
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 3: Comparing Java
and C#

Mark Hall

 Important features
 Same
 Slightly different
 Different

The University of Waikato COMP241 Lecture 3 Slide 2

Important Features

YesYesOne common base class

Byte code.NET intermediate language (IL)Form of compiled source
code

Not at all. References are used,
instead.

Yes, but only in the rarely-used
“unsafe” mode. References are
used, instead.

Pointers

Managed, using a garbage
collector

Managed, using a garbage
collector

Memory management

Through the “interface” keywordThrough the “interface” keywordThe notion of interface

Single class inheritance, multiple
interface implementation

Single class inheritance, multiple
interface implementation

Inheritance

JavaC#Feature

The University of Waikato COMP241 Lecture 3 Slide 3

Same
• Virtual machine/language runtime

– Java -> byte code -> JVM
– C# -> intermediate lang. (IL) -> CLR
– Both do native compilation via JITs

• Jagged arrays
int [][]myArray = new int[2][];
myArray[0] = new int[3]; myArray[1] = new int[9];

• No global methods
– Belong to a class either as instance or static methods

The University of Waikato COMP241 Lecture 3 Slide 4

Same
• Strings are immutable

String s = “Grapes”;
s.ToLower(); /* C#. Does not modify string,

 returns lowercase copy */
s.toLowerCase(); // Java. Same as above

– Use java.lang.StringBuilder for modifiable strings

• Constructor chaining and calling base class constructors
– Both C# and Java automatically call base class constructors
– Both provide a way to call the constructor of the base class with

specific parameters

The University of Waikato COMP241 Lecture 3 Slide 5

Same
• Unextendable classes

– C#: sealed, Java: final
• Exceptions

– try, catch, finally
– Inheritance hierarchy for exceptions
– Method for obtaining a stack trace

• Runtime type identification
– C#: is, Java: instanceof

The University of Waikato COMP241 Lecture 3 Slide 6

Slightly Different

• Inheritance syntax
– C# uses C++ syntax for inheritance (class

inheritance and interface implementation)
•class B:A, Icomparable {…

– Java uses extends and implements
•class B extends A implements
Comparable {…

2

The University of Waikato COMP241 Lecture 3 Slide 7

Slightly Different

• Grouping collections of classes
– C#: namespace, Java: package
– In Java, package names dictate the directory structure for

source files
– C# allows nested namespaces

• Reflection
– In C#, reflection is done at the assembly level

• Need the DLL containing the targeted class to be available
– In Java, reflection is done at the class level

• Need to be able to load the class file for the targeted class

The University of Waikato COMP241 Lecture 3 Slide 8

Slightly Different
• Declaring constants

– Java: final for either compile time or run time constants
– C#: const for compile time constants and readonly for

runtime constants

// C# ...
// compile time
const int i1 = 10; // static

// run time
public static readonly unint i1 =

(uint)DateTime.Now.Ticks;

// uninitialized readonly
readonly float f; /* init in

 constructor */

// Java ...
// compile time
final int i1 = 10; // instance
static final int i2 = 20; // class

// run time
public static final long l1 = new

Date().getTime();

// uninitialized final
final float f; /* init in

 constructor */

The University of Waikato COMP241 Lecture 3 Slide 9

Slightly Different

• Primitive types
– Every Java primitive type has a corresponding C#

type with the same name
• Exception: byte in Java is signed and is analogous to
sbyte in C#

– C# has unsigned versions of some primitives:
• ulong, uint, ushort and byte

– C# has the decimal type
• Stores decimal numbers without rounding errors (at the

cost of space and speed)
The University of Waikato COMP241 Lecture 3 Slide 10

Somewhat Different

• Nested classes
– C#: static nested classes

• Have access to static member variables and methods of
the enclosing class

– Java: static and non-static nested (inner) classes
• Instance of inner class is tied to instance of outer class &

has access to its member variables and methods

The University of Waikato COMP241 Lecture 3 Slide 11

Somewhat Different
• C# assemblies

– Similar to Java’s JAR files
– Fundamental unit of code packaging in the .NET

environment
– Contain intermediate code from compiling, metadata etc.
– Actions related to interacting with types are done at the

assembly level- e.g. granting security permissions, code
deployment, versioning etc.

• Java typically does these at the class level
– Assemblies are stored as EXEs or DLLs, JAR files are

stored in the ZIP file format

The University of Waikato COMP241 Lecture 3 Slide 12

Somewhat Different

• C#: goto no longer considered harmful
– Jump directly from a point in the code to a label
– Cannot jump into a statement block using goto

3

The University of Waikato COMP241 Lecture 3 Slide 13

Somewhat Different
• Virtual methods

– All methods in Java are virtual
– In C#, by default all methods are non-virtual

• Use virtual keyword
• Subclass can choose to override the virtual method by using override

or not by using new

• Final methods
– Methods can be marked as final in Java

• Cannot be overriden in base class
– In C#, this can be done by not marking the method as virtual

• Subclass can still define the method but the base class version will be
called if the object is used via a base class reference

The University of Waikato COMP241 Lecture 3 Slide 14

Somewhat Different
• Multiple classes in a single file

– Java: one class per source file that has public access
• Must have the same name as the source file (minus the extension)

– C#: no restriction on number of public classes in a given source
file

• No requirement for the name of any class in the file to match that of the
source file

• Importing libraries
– Referencing source code

• Java: import; C#: using
– Tell the compiler where to find the library

• Java: CLASSPATH env. variable; C#: /r compiler switch

The University of Waikato COMP241 Lecture 3 Slide 15

Different

• C#: Delegates
– Mechanism for providing callback functions
– Similar to function pointers in C
– Same functionality can be achieved in Java by

defining interfaces that specify the signature of the
callback function

The University of Waikato COMP241 Lecture 3 Slide 16

public class HasDelegates { // C#

public delegate bool CallbackFunc(string a, int b);
public bool execCallback(CallbackFunc doCallBack, string x, int y) {

Console.WriteLine(“Excecuting callback…”);

return doCallback(x, y);

}

}

Public class FunctionDelegates {

public static bool FunctionFoo(string a, int b) {
Console.WriteLine(“Foo: {0} {1}”, a, b); return true;

}

}

Public class DelegateTest {

public static void Main(string [] args) {

HasDelegates MyDel = new HasDelegates();

HasDelegates.CallbackFunc myCallBack =

new HasDelegates.CallBackFunc(FunctionDelegates.FunctionFoo);

MyDel.executeCallback(myCallBack, “Twenty”, 20);

}

}

The University of Waikato COMP241 Lecture 3 Slide 17

// Java

public interface HasCallback {

boolean callbackFunc(String a, int b);
}

class UsesCallback {

public boolean doStuff(HasCallback h, String a, int b) {
return h.callbackFunc(a, b);

}

}

public class CallbackTest {

public static void main(String [] args) {

UsesCallback u = new UsesCallback();

u.doStuff(new HasCallback() {
public boolean callbackFunc(String a, int b) {

System.out.println(“a & b ” + a + “ “ + b);

}

 }, “Twenty”, 20);

}

} The University of Waikato COMP241 Lecture 3 Slide 18

Different

• C#: Value types (Structs)
– Specify that objects of a certain class should be

stack-based (rather than live on the heap)
– Stack memory is faster to allocate and is

automatically reclaimed by the system when no
longer needed

– Avoid garbage collection overhead

4

The University of Waikato COMP241 Lecture 3 Slide 19

Different

• Runtime type identification
– C#: as operator
– Performs an explicit cast

• Returns null if unsuccessful
MyClass mc = o as MyClass;

• Multidimensional arrays
– C# has multidimensional arrays that are a contiguous block

containing members of the same type
– Java only has jagged arrays (arrays of arrays)

The University of Waikato COMP241 Lecture 3 Slide 20

Different

• Pass by reference
– In Java the arguments to a method are passed by

value
• Method operates on copies of the items passed to it

– In C# it is possible to specify that the args to a
method actually be references to the items being
passed

• Keywords ref and out

The University of Waikato COMP241 Lecture 3 Slide 21

Different

• Pointers and unsafe code
– In C# it is possible to have pointer types similar to

those in C/C++
• Can only be used in an unsafe context

– Useful in certain situations
• Eg. When interfacing with the underlying operating

system, accessing a memory-mapped device, times when
performance is critical, etc.

The University of Waikato COMP241 Lecture 3 Slide 22

Different

• Cross platform portability
– Java byte code can be run on any platform with a

JVM
• Dynamic class loading

– Java can dynamically load classes at runtime
– Powerful when combined with remote procedure

call
• Java apps can download class files that do not exist on

the target machine

