
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 4: Testing & JUnit

Mark Hall

Readings: Horstman Chap 3

 Importance of
testing

 Testing activities
 Unit testing

 Techniques

 JUnit

The University of Waikato COMP241 Lecture 4 Slide 2

Why Are Tests Important?

• Philosophy: Everybody can change someone else’s
code as long as the tests still run

• Regression testing: test whether functionality that
was working before a change is still working after the
change

The University of Waikato COMP241 Lecture 4 Slide 3

Other Benefits of Tests

• Documentation
• Helps to think about what to do before starting the

implementation
• Helps with debugging
• Prevents bugs from reoccurring
• Allows refactoring with confidence

The University of Waikato COMP241 Lecture 4 Slide 4

Testing Activities
• Unit testing

–Focus on individual modules
• Integration testing

–Checks the connection of modules
• System testing

–Checks the complete system
• Usability testing

–Tests the user’s understanding of the system

The University of Waikato COMP241 Lecture 4 Slide 5

Testing is hard

• Testing’s goal runs counter to the goal of other
development activities
– A successful test is one that breaks the software!

• Testing can never prove the absence of errors
– No errors could indicate poor/incomplete test cases

• Testing alone does not improve software quality
– Test results are an indicator of quality

The University of Waikato COMP241 Lecture 4 Slide 6

Unit Testing

• Focus on objects and subsystems

• Ensures that each module works properly
before integrating modules together

• Easier to pinpoint and correct faults

• Allows parallelism

2

The University of Waikato COMP241 Lecture 4 Slide 7

Black and White-box Testing

• Black-box testing
– Don’t (or can’t) look past the interface when testing

a routine

– Look at just inputs and outputs

• White-box testing
– Look at internal source as well as inputs and outputs

The University of Waikato COMP241 Lecture 4 Slide 8

Unit Testing Techniques

• Why isn’t it possible to prove that a program is
correct by testing it?
– Test every conceivable combination of input values

• e.g. program that stores a name (20 chars),
address (20 chars) and phone number (10
digits) in a file:
2620 x 2620 x 1010 = 1066 possibilities

The University of Waikato COMP241 Lecture 4 Slide 9

Unit Testing Techniques

• Incomplete Testing
– Pick test cases most likely to find errors
– Of the 1066 possible test cases, only a few are likely

to disclose errors that others don’t

The University of Waikato COMP241 Lecture 4 Slide 10

Unit Testing Techniques
• Equivalence testing

– A good test case covers a large part of the possible input data

– If two test cases flush out the same errors, you only need one

– Divide input into equivalence classes
• Groups that you believe will be treated similarly by the routine

– Test at least one example input for each class

• Boundary testing (off-by-one errors)
– num-1, when you meant num; >= when you meant >

– Choose input that tests the boundary of an equivalence class

The University of Waikato COMP241 Lecture 4 Slide 11

Unit Testing Techniques

• Equivalence and boundary testing help the
tester to do efficient and thorough black-box
testing

• Determining the equivalence classes is not
always easy
– Must understand required input and domain-

specific rules that govern what input is acceptable
– Knowledge of computer science and software

design

The University of Waikato COMP241 Lecture 4 Slide 12

Example
/* Returns the number of days in
 * the given month and year.
 * @param month the integer
 * representation for the
 * month (1 is Jan, etc.)
 * @param year the year
 * @throws IllegalArgumentException
 * if month < 1 or month > 12
 */
int getNumDaysInMonth(int month,

int year);

3

The University of Waikato COMP241 Lecture 4 Slide 13

JUnit 3.8

• A unit test framework for Java

• Provides automatic test runs

• Provides automatic result checks

• Lots of extensions are available

• Make sure that /usr/share/java/junit.jar
is in your CLASSPATH

The University of Waikato COMP241 Lecture 4 Slide 14

Getting started with JUnit 3.8

1. Create a subclass of TestCase

2. Write a test method (name should start with test)

3. Run the test

The University of Waikato COMP241 Lecture 4 Slide 15

1. Create a subclass of TestCase

import junit.framework.TestCase;

public class MyCalendarTest

extends TestCase {

…

}

The University of Waikato COMP241 Lecture 4 Slide 16

2. Write a test method

import junit.framework.TestCase;

public class MyCalendarTest
extends TestCase {

public void testFeb2000() {
MyCalendar cal = new MyCalendar();
final int result =

cal.getNumDaysInMonth(2, 2000);
assertEquals(29, result);

 }
}

The University of Waikato COMP241 Lecture 4 Slide 17

3. Run the test

By using the TestRunner class:

• Console UI:
java junit.textui.TestRunner MyCalendarTest

• Graphical UI:
java junit.swingui.TestRunner MyCalendarTest

The University of Waikato COMP241 Lecture 4 Slide 18

Writing tests using fixtures

• Fixture: known set of objects for multiple tests to
operate on

1. Create a subclass of TestCase
2. Add an instance variable for each part of the fixture
3. Override setUp() to initialize the variables
4. Override tearDown() to release any permanent

resources you allocated in setUp

4

The University of Waikato COMP241 Lecture 4 Slide 19

Execution Order

• setUp() will be executed before and
tearDown() will be executed after each test
method-invocation

• The ordering of test-method invocations is not
defined

• Test methods must be written to be
independent of one another

The University of Waikato COMP241 Lecture 4 Slide 20

Example of using fixtures
import junit.framework.TestCase;

public class MyCalendarTest
extends TestCase {
protected void setUp() {
 myCalendar_ = new MyCalendar();
}

protected void tearDown() { }

MyCalendar myCalendar_;
}

The University of Waikato COMP241 Lecture 4 Slide 21

Grouping Tests Together

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new

MyCalendarTest(“testFeb2000”));
suite.addTest(new

MyClassTest(“testFeb1900”));
return suite;

}

public static Test suite() {
return new TestSuite(MyCalendarTest.class);

}

The University of Waikato COMP241 Lecture 4 Slide 22

JUnit Terminology

• Test Fixture: Set of objects that can be
reused by multiple tests

• TestCase: class that defines the fixture to
run multiple tests

• TestSuite: Collection of Tests
• Failure: checked for
• Error: Exception (not checked for)

The University of Waikato COMP241 Lecture 4 Slide 23

JUnit Best Practice

• Keep tests short and simple

• Don’t assume order in which tests run

• Avoid tests with side effects

• Use OO techniques (subclassing etc.)

• Avoid loading data from hard-coded locations

• Use assertSame, assertEquals etc. instead of
assert(…==…) and assert(….equals(…))

• Follow naming conventions

