gine Development
nheritancﬁ

Polymorphism - |.» Avoiding code
\\%1 duplication

= Polymorphism

. es for
— erriding

—

B unveRsy o
DEPARTMENT OF COMPUTER S

WA
G i

O -
i, TARIROROHIKO N

Specialization
—

* Amoeba class overrides the rotate and
playSound methods of Shape
* Overriding
— Subclass redefines one of the inherited methods when it
needs to change or extend the behaviour of that method

The University of Waikato COMP241 Lecture 7 Slide 2

Understanding Inheritance

» Subclass inherits from
the superclass
[Superfero]

E
fights
specialPower
putOnSuit()
>

a

— Instance variables and
Superclass
methods (more abstract)

“

Instance variables
(state, attributes)

Methods
(behaviour)

* In Java the subclass
extends the superclass

* Instance variables are
not overriden
Subclass
— Don’t have to be as they =~ (M spect
don’t define any special
behaviour

Overring
methods

UseSpecialPower()
putOnSuit ‘\/

The University of Waikato COMP241 Lecture 7 Slide 3

Animal Simulation Program

+ Design the inheritance tree

— Lion, Hippo, Tiger, Dog, Cat, Wolf
+ Abstract out behaviours

— What do these six types have in common?
* Define inheritance tree relationships

— How are these types related?

The University of Waikato COMP241 Lecture 7 Slide 4

Using inheritance to avoid
duplicating code in subclasses

Animal
picture
« Design a class that s
represents common etz
state and behaviour o)
+ Put in methods an
: : . —
instance variables that — A
all animals might need - |] —
The University of Waikato COMP241 Lecture 7 Slide 5

Inheritance opportunities

» Decide if a subclass needs behaviours that are
specific to that subclass type

— Looking at the Animal class, we decide that
makeNoise and eat should be overriden in
subclasses

hunger

+ Further opportunities for abstraction

- Wolf and Dog might have behaviour in common,
same for Tiger, Lion and Cat

The University of Waikato COMP241 Lecture 7 Slide 6

Inheritance opportunities

Finish the class
hierarchy

Decide that Canines
could use a common
roam method

— Move in packs
Same for Felines

— Avoid others of their
kind

maKeNoise()
eat()

Hippo continues to use
generic roam

‘makeNoise()
0
The University of Waikato comp —

Which method is called?

W = new Wolf();

w.makeNoise () ;

w.roam();

w.eat () ;

[Wolf]

1

makeNoise()
w.sleep(); o

The University of Waikato COMP241 Lecture 7 Slide 8

Using IS-A and HAS-A

* When you want to know if one thing should extend

another, apply the IS-A test

— Triangle IS_A Shape, Cat IS-A Feline, Surgeon IS-A Doctor
* Bathroom HAS-A Tub

— Bathroom has a Tub instance variable
» If class B extends class A, then class B IS-A class A

— True anywhere in the inheritance tree

— If class C extends class B, then C passes the IS-A test for

both B and A

The University of Waikato COMP241 Lecture 7 Slide 9

Inheritance dos and don’ts

* Do use inheritance when one class is a more specific
type of a superclass

* Do use inheritance when you have behaviour
(implemented code) that should be shared among
multiple classes of the same general type

» Don’t use inheritance just so that you can reuse code,
if the relationship between the subclass and the
superclass violate either of the above two rules
— E.g. Alarm class has printing code, need printing in Piano

class, so extend Alarm

» Do not use inheritance if the subclass and superclass

do not pass the IS-A test

The University of Waikato COMP241 Lecture 7 Slide 10

Advantages

* You avoid duplicate code
— When you wan’t to change behaviour, you only have to
modify it in one place
* You define a common protocol for a group of classes

— All subclasses under a certain supertype have all the
methods that the supertype has
This is cool because you get to take advantage of polymorphism

And this matters because you get to refer to a subclass object using
a reference declared as the supertype

And that means you get to write flexible code—easier to develop
and easier to extend

The University of Waikato COMP241 Lecture 7 Slide 11

Polymorphism

* Lets look at how we normally declare a reference
and create an object
1. Declare a reference variable
Dog myDog = new Dog();
— Tells the VM to allocate space for a reference variable of type Dog
2. Create an object
Dog myDog = new Dog() ;
— Tells the VM to allocate space for a new Dog object on the heap
3. Link the reference and the object
Dog myDog = new Dog() ;
* The important part is that the reference type and the
object type are the same—Dog

The University of Waikato COMP241 Lecture 7 Slide 12

Polymorphism

+ But with polymorphism, the reference and the
object can be different
—Animal myDog = new Dog() ;

— The reference type can be a supertype of the actual
object type

The University of Waikato COMP241 Lecture 7 Slide 13

Polymorphism

Animal[] animals = new Animal[5] ; <+ Declareanarmay of type Animal

You can put any subclass of

animals[0 _— Animalinthe amay!

animals[1] = r

animals[2] =r

And here is the best polymorphic
part - you get to loop through the
aray and call one of the Animal-class
methods, and every object does

/ the right thing!!

When 1'is 0 (a Dog is at index 0). you
Same with roam(). get Dog’s eat method. When i'is 1, you
get Cat's eat() method

The University of Waikato COMP241 Lecture 7 Slide 14

Polymorphism

» Of course, you can also have polymorphic arguments
and return types

The Animal parameter can take ANY
Animal type as the argument. When

the Vet is done giving the shot, it tells

the Animal to makeNoise(), and whatever
Animal is really out there on the heap
that's whose makeNoise() method will run.

Polymorphism

* With polymorphism, you can write code for
methods that doesn’t have to change when you
introduce new subclass types into the program

— You can write code, go on vacation, and someone
else can add new subclass types to the program and
your methods will still work.

The University of Waikato COMP241 Lecture 7 Slide 16

Bits and Pieces

» A subclass that overrides a superclass method can still
access the superclass implementation
public void roam() {
super.roam(); // call the inherited version
// my own roam stuff
}

— Superclass methods can be designed so that they will work for
any subclass, even though the subclass may still need to
‘append’ more code

* A subclass can inherit public (and protected)
members from its superclass but not private members

The University of Waikato COMP241 Lecture 7 Slide 17

Bits and Pieces

* Non-public classes can only be subclassed by classes
in the same package as the class

» Using the final modifier prevents a class from
being subclassed

* Individual methods can be marked £inal (rather
than the whole class) to prevent them from being
overridden

The University of Waikato COMP241 Lecture 7 Slide 18

Keeping the contract: Rules for
overriding

+ Arguments and return
types must be the same

[Appliance]
Boolean trnon()
boolean turnOff()

— \\
This s not an
override!

Can' change the
arguments in an

overriding method! This is actually a legal

overLOAD, but not an
overRIDE.

The University of Waikato COMP241 Lecture 7 Slide 19

Keeping the contract: Rules for
overriding

* The method can’t be less T —

Boolean tUrnOn()

aCCCSSlble boolean turnOff()

— \4

NOT LEGAL!

It's not a legal

override because

you restricted the

access level. Nor

is it a legal overLOAD,

because you didn't

change arguments.

The University of Waikato COMP241 Lecture 7 Slide 20

Overloading a method

» Two methods with the same name but different
argument lists

* An overloading method isn’t trying to fulfill the
polymorphism contract defined by its superclass

— The return types can be different (as long as the argument
lists are different)

— You can’t change just the return type
— You can vary the access levels in any direction

The University of Waikato COMP241 Lecture 7 Slide 21

