
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 21: Distributed
Computing

Mark Hall

 Chat client and
Server—final
version

 Remote Method
Invocation (RMI)

New and improved SimpleChatClient
• Now we can finally put together the complete

multithreaded chat client and server program

The University of Waikato COMP241 Lecture 21 Slide 4

The University of Waikato COMP241 Lecture 21 Slide 5 The University of Waikato COMP241 Lecture 21 Slide 6

The VerySimpleChatServer

2

The University of Waikato COMP241 Lecture 21 Slide 7 The University of Waikato COMP241 Lecture 21 Slide 8

The University of Waikato COMP241 Lecture 21 Slide 9

Distributed Computing

• So far, we’ve seen that every method we’ve invoked
has been on an object running in the same VM as the
caller

• In a distributed computing scenario we have multiple
VM’s on multiple machines
– Typically one or more servers providing heavy computing

power for one or more clients
– Client wants to be able to call a method on an object running

on the server
double doCalcUsingDatabase(CalcNumbers numbers)

The University of Waikato COMP241 Lecture 21 Slide 10

Distributed Computing

• How can object A on the client get a reference
to object B on the server?
– Two different heaps/JVMs involved

• Can’t do it directly

The University of Waikato COMP241 Lecture 21 Slide 11

A design for remote method calls

• Create four things: server, client, server helper
and client helper

The University of Waikato COMP241 Lecture 21 Slide 12

A design for remote method calls

3

The role of the ‘helpers’
• The ‘helpers’ are the objects that actually do the

communication
– Client acts as though its calling a method on a local object

• Actually it is—the client calls a method on the client helper
– The client helper is a proxy for the real service

The University of Waikato COMP241 Lecture 21 Slide 14

How the method call happens

1. Client object calls doBigThing() on the client
helper object

2. Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper

3. Service helper unpacks the information from the
client helper, finds out which method to call (and on
which object) and invokes the real method on the
real service object

The University of Waikato COMP241 Lecture 21 Slide 15

Java RMI provides the helper objects
• RMI does the hard work

– Makes the client helper look like the real service (i.e. gives
the client helper the same methods as the remote service)

– Provides the runtime infrastructure
• Lookup service to allow the client to find and get the client helper
• Provides all of the networking and I/O code

• Lots of potential exceptions
– Because ultimately, a call on the proxy involves sockets and

streams
• Choice of protocols

– JRMP: RMI’s native protocol for Java-to-Java remote calls
– IIOP: CORBA’s protocol for Java-to-non-Java

The University of Waikato COMP241 Lecture 21 Slide 16

Java RMI provides the helper objects
• In RMI, the client helper is a ‘stub’ and the

server helper is a ‘skeleton’

The University of Waikato COMP241 Lecture 21 Slide 17

Overview of making a remote
service

• Step one:
– Make a Remote Interface (e.g. MyService.java)

• Defines the method that a client can call remotely
• Client will use this as the polymorphic class type for your service
• Both the Stub and the actual service will implement this

• Step two:
– Make a Remote Implementation (e.g. MyServiceImpl.java)

• This is the actual class that does the real work
• Has the actual implementation of the remote methods defined in the remote

interface

Overview of making a remote
service

• Step three:
– Generate the stubs and the skeletons using rmic
– These are the client and server ‘helpers’
– You don’t have to create them or ever look at the source

code that generates them
– rmic (part of the JDK) does it for you

• Step four:
– Start the RMI registry (rmiregistry)

• Step five:
– Start the remote service

• Your service implementation class instantiates an instance of the
service and registers it with the RMI registry

• Registering the service makes it available for clients

4

The University of Waikato COMP241 Lecture 21 Slide 19

Make a Remote Interface
• Extend java.rmi.Remote

– Remote is a ‘marker’ interface that declares no methods
Public interface MyRemote extends Remote {

• Declare that all methods throw a
RemoteException
– The remote interface is used by the client as the polymorphic

type for the service
• The stub implements this and uses sockets and I/O, hence the

exception
import java.rmi.*;
public interface MyRemote extends Remote {
 public String sayHello() throws RemoteException;
}

The University of Waikato COMP241 Lecture 21 Slide 20

Make a Remote Interface

• Be sure arguments and return values are
primitives or Serializable
– Transmission across the network requires that

objects be converted to byte streams

The University of Waikato COMP241 Lecture 21 Slide 21

Make a Remote Implementation

• Implement the Remote interface
– Your service has to implement the remote interface
public class MyRemoteImpl extends UnicastRemoteObject
 implements MyRemote {
 public String sayHello() {
 return “Server says, ‘Hey’”;
 }
}

• Extend UnicastRemoteObject
– Inherit some functionality related to ‘being remote’

The University of Waikato COMP241 Lecture 21 Slide 22

Make a Remote Implementation
• Write a no-arg constructor that declares a RemoteException

– UnicastRemoteObject’s constructor throws a
RemoteException, so our constructor has to throw it too

public MyRemoteImpl() throws RemoteException { }

• Register the service with the RMI registry
– When you register the implementation object, the RMI system actually

puts the stub in the registry
try {
 MyRemote service = new MyRemoteImpl();
 Naming.rebind(“RemoteHello”, service);
} catch (Exception ex) { ... }

The University of Waikato COMP241 Lecture 21 Slide 23

Generate stubs and skeletons

• Run rmic on the remote implementation class (not the
remote interface)
rmic MyRemoteImpl

• Notice that you don’t say “.class” on the end
• Produces two new classes for the helper objects:
MyRemoteImpl_Stub.class and
MyRemoteImpl_Skel.class

• Run rmiregistry in a terminal
– Make sure you start it from a directory that has access to

your classes

The University of Waikato COMP241 Lecture 21 Slide 24

Start the service

• From another terminal start your service
– This will probably be from the main() method in your

remote implementation class
– Note, it is also possible to bootstrap the rmiregistry

from your service implementation class (could put the
following in your main()):

try {

 System.err.println("Attempting to start rmi registry...");
 java.rmi.registry.LocateRegistry.createRegistry(1099);
 } catch (Exception ex) {…}

5

Complete code for the server side

