ering Development

Lecture’8: More on

Polymorphism | Coneree
N ~ | ["= Abstract methods

Changing the

= 'Abstract -

o - con Lr‘ t
-
| Readings: Horstman Chap 4 & 6 ple
inheritance
Deadly Diamond of
Death

Interfaces

NIVERSITY OF

DEPARTMENT OF COMPUTER SC
i TARIROROHIKO

Returning to the Animal hierarchy

* Have we forgotten
something?

— Class structure is not too bad

— Duplicate code is kept to a
minimum

— Overridden the methods that
should have subclass-
specific implementations

1
makeNoise()
eat()

THaKeNGIS()
eal()

The University of Waikato COMF

Returning to the Animal hierarchy

* We know we can say:
Wolf aWolf = new Wolf();
Animal aHippo = new Hippo();
» Here is where it gets a bit weird:
Animal anim = new Animal () ;

* What does a new Animal () object look like?

The University of Waikato COMP241 Lecture 8 Slide 3

Abstract classes

» Some classes should never be instantiated
* By marking a class as abstract the compiler will
stop code from creating an instance of that type

— An abstract class has virtually no use, no purpose unless it is
extended

— With an abstract class, the guys doing the work at runtime
are instances of a subclass of your abstract class

abstract class Canine extends Animal {
public void roam() { }
}

The University of Waikato COMP241 Lecture 8 Slide 4

Abstract vs. Concrete

abstract

* A class that is not
abstract is called a
concrete class

abstract abstract

concrete

concrete oonorete 5

The University of Waikato COMP241 Lecture 8 Slide 5

Abstract methods

* An abstract class means that the class must be
extended

* An abstract method means that the method must be
overridden
— Exists solely for polymorphism

 Ifyou declare an abstract method, then you must mark
the class abstract as well

— Can mix both abstract and non-abstract methods in an
abstract class

The University of Waikato COMP241 Lecture 8 Slide 6

Changing the contract

* We’ve seen how much Java cares about the
methods in the class of the reference variable
— You can call a method in an object only if the class
of the reference variable has that method

— The compiler checks the reference variable, not the
actual object at the other end of the reference

The University of Waikato COMP241 Lecture 8 Slide 7

Changing the contract

« Say we have a Dog object...

— The Dog class isn’t the only contract that defines
Dogs—public methods are inherited from all of Dog’s
superclasses

* If Dog was defined with the Animal simulation in
mind then we could probably reuse Dog for a Science
Fair Tutorial on Animal objects

» But what if we wanted to use Dog for a PetShop
program?

— We don’t have any Pet behaviours: beFriendly (),
play()

The University of Waikato COMP241 Lecture 8 Slide 8

* Option 1:

Put all the pet methods in Animal

Pros:

Put all the pet method

code up here
abstract for inheritance

All animals inherit pet behaviours
Don’t have to touch existing animal
subclasses

Animal can be used as a
polymorphic type in any program that
wants to use pets

abstract

* Option 2:
— Start with Option 1, but make the Pet
methods abstract
* Pros:

— Benefits of Option 1, but all
subclasses must override

Put all the pet methods

up here, but with no
[\ implementations. Make

all pet methods abstract

abstract

— So, non-pets can override with “no-
op” methods

* Cons:

- Feline — 1
* Cons: (el) [-conine] Abstract methods in su‘pcrclass forces [Canine |
— Some animals are clearly not pets] concrete subclasses to implement them S
— Will still have to modify the pet classes + Time consuming
« E.g. Dog and Cat have different pet + Bad contract—every non-pet says it
behaviours; have to override the has pet methods even though they
o9 don’t do anything! 36
defaults _ _ [Dog] [Woil]
The University of Waikato COMrz41 Levwre o Snue v The University of Waikato Cln cms onure v e
* Option 3: * It looks like we need two
— Put the pet methods ONLY in the 1 t the t
classes where they belong superclasses a ¢ top
We ma‘ke a m}wdagsllrac(
) kg superclass called Pe
* Pros: Pt ne pet methods ONLY 20 gve 1 i he pet methods
— Methods are where they belong—only abstract can be pets, instead of in
. Animal
n pCt Classcs abstract abstract
* Cons:
— Protocol is not explicit—no contract to L va)) {)
: bstract bstract
back it up b _C:nlrs\emc abstract
— No polymorphism for pet methods —
—

« Can’t use Animal as the polymorphic
type

« Every class that wants to use pet
behaviours needs to know about each
and every pet class

The University of Waikato COMP241 Lecture 8

Slide 11

Dog extends both
Pet and Animal

Cat now extends
from both Animal
AND Pet, sot it gets

the methods of both The non-pet Animals

don't have any inherited

The University of Waikato Pet stuff

Multiple Inheritance

* Multiple inheritance can be a really bad thing
— If it was possible in Java that is

* Deadly Diamond of Death!!

CDBumer and DVDBurner
both inerit from DigitalRecorder,
and both override the burn ()
method. Both inherit the "i"
instance variable

DigitalRecorder
i 1

inti

N %

Imagine that the "I" instance

variable is used by both CDBurner
and DVDBumer, with different values.
What happens if ComboDrive needs to
use both values of ""?

DVDBurmer
I I

Interfaces

* Interfaces provide the solution
— Not GUI interfaces

— Not generic interfaces as in the public interface for
class X

— Java keyword interface

* Provides much of the polymorphic benefits of
multiple inheritance without the pain and

[FCembeDie] - prookm win mutipe nnertance, v suffering of DDD (Deadly Diamond of Death)
L] onthe ComboDrive?
The University of Waikato COMP241 Lecture 8 Slide 13 The University of Waikato COMP241 Lecture 8 Slide 14
* Classes from different inheritance trees can implement
the same interface
— Better still, a class can implement multiple interfaces
Interfaces : P P

* Interfaces side step DDD by making all
methods abstract
— Concrete subclass must implement the methods

— At runtime the JVM is not confused about which of
the two inherited versions it is supposed to call

I - S
[1 AdJavainterfaceislikea
100% pure abstract class.
abstract void play():

All methods in an interface are

abstract, 50 any class that IS-A

Pet MUST implement (i.e. override)

the method of Pet.

The University of Waikato COMP241 Lecture 8 Slide 15

abstract
1

abstract
[<<Pet> ‘\ I Animal }
[) [|

abstract

Canine
1

Roano%

Class RoboDog doesn't
come from the Animal
inheritance tree, but it
still gets to be a Pet.

Class, subclass, abstract class or
interface?

Make a class that doesn’t extend anything (except for Object) when
your new class doesn’t pass the IS-A test for anything
Make a subclass only when you need a more specific version of a
class and need to override or add new behaviours
Use an abstract class when you want to define a template for a group
of classes

— You have at least some implementation code that all subclasses could use

— Make the class abstract when you want to guarantee that nobody can make

objects of that type

Use an interface when you want to define a role that other classes
can play regardless of where those classes are in the inheritance tree

The University of Waikato COMP241 Lecture 8 Slide 17

Invoking the superclass version of a
method

* A concrete subclass that wants to add to a
superclass method, not replace completely

The University of Waikato COMP241 Lecture 8 Slide 18

Superclass version of the method
does important stuff that subclasses
could use.

abstract class Report {

void runReport () {

//set-up report /
}
void printReport () {

//generic printing

class BuzzwordsReport extends Report {
Call superclass version, then come
void runReport () { back and do some subclass-specific

super.runReport () ; — suf
buzzwordCompliance () ;
printReport () ;

}

void buzzwordCompliance() { ...}

The University of Waikato COMP241 Lecture 8 Slide 19

