R e UniveRsiy o

— |.m_Slightly different

- ['w Different

N DEPARTMENT OF COMPUTER S(
WAL KATQ TARI ROROHIKO . x

Important Features

Feature

C#

Java

Inheritance

Single class inheritance, multiple
interface implementation

Single class inheritance, multiple
interface implementation

The notion of interface

Through the “interface” keyword

Through the “interface” keyword

Memory management

Managed, using a garbage
collector

Managed, using a garbage
collector

Pointers

Yes, but only in the rarely-used
“unsafe” mode. References are
used, instead.

Not at all. References are used,
instead.

Form of compiled source NET intermediate language (IL) Byte code
code
One common base class Yes Yes

The University of Waikato

COMP241 Lecture 3

Slide 2

Same

* Virtual machine/language runtime
— Java -> byte code -> JVM
— C# -> intermediate lang. (IL) -> CLR
— Both do native compilation via JITs

* Jagged arrays
int [][]myArray = new int[2][];
myArray[0] = new int[3]; myArray[l] = new int[9];

* No global methods

— Belong to a class either as instance or static methods

The University of Waikato COMP241 Lecture 3 Slide 3

 Strings are immutable
String s = “Grapes”;
s.ToLower(); /* C#. Does not modify string,
returns lowercase copy */
s.toLowerCase(); // Java. Same as above

Same

— Use java.lang.StringBuilder for modifiable strings

» Constructor chaining and calling base class constructors
— Both C# and Java automatically call base class constructors

— Both provide a way to call the constructor of the base class with
specific parameters

The University of Waikato

COMP241 Lecture 3

Slide 4

Same

+ Unextendable classes
— C#: sealed, Java: final
» Exceptions
—try, catch, finally
— Inheritance hierarchy for exceptions
— Method for obtaining a stack trace
* Runtime type identification
— C#: is, Java: instanceof

The University of Waikato COMP241 Lecture 3 Slide 5

Slightly Different

* Inheritance syntax

— C# uses C++ syntax for inheritance (class
inheritance and interface implementation)

- class B:A,

Icomparable {..

— Java uses extends and implements

class B extends A implements
Comparable {..

The University of Waikato

COMP241 Lecture 3

Slide 6




Slightly Different

» Grouping collections of classes
— C#: namespace, Java: package
— In Java, package names dictate the directory structure for
source files
— C# allows nested namespaces
» Reflection
— In C#, reflection is done at the assembly level
* Need the DLL containing the targeted class to be available
— In Java, reflection is done at the class level
* Need to be able to load the class file for the targeted class

The University of Waikato COMP241 Lecture 3 Slide 7

Slightly Different

» Declaring constants
— Java: £inal for either compile time or run time constants
— C#: const for compile time constants and readonly for
runtime constants

/] C# ... // Java ...
// compile time // compile time
const int il = 10; // static final int il = 10; // instance

static final int i2 = 20; // class

// run time

public static readonly unint il = // run time
(uint)DateTime.Now.Ticks; public static final long 11 = new

Date().getTime();

// uninitialized readonly

readonly float f; /* init in // uninitialized final

constructor */ final float f; /* init in

constructor */

The University of Waikato COMP241 Lecture 3 Slide 8

Slightly Different

* Primitive types
— Every Java primitive type has a corresponding C#
type with the same name

* Exception: byte in Java is signed and is analogous to
sbyte in C#

— C# has unsigned versions of some primitives:
* ulong, uint, ushort and byte
— C# has the decimal type

* Stores decimal numbers without rounding errors (at the
cost of space and speed)

The University of Waikato COMP241 Lecture 3 Slide 9

Somewhat Different

» Nested classes

— C#: static nested classes
* Have access to static member variables and methods of
the enclosing class

— Java: static and non-static nested (inner) classes

« Instance of inner class is tied to instance of outer class &
has access to its member variables and methods

The University of Waikato COMP241 Lecture 3 Slide 10

Somewhat Different

» C# assemblies
— Similar to Java’s JAR files

— Fundamental unit of code packaging in the NET
environment

— Contain intermediate code from compiling, metadata etc.

— Actions related to interacting with types are done at the
assembly level- e.g. granting security permissions, code
deployment, versioning etc.

« Java typically does these at the class level

— Assemblies are stored as EXEs or DLLs, JAR files are

stored in the ZIP file format

The University of Waikato COMP241 Lecture 3 Slide 11

Somewhat Different

» C#: goto no longer considered harmful
— Jump directly from a point in the code to a label
— Cannot jump into a statement block using goto

The University of Waikato COMP241 Lecture 3 Slide 12




Somewhat Different

* Virtual methods
— All methods in Java are virtual
— In C#, by default all methods are non-virtual
« Use virtual keyword
« Subclass can choose to override the virtual method by using override
or not by using new
* Final methods
— Methods can be marked as final in Java
« Cannot be overriden in base class
— In C#, this can be done by not marking the method as virtual

« Subclass can still define the method but the base class version will be
called if the object is used via a base class reference

The University of Waikato COMP241 Lecture 3 Slide 13

Somewhat Different

* Multiple classes in a single file
— Java: one class per source file that has public access
* Must have the same name as the source file (minus the extension)
— C#: no restriction on number of public classes in a given source
file
* No requirement for the name of any class in the file to match that of the
source file
* Importing libraries
— Referencing source code
« Java: import; C#: using
— Tell the compiler where to find the library
« Java: CLASSPATH env. variable; C#: / r compiler switch

The University of Waikato COMP241 Lecture 3 Slide 14

Different

» C#: Delegates
— Mechanism for providing callback functions
— Similar to function pointers in C

— Same functionality can be achieved in Java by
defining interfaces that specify the signature of the
callback function

The University of Waikato COMP241 Lecture 3 Slide 15

public class HasDelegates { // C#
public delegate bool CallbackFunc(string a, int b);
public bool execCallback(CallbackFunc doCallBack, string x, int y) {
Console.WriteLine (“Excecuting callback..”);
return doCallback(x, y);

Public class FunctionDelegates (
public static bool FunctionFoo(string a, int b) {
Console.WriteLine (“Foo: {0} {1}”, a, b); return true;

Public class DelegateTest {
public static void Main(string [] args
HasDelegates MyDel = new HasDelegates();
HasDelegates.CallbackFunc myCallBack =
new HasDelegates.CallBackFunc (FunctionDelegates.FunctionFoo) ;
MyDel.executeCallback (myCallBack, “Twenty”, 20);

The University-of Waikak OMP241 Lot ficlo1.

// Java

public interface HasCallback {
boolean callbackFunc(String a, int b);

class UsesCallback {
public boolean doStuff (HasCallback h, String a, int b) {

return h.callbackFunc(a, b);

public class CallbackTest {
public static void main(String [] args)
UsesCallback u = new UsesCallback();
u.doStuff (new HasCallback() {
public boolean callbackFunc(String a, int b) {
System.out.println(®a & b ” +a + ™ * + b);

“Twenty”, 20);

The-University-of Waikat OMP241 Lot ficlo1.

b

Different

» C#: Value types (Structs)

— Specify that objects of a certain class should be
stack-based (rather than live on the heap)

— Stack memory is faster to allocate and is
automatically reclaimed by the system when no
longer needed

— Avoid garbage collection overhead

The University of Waikato COMP241 Lecture 3 Slide 18




Different

» Runtime type identification
— C#: as operator
— Performs an explicit cast
* Returns null if unsuccessful
MyClass mc = o as MyClass;
* Multidimensional arrays
— C# has multidimensional arrays that are a contiguous block
containing members of the same type

— Java only has jagged arrays (arrays of arrays)

The University of Waikato COMP241 Lecture 3 Slide 19

Different

* Pass by reference
— In Java the arguments to a method are passed by
value
* Method operates on copies of the items passed to it
— In C# it is possible to specify that the args to a
method actually be references to the items being

passed
» Keywords ref and out

The University of Waikato COMP241 Lecture 3 Slide 20

Different

* Pointers and unsafe code
— In C# it is possible to have pointer types similar to
those in C/C++
* Can only be used in an unsafe context
— Useful in certain situations

» Eg. When interfacing with the underlying operating
system, accessing a memory-mapped device, times when
performance is critical, etc.

The University of Waikato COMP241 Lecture 3 Slide 21

Different

* Cross platform portability
— Java byte code can be run on any platform with a
JVM
* Dynamic class loading
— Java can dynamically load classes at runtime

— Powerful when combined with remote procedure
call

* Java apps can download class files that do not exist on
the target machine

The University of Waikato COMP241 Lecture 3 Slide 22




