Last time...

» Looked at Java’s RMI:
— Helper objects
—Remote interface

— Remote implementation

—rmic
—rmiregistry
The University of Waikato COMP241 Lecture 22 Slide 2

. Complete code for the server side
import java.rmi.+;

import java.rmi.server.*; Extending UnicastRemoteObject ]ic w dC eS t‘ le CZle‘ lt get t‘ le Stltb
is the easiest way to make a remote
blic cl 1 object .
P oxtends UnicascRemateoblect Obj ect?

implements MyRemote
. You MUST implement your
public String sayHello() { roote e ¥

return "Server says, 'Hey'";

’ * The client needs to get the stub object

public MyRemoteImpl() throws RemoteException { } . . )
— Client will call server methods on this
public static void main (String[] args) {
try { : « 5 .
MyRemote service = new MyRemoteImpl(); — Client does a “lookup” in the RMI registry
Naming.rebind("RemoteHello", service)j
catch (Exception ex) {
// Try and bootstrap the rmiregistry... . . .
try { MyRemote service = (MyRemote) Naming.lookup('rmi://localhost/RemoteHello");
System.err.println("Attempting to start rmi registry...");
java.rmi.registry.LocateRegistry.createRegistry(1099);
MyRemoteImpl service = new MyRemoteImpl();

Naming.rebind("RemoteHello", service); Client always uses the
System.out.println("MyRemote bound in RMI registry"); remote interface as the You have to cast it to the This has to be the name that

} chten (Exception exz) ¢ type of service. In fact, interface, since the lookup the service was registered
// not sure what is wrong now the client never needs to method returns type Object. under.
ex2.printStackTrace(); know the actual class name

} of your remote service.

i
} The University of Waikato COMP241 Lecture 22 Slide 4
}
Client Server import java.rmi.*;

public class MyRemoteClient {

public static void main(String [] args) {
new MyRemoteClient().go();

public void go() {
try {
MyRemote service = (MyRemote) Naming.lookup('rmi://localhost/RemoteHello”);

®lankuPH RMI 'eglsl"v (on server) string s = service.sayHello();
| emote |

Client does a lookup on the RMI registry Hello System.out.println(s);

Naming.lookup(“rmi://localhost/RemoteHello”); } catch (Exception ex) {
RMI registry returns the stub object ex.printstackTrace();
Stub }
}
@ Client invokes a method on the stub, as '
if it were the real service

The University of Waikato COMP241 Lecture 22 Slide 5 The University of Waikato COMP241 Lecture 22 Slide 6




Class Files

* Be sure each machine has the class files it needs
* Top three mistakes with RMI

— Forgetting to start the rmiregistry before starting the
remote service
* Bootstrapping the registry eliminates this
— Forgetting to make arguments and return types
serializable
— Forgetting to give the stub class to the client

The University of Waikato COMP241 Lecture 22 Slide 7

RMI dynamic class loading

*  RMI can download classes across the network to the
service’s VM
—  Eliminate the need to package the stub class with the client
application
— Essential if requests to the server involve custom classes
that are not part of the JRE
« Ie. client sends an object as a parameter to a method on the remote
server where that objects class is not in the classpath of the server
«  The class of the object sent by the client will be a subtype of the

declared parameter type
— Implementation of an interface or a subclass of the method

java.rmi.server.codebase=<URI>

The University of Waikato COMP241 Lecture 22 Slide 8

Getting the stub class dynamically

@ RMI registry @ senver reigsters a
Tompute
Client makes a naming P | remote object, bound
Engine 1o a name
lookup call
Client S ’

N s R —
of the remote object's stub

Server
Stub

©)

Client requests-the stub's class
from the codebasé

Service object

Java.rmi.server, codebases)
http://myHost /myDir/

@me HTTP server returs the
remote object's stub class myHost

The University of Waikato COMP241 Lecture 22 Slide 9

Getting classes from the client
dynamically

Job.

AN

©cient makes a remote method call passing
a subtype unknown to the remote object as
a method parameter

HyJob a;
compute (a)

lient object Stub

Service object
public String compute(Job 3)i

QDremote object downloads
the subtype's class

ver. codebase= definition from the client-

x/mydirectory specified codebase

URL
location
(file, tp or
hitp

The University of Waikato COMP241 Lecture 22 Slide 10

Specifying the codebase

* Set the “codebase” property from the command line
when starting the client/server

java -Djava.rmi.server.codebase=http://webvector/export/

Java -Djava.rmi.server.codebase=http://web/pub/mystuff.jar

The University of Waikato COMP241 Lecture 22 Slide 11

Test 2

* Covers everything from lecture 12 onwards
— GUIS, event handling, swing, text I/O, sockets, threads and
RMI
« Similar layout to test 1
* 5 questions
— 1 “fill in the blanks” question
— 1 “find the errors in this code” question
— 2 “write code from scratch” questions
— 1 “draw the output of these code snippets” question

The University of Waikato COMP241 Lecture 22 Slide 12




