
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 7: Inheritance &

 Polymorphism

Mark Hall

Readings: Horstman Chap 6

 Understanding
inheritance

 Avoiding code
duplication

 Polymorphism
 Rules for

overriding

The University of Waikato COMP241 Lecture 7 Slide 2

Specialization

• Amoeba class overrides the rotate and
playSound methods of Shape

• Overriding
– Subclass redefines one of the inherited methods when it

needs to change or extend the behaviour of that method

The University of Waikato COMP241 Lecture 7 Slide 3

Understanding Inheritance
• Subclass inherits from

the superclass
– Instance variables and

methods

• In Java the subclass
extends the superclass

• Instance variables are
not overriden
– Don’t have to be as they

don’t define any special
behaviour

The University of Waikato COMP241 Lecture 7 Slide 4

Animal Simulation Program

• Design the inheritance tree
– Lion, Hippo, Tiger, Dog, Cat, Wolf

• Abstract out behaviours
– What do these six types have in common?

• Define inheritance tree relationships
– How are these types related?

The University of Waikato COMP241 Lecture 7 Slide 5

Using inheritance to avoid
duplicating code in subclasses

• Design a class that
represents common
state and behaviour

• Put in methods an
instance variables that
all animals might need

The University of Waikato COMP241 Lecture 7 Slide 6

Inheritance opportunities

• Decide if a subclass needs behaviours that are
specific to that subclass type
– Looking at the Animal class, we decide that
makeNoise and eat should be overriden in
subclasses

• Further opportunities for abstraction
– Wolf and Dog might have behaviour in common,

same for Tiger, Lion and Cat

2

The University of Waikato COMP241 Lecture 7 Slide 7

Inheritance opportunities

• Finish the class
hierarchy

• Decide that Canines
could use a common
roam method
– Move in packs

• Same for Felines
– Avoid others of their

kind
• Hippo continues to use

generic roam

The University of Waikato COMP241 Lecture 7 Slide 8

Which method is called?

The University of Waikato COMP241 Lecture 7 Slide 9

Using IS-A and HAS-A

• When you want to know if one thing should extend
another, apply the IS-A test
– Triangle IS_A Shape, Cat IS-A Feline, Surgeon IS-A Doctor

• Bathroom HAS-A Tub
– Bathroom has a Tub instance variable

• If class B extends class A, then class B IS-A class A
– True anywhere in the inheritance tree
– If class C extends class B, then C passes the IS-A test for

both B and A

The University of Waikato COMP241 Lecture 7 Slide 10

Inheritance dos and don’ts
• Do use inheritance when one class is a more specific

type of a superclass
• Do use inheritance when you have behaviour

(implemented code) that should be shared among
multiple classes of the same general type

• Don’t use inheritance just so that you can reuse code,
if the relationship between the subclass and the
superclass violate either of the above two rules
– E.g. Alarm class has printing code, need printing in Piano

class, so extend Alarm
• Do not use inheritance if the subclass and superclass

do not pass the IS-A test

The University of Waikato COMP241 Lecture 7 Slide 11

Advantages
• You avoid duplicate code

– When you wan’t to change behaviour, you only have to
modify it in one place

• You define a common protocol for a group of classes
– All subclasses under a certain supertype have all the

methods that the supertype has
• This is cool because you get to take advantage of polymorphism
• And this matters because you get to refer to a subclass object using

a reference declared as the supertype
• And that means you get to write flexible code—easier to develop

and easier to extend

The University of Waikato COMP241 Lecture 7 Slide 12

Polymorphism
• Lets look at how we normally declare a reference

and create an object
1. Declare a reference variable

Dog myDog = new Dog();
– Tells the VM to allocate space for a reference variable of type Dog

2. Create an object
Dog myDog = new Dog();

– Tells the VM to allocate space for a new Dog object on the heap
3. Link the reference and the object

Dog myDog = new Dog();

• The important part is that the reference type and the
object type are the same—Dog

3

The University of Waikato COMP241 Lecture 7 Slide 13

Polymorphism

• But with polymorphism, the reference and the
object can be different
– Animal myDog = new Dog();

– The reference type can be a supertype of the actual
object type

The University of Waikato COMP241 Lecture 7 Slide 14

Polymorphism

The University of Waikato COMP241 Lecture 7 Slide 15

Polymorphism
• Of course, you can also have polymorphic arguments

and return types

The University of Waikato COMP241 Lecture 7 Slide 16

Polymorphism

• With polymorphism, you can write code for
methods that doesn’t have to change when you
introduce new subclass types into the program
– You can write code, go on vacation, and someone

else can add new subclass types to the program and
your methods will still work.

The University of Waikato COMP241 Lecture 7 Slide 17

Bits and Pieces
• A subclass that overrides a superclass method can still

access the superclass implementation
public void roam() {
 super.roam(); // call the inherited version
 // my own roam stuff
}

– Superclass methods can be designed so that they will work for
any subclass, even though the subclass may still need to
‘append’ more code

• A subclass can inherit public (and protected)
members from its superclass but not private members

The University of Waikato COMP241 Lecture 7 Slide 18

• Non-public classes can only be subclassed by classes
in the same package as the class

• Using the final modifier prevents a class from
being subclassed

• Individual methods can be marked final (rather
than the whole class) to prevent them from being
overridden

Bits and Pieces

4

The University of Waikato COMP241 Lecture 7 Slide 19

Keeping the contract: Rules for
overriding

• Arguments and return
types must be the same

The University of Waikato COMP241 Lecture 7 Slide 20

Keeping the contract: Rules for
overriding

• The method can’t be less
accessible

The University of Waikato COMP241 Lecture 7 Slide 21

Overloading a method

• Two methods with the same name but different
argument lists

• An overloading method isn’t trying to fulfill the
polymorphism contract defined by its superclass
– The return types can be different (as long as the argument

lists are different)
– You can’t change just the return type
– You can vary the access levels in any direction

