch(Exception ex) {
ex.printStackTrace();

}

outgoing.setText("");

outgoing.requestFocus();

} // close SendButtonListener inner class

The University of Waikato COMP241 Lecture 21 Slide 4

This is what the thread does.
public class IncomingReader implements Runnable {
public void run() { (as long as what it gets from the server
String message; is not null), reading a line at a time and

try { adding each line to the scrolling text
area (along with a new line character).

In the run() method, it stays in a loop

while ((message = reader.readLine()) != null) {
System.out.println(“read " + message);
incoming.append(message + "\n");

} // close while
} catch(Exception ex) {ex.printstackTrace();}
} // close run
} // close inner class
} // close outer class (SimpleChatClient)

The University of Waikato COMP241 Lecture 21 Slide 5

import java.io.*;
import java.net.*;
import java.util.*;

The VerySimpleChatServer

public class VerysimpleChatserver {

ArrayList<PrintWriter> clientOutputStreams;
public class Clientsandler implements Runnable {

BufferedReader reader;
Socket sock;

public c1 ler(socket cli) {
try {
sock = clientsocket;
InputStreamReader isReader = new InputStreamReader (sock.getInputStream());
reader = new BufferedReader (isReader);
} catch(Exception ex) {ex.printStackTrace();}
} // close constructor

public void run() {
string message;

try {
// keep reading stuff from the server
while ((message = reader.readLine())
System.out.println('read " + message);
tellEveryone(message);
)} // close while
} catch(Exception ex) {ex.printStackTrace();}
} // close run
} // close inner class

null) {

public static void main (String(] args) {
new VerysimpleChatServer().go();

}

public void go() {
clientoutputStreams = new ArrayList<PrintWriter>();

try {
Serversocket serversock = new Serversocket(5000);

while(true) {

socket clientSocket = serverSock.accept();
PrintWriter writer = new PrintWriter(clientSocket.getOutputStream());
(this) {

clientoutputStreams.add(writer);
}

Thread t = new Thread(new ClientHandler(clientsocket));
t.start();

System.out.println("got a connection");

// now if I get here I have a connection
} catch(Exception ex) {
ex.printStackTrace();
}

)
The University of Waikato COMP241 Lecture 21 Slide 7

public void tellEveryone(String) o{
Iterator<PrintWriter> it = clientOutputStreams.iterator();
while(it.hasNext()) {

try |
PrintWriter writer = it.next();
writer.println()i

writer.flush();
catch(Exception ex) {
ex.printstackTrace();

}
} // end while
} // close tellEveryone
} // close VerySimpleChatServer

The University of Waikato COMP241 Lecture 21 Slide 8

Distributed Computing

* So far, we’ve seen that every method we’ve invoked
has been on an object running in the same VM as the
caller

* In a distributed computing scenario we have multiple
VM’s on multiple machines

— Typically one or more servers providing heavy computing
power for one or more clients

— Client wants to be able to call a method on an object running
on the server
double doCalcUsingDatabase(CalcNumbers numbers)

The University of Waikato COMP241 Lecture 21 Slide 9

Distributed Computing

* How can object A on the client get a reference
to object B on the server?
— Two different heaps/JVMs involved

» Can’t do it directly

The University of Waikato COMP241 Lecture 21 Slide 10

A design for remote method calls

* Create four things: server, client, server helper
and client helper

@ Create client and server apps. The server app is the
remote service that has an object with the method
that the client wants to invoke.

Client object O
Service object,

The University of Waikato COMP241 Lecture 21 Slide 11

A design for remote method calls

@ Create client and server "helpers”. They'll handle all
the low-level networking and I/O details so your client
and service can pretend like they're in the same heap.

- Client heap Server heap

Client helper

Client object
Service object,

The University of Waikato COMP241 Lecture 21 Slide 12

The role of the ‘helpers’

* The ‘helpers’ are the objects that actually do the
communication
— Client acts as though its calling a method on a local object
« Actually it is—the client calls a method on the client helper
— The client helper is a proxy for the real service

- Client heap Server heap

Client helper pretends to < 5
be the service, but s just
a proxy.

Client object thinks P ‘.— -1
its talking to the real
service Client helper

0,

Senvice object

Client object

Senvice helper gets the
request from the client
helper, unpacks it, and
calls the method on the
real service.

How the method call happens

1. Client object calls doBigThing() on the client
helper object

2. Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper

3. Service helper unpacks the information from the
client helper, finds out which method to call (and on
which object) and invokes the real method on the
real service object

The University of Waikato COMP241 Lecture 21 Slide 14

Java RMI provides the helper objects

* RMI does the hard work
— Makes the client helper look like the real service (i.e. gives
the client helper the same methods as the remote service)
— Provides the runtime infrastructure
« Lookup service to allow the client to find and get the client helper
« Provides all of the networking and I/O code
* Lots of potential exceptions
— Because ultimately, a call on the proxy involves sockets and
streams
* Choice of protocols
— JRMP: RMI’s native protocol for Java-to-Java remote calls
— IIOP: CORBA'’s protocol for Java-to-non-Java

The University of Waikato COMP241 Lecture 21 Slide 15

Java RMI provides the helper objects

» In RMI, the client helper is a ‘stub’ and the
server helper is a ‘skeleton’

- Client heap Server heap

Service helper ()

Service object

Client helper

Client object

The University of Waikato COMP241 Lecture 21 Slide 16

Overview of making a remote
service

Step one:
— Make a Remote Interface (e.g. MyService. java)
« Defines the method that a client can call remotely
« Client will use this as the polymorphic class type for your service
« Both the Stub and the actual service will implement this
Step two:
— Make a Remote Implementation (e.g. MyServiceImpl. java)
« This is the actual class that does the real work

* Has the actual implementation of the remote methods defined in the remote
interface

The University of Waikato COMP241 Lecture 21 Slide 17

Overview of making a remote

service

 Step three:
— Generate the stubs and the skeletons using rmic
— These are the client and server ‘helpers’

— You don’t have to create them or ever look at the source
code that generates them

— rmic (part of the JDK) does it for you
 Step four:

— Start the RMI registry (rmiregistry)
+ Step five:

— Start the remote service

 Your service implementation class instantiates an instance of the
service and registers it with the RMI registry

* Registering the service makes it available for clients

Make a Remote Interface

* Extend java.rmi.Remote
— Remote is a ‘marker’ interface that declares no methods
Public interface MyRemote extends Remote {
* Declare that all methods throw a
RemoteException
— The remote interface is used by the client as the polymorphic
type for the service

* The stub implements this and uses sockets and I/O, hence the
exception

import java.rmi.*;
public interface MyRemote extends Remote {
public String sayHello() throws RemoteException;

}

The University of Waikato COMP241 Lecture 21 Slide 19

Make a Remote Interface

* Be sure arguments and return values are
primitives or Serializable

— Transmission across the network requires that
objects be converted to byte streams

The University of Waikato COMP241 Lecture 21 Slide 20

Make a Remote Implementation

 Implement the Remote interface

— Your service has to implement the remote interface

public class MyRemoteImpl extends UnicastRemoteObject
implements MyRemote {

public String sayHello() {
return “Server says, ‘Hey’”;

}
* Extend UnicastRemoteObject

— Inherit some functionality related to ‘being remote’

The University of Waikato COMP241 Lecture 21 Slide 21

Make a Remote Implementation

* Write a no-arg constructor that declares a RemoteException
— UnicastRemoteObject’s constructor throws a
RemoteException, so our constructor has to throw it too
public MyRemoteImpl() throws RemoteException { }
+ Register the service with the RMI registry
— When you register the implementation object, the RMI system actually
puts the stub in the registry
try {
MyRemote service = new MyRemoteImpl();
Naming.rebind(“RemoteHello”, service);
} catch (Exception ex) { ... }

The University of Waikato COMP241 Lecture 21 Slide 22

Generate stubs and skeletons

* Run rmic on the remote implementation class (not the
remote interface)
rmic MyRemoteImpl
+ Notice that you don’t say “.class” on the end

« Produces two new classes for the helper objects:
MyRemoteImpl Stub.class and
MyRemoteImpl Skel.class

* Run rmiregistry in a terminal
— Make sure you start it from a directory that has access to
your classes

The University of Waikato COMP241 Lecture 21 Slide 23

Start the service

* From another terminal start your service

— This will probably be from the main () method in your
remote implementation class

— Note, it is also possible to bootstrap the rmiregistry
from your service implementation class (could put the
following in your main()):

try {

System.err.println("Attempting to start rmi registry...");
java.rmi.registry.LocateRegistry.createRegistry(1099);
} catch (Exception ex) {..}

The University of Waikato COMP241 Lecture 21 Slide 24

import java.rmi.*;
import java.rmi.server.*;
is the easiest way to make a remote
public class MyRemoteImpl object
extends UnicastRemoteObject
implements MyRemote

N ‘You MUST implement your

return "sServer says, 'Hey'
}

public MyRemoteImpl() throws RemoteException { }

public static void main (String(] args) {
try {
MyRemote service = new MyRemoteImpl();
Naming.rebind("RemoteHello", service);
} catch (Exception ex) {
// Try and bootstrap the rmiregistry...
try {
System.err.println("Attempting to start rmi registry.
java.rmi.registry.LocateRegistry.createRegistry(1099);
MyRemoteImpl service = new MyRemoteImpl();
Naming.rebind("RemoteHello", service);
System.out.println("MyRemote bound in RMI registry

} catch (Exception ex2) {
// not sure what is wrong now
ex2.printStackTrace();

+

Complete code for the server side

