
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 8: More on

 Polymorphism

Mark Hall

Readings: Horstman Chap 4 & 6

 Abstract classes
 Abstract vs.

Concrete
 Abstract methods
 Changing the

contract
 Multiple

inheritance
 Deadly Diamond of

Death

 Interfaces

The University of Waikato COMP241 Lecture 8 Slide 2

Returning to the Animal hierarchy

• Have we forgotten
something?
– Class structure is not too bad
– Duplicate code is kept to a

minimum
– Overridden the methods that

should have subclass-
specific implementations

The University of Waikato COMP241 Lecture 8 Slide 3

Returning to the Animal hierarchy

• We know we can say:
Wolf aWolf = new Wolf();

Animal aHippo = new Hippo();

• Here is where it gets a bit weird:
Animal anim = new Animal();

• What does a new Animal() object look like?

The University of Waikato COMP241 Lecture 8 Slide 4

Abstract classes
• Some classes should never be instantiated
• By marking a class as abstract the compiler will

stop code from creating an instance of that type
– An abstract class has virtually no use, no purpose unless it is

extended
– With an abstract class, the guys doing the work at runtime

are instances of a subclass of your abstract class

The University of Waikato COMP241 Lecture 8 Slide 5

Abstract vs. Concrete

• A class that is not
abstract is called a
concrete class

The University of Waikato COMP241 Lecture 8 Slide 6

Abstract methods

• An abstract class means that the class must be
extended

• An abstract method means that the method must be
overridden
– Exists solely for polymorphism

• If you declare an abstract method, then you must mark
the class abstract as well
– Can mix both abstract and non-abstract methods in an

abstract class

2

The University of Waikato COMP241 Lecture 8 Slide 7

Changing the contract

• We’ve seen how much Java cares about the
methods in the class of the reference variable
– You can call a method in an object only if the class

of the reference variable has that method
– The compiler checks the reference variable, not the

actual object at the other end of the reference

The University of Waikato COMP241 Lecture 8 Slide 8

Changing the contract
• Say we have a Dog object…

– The Dog class isn’t the only contract that defines
Dogs—public methods are inherited from all of Dog’s
superclasses

• If Dog was defined with the Animal simulation in
mind then we could probably reuse Dog for a Science
Fair Tutorial on Animal objects

• But what if we wanted to use Dog for a PetShop
program?
– We don’t have any Pet behaviours: beFriendly(),
play()

The University of Waikato COMP241 Lecture 8 Slide 9

• Option 1:
– Put all the pet methods in Animal

• Pros:
– All animals inherit pet behaviours
– Don’t have to touch existing animal

subclasses
– Animal can be used as a

polymorphic type in any program that
wants to use pets

• Cons:
– Some animals are clearly not pets
– Will still have to modify the pet classes

• E.g. Dog and Cat have different pet
behaviours; have to override the
defaults

The University of Waikato COMP241 Lecture 8 Slide 10

• Option 2:
– Start with Option 1, but make the Pet

methods abstract
• Pros:

– Benefits of Option 1, but all
subclasses must override

– So, non-pets can override with “no-
op” methods

• Cons:
– Abstract methods in superclass forces

concrete subclasses to implement them
• Time consuming
• Bad contract—every non-pet says it

has pet methods even though they
don’t do anything!

The University of Waikato COMP241 Lecture 8 Slide 11

• Option 3:
– Put the pet methods ONLY in the

classes where they belong
• Pros:

– Methods are where they belong—only
in pet classes

• Cons:
– Protocol is not explicit—no contract to

back it up
– No polymorphism for pet methods

• Can’t use Animal as the polymorphic
type

• Every class that wants to use pet
behaviours needs to know about each
and every pet class

The University of Waikato COMP241 Lecture 8 Slide 12

• It looks like we need two
superclasses at the top

3

The University of Waikato COMP241 Lecture 8 Slide 13

Multiple Inheritance
• Multiple inheritance can be a really bad thing

– If it was possible in Java that is
• Deadly Diamond of Death!!

The University of Waikato COMP241 Lecture 8 Slide 14

Interfaces
• Interfaces provide the solution

– Not GUI interfaces
– Not generic interfaces as in the public interface for

class X
– Java keyword interface

• Provides much of the polymorphic benefits of
multiple inheritance without the pain and
suffering of DDD (Deadly Diamond of Death)

The University of Waikato COMP241 Lecture 8 Slide 15

Interfaces
• Interfaces side step DDD by making all

methods abstract
– Concrete subclass must implement the methods
– At runtime the JVM is not confused about which of

the two inherited versions it is supposed to call

The University of Waikato COMP241 Lecture 8 Slide 16

• Classes from different inheritance trees can implement
the same interface
– Better still, a class can implement multiple interfaces

The University of Waikato COMP241 Lecture 8 Slide 17

Class, subclass, abstract class or
interface?

• Make a class that doesn’t extend anything (except for Object) when
your new class doesn’t pass the IS-A test for anything

• Make a subclass only when you need a more specific version of a
class and need to override or add new behaviours

• Use an abstract class when you want to define a template for a group
of classes
– You have at least some implementation code that all subclasses could use
– Make the class abstract when you want to guarantee that nobody can make

objects of that type
• Use an interface when you want to define a role that other classes

can play regardless of where those classes are in the inheritance tree
The University of Waikato COMP241 Lecture 8 Slide 18

Invoking the superclass version of a
method

• A concrete subclass that wants to add to a
superclass method, not replace completely

4

The University of Waikato COMP241 Lecture 8 Slide 19

