
1

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

DEPARTMENT OF COMPUTER SCIENCE
TARI ROROHIKO

COMP241
Software Engineering Development
Lecture 9: Container Classes 1

(Collections)

Mark Hall

Readings: Horstman Chap 4 & 5

 Introduction
 arrays
 Arrays class
 Copying arrays
 Comparing arrays

 Comparable
 Comparator

 Strategy design
pattern

 Sorting arrays
 Searching sorted

arrays
The University of Waikato COMP241 Lecture 9 Slide 2

Introduction
• Only the simplest of programs know apriori how many (or

even what type of) objects will be needed
• Java has several ways to hold objects (actually references

to objects)
– Java’s built in type is of course is the array
– Also provides a reasonably complete set of container classes

• Sophisticated ways to hold and manipulate objects
• Not to be confused with GUI containers (components)
• Sometimes called collection classes, however, Java 2 libraries use the

name Collection to refer to a particular subset of the library

The University of Waikato COMP241 Lecture 9 Slide 3

But first, Arrays
• Pretty familiar with arrays by now :-)
• Two features distinguish arrays from other

container types
– Efficiency — arrays are the most efficient way to store

and randomly access a sequence of objects
• The cost of speed is static size

– Type — arrays are created to hold a specific type
• You get compile-time type checking when storing/extracting
• Other java containers are generic, i.e. they treat all types as
Object

– From Java 1.5 we have generics

The University of Waikato COMP241 Lecture 9 Slide 4

Arrays
• Arrays can hold primitive types or objects

– Regardless of the type of the array, the array identifier is actually a reference to a
true object that is created on the heap

public class Test {} // does nothing

// arrays of objects
Test [] a; // null reference
Test [] b = new Test[5]; // null references
Test [] c = new Test[4];
for (int i = 0; i < c.length; i++) {
 c[i] = new Test();
}
// aggregate initialization (created and initialized)
Test [] d = {
 new Test(), new Test(), new Test()
};

The University of Waikato COMP241 Lecture 9 Slide 5

Arrays

// dynamic aggregate initialization
a = new Test [] {
 new Test(), new Test()
};

// arrays of primitives
int [] e; // null reference
int [] f = new int [5]; // elements automatically = 0
int [] g = new int [4]; // elements automatically = 0
for (int i = 0; i < g.length; i++) {
 g[i] = i * i;
}
int [] h = { 11, 47, 93 };
e = new int [] { 1, 2 };

The University of Waikato COMP241 Lecture 9 Slide 6

The Arrays class
• java.util has a utility class called Arrays

– Holds a set of static methods that perform useful functions for arrays
• Four basic functions:

– equals — compares two arrays for equality
– fill — fill an array with a value
– sort — sort an array
– binarySearch — find an element in a sorted array

• All of these methods are overloaded for all the primitive types
and Objects

• Also has a asList method that takes an array and turns it into
a List container

2

The University of Waikato COMP241 Lecture 9 Slide 7

The Arrays class

• Arrays is useful, but stops short of being
fully functional
– Eg. doesn’t have a method for printing the elements

of an array
– fill method only takes a single value and places

it into the array
• What if we wanted to fill an array with randomly

generated values?

Improving Arrays Example
• We could make a new, more useful version of fill and put

it in our own utility class…
– Fill an array with values or objects that are created by a user defined

generator
– Need a generator for each primitive type as well as Object

public interface Generator {
 Object next();
}

public interface IntGenerator {
 int next();
}

public interface CharGenerator {
 int next();
}
. . . // one for each primitive type

• Now make our own utility class (Arrays2) with new
fill methods that use generators
public class Arrays2 {
 public static void fill(Object [] a, Generator g) {
 fill(a, 0, a.length, g);
 }
 public static void fill(Object [] a, int from, int to,
 Generator g) {
 for (int i = from; i < to; i++) {
 a[i] = g.next();
 }
 }
 public static void fill(int [] a, IntGenerator g) {
 fill(a, 0, a.length, g);
 }
 public static void fill(int [] a, int from, int to,
 IntGenerator g) {
 for (int i = from; i < to; i++) {
 a[i] = g.next();
 }
 }
 . . . // fill methods for every primitive type The University of Waikato COMP241 Lecture 9 Slide 10

Improving Arrays Example

• To fill an array of elements, the fill method takes a
reference to the appropriate generator interface
– Repeatedly calls the next method that somehow

(depending on the implementation) produces an object of
the right type

• Now we can create any generator by implementing the
appropriate interface
– e.g. RandomIntGenerator implements
IntGenerator

The University of Waikato COMP241 Lecture 9 Slide 11

Copying an array

• The System class provides an overloaded
arraycopy method for making fast copies of
arrays
– Can copy both primitive arrays and object arrays
– If you copy arrays of objects then only the references

get copied, not the objects themselves — this is called a
shallow copy

Copying an Array
int [] a = {1,2,3,4,5,6,7,8,9,10};
int [] b = new int [5];
System.arraycopy(a, 5, b, 0, 5);
System.arraycopy(b, 0, a, 0, 5);

Integer [] c = {new Integer(1), new Integer(2),
 new Integer(3), new Integer(4)};
Integer [] d = new Integer [4]; // null references
System.arraycopy(c, 0, d, 0, c.length);
for (int i = 0; i < c.length; i++) {
 if (c[i] == d[i]) { System.out.println(“Same object!”); }
}

c:

d:

Integer(1) Integer(2) Integer(3) Integer(4)

3

The University of Waikato COMP241 Lecture 9 Slide 13

Comparing Arrays
• Arrays provides the method equals to compare

entire arrays for equality
– Again these are overloaded for all the primitives and
Object

• To be equal:
– The arrays must have the same number of elements
– Each element must be equivalent to each corresponding

element in the other array, using the equals method for
each element

• For primitives, the corresponding wrapper class equals is used (e.g.
Integer.equals())

The University of Waikato COMP241 Lecture 9 Slide 14

Array Element Comparisons

• Sorting was one thing that was missing in early versions
of Java (1.0 and 1.1)
– Since Java 1.2, sorting has been included (eg. Arrays has a
sort method)

• To have generic sorting code you need to be able to
perform comparisons on the actual type of an object
– One approach is to write a different sorting method for every

type—but this does not produce code that is reusable for new
types

The University of Waikato COMP241 Lecture 9 Slide 15

Array Element Comparisons
• Instead of hardwiring the comparison code into many

different sort routines, a callback can be used
With a callback, the part of the code that varies from case to case is

encapsulated inside its own class; the part of the code that stays
the same will call back to the code that changes

A callback is an example of using the Strategy design pattern
• This way you can make different objects to express

different ways of comparing and feed them to the same
sorting code

• The Generator example shown earlier is an example of
using the Strategy design pattern

The University of Waikato COMP241 Lecture 9 Slide 16

Array Element Comparisons

• In Java there are two ways to provide comparison functionality
• One approach is for a class to implement
java.lang.Comparable
– Specifies a single compareTo(Object cmp) method

• Must return -1, 0 or 1 to indicate that this object is less than, equal or greater
than cmp

• Must ensure transitivity (x.compareTo(y) > 0 && y.compareTo(z) >0 =>
x.compareTo(z) > 0)

– Some classes that implement Comparable: Integer, Float, Double, etc.
String

The University of Waikato COMP241 Lecture 9 Slide 17

Comparable Example

public class CompType implements Comparable<CompType> {
 public int mI;
 public int mJ;
 public CompType(int n1, int n2) {
 mI = n1; mJ = n2;
 }
 public String toString() {
 return “[i = “+mI+”, j = “+mJ+”]”;
 }
 public int compareTo(CompType rv) {
 int rvi = rv.mI;
 return (mI < rvi ? -1 : (mI == rvi ? 0 : 1));
 }
}

Performs its comparisons
using only the mI member

variable
The University of Waikato COMP241 Lecture 9 Slide 18

Comparable Example
• Now if we had an array of CompType objects we

could sort them using Arrays.sort()

• When you design the comparison function, you are
responsible for deciding what it means to compare one of
your objects to another
– In this example only the mI values are used in the comparison

CompType [] a = {new CompType(3,3), new CompType(1,2),
 new CompType(0,5), new CompType(7,6)};
Arrays.sort(a);

4

The University of Waikato COMP241 Lecture 9 Slide 19

Array Element Comparisons

• What if a class doesn’t implement
Comparable? Or, if it does, you don’t like
how the compareTo method works?

• In this case we can use the second approach for
comparing objects
– Create a separate class that implements an interface

called Comparator
– Implementing Comparator is an example of

using the callback or Strategy approach

The University of Waikato COMP241 Lecture 9 Slide 20

Comparator

• Defines two methods — compare and equals
– compare is for comparing two objects
– equals is for testing if one Comparator is equal to another

• Don’t actually have to implement this as the equals inherited from
Object is sufficient

• The java.util.Collections class has a static
reverseOrder method that returns a Comparator
for reversing the natural sorting order of objects that
implement Comparable

The University of Waikato COMP241 Lecture 9 Slide 21

Example: Reverse (sorting an array of
strings in reverse lexicographic order)

public class Reverse {
 public static void main(String [] args) {
 String [] a = new String [] {“Fred”, “george”, “Bob”,
 “Zaphod”, “Mary”, “sue”};
 System.out.println(“Before sorting: “);
 for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);
 }
 // sort contents of a into reverse lexicographic order
 Arrays.sort(a, Collections.reverseOrder());
 System.out.println(“After sorting: “);
 for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);
 }
 }
}

The University of Waikato COMP241 Lecture 9 Slide 22

Example: comparing CompType Objects
according to their mJ value

public class CompTypeComparator implements Comparator<CompType> {
 public int compare(CompType o1, CompType o2) {
 int j1 = o1.mJ;
 int j2 = o2.mJ;
 // compare according to j values rather than i
 return (j1 < j2 ? -1 : (j1 == j2 ? 0 : 1));
 }
}

public class ComparatorTest {
 public static void main(String [] args) {
 CompType [] a = {new CompType(3,3), new CompType(1,2),
 new CompType(0,5), new CompType(7,6)};
 System.out.println(“before sorting: “);
 for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
 }
 Arrays.sort(a, new CompTypeComparator());
 System.out.println(“after sorting: “);
 . . . // print out array again
}

The University of Waikato COMP241 Lecture 9 Slide 23

Searching a sorted array
• Once an array is sorted, you can perform a fast search for

an item using Arrays.binarySearch()
– Returns a value >= 0 if the search item is found
– If not found, returns a negative value representing the place that

the element should be inserted [-(insertion point) - 1]
– Must not use binarySearch on an unsorted array as the

results will be unpredictable
• If you have sorted an array using a Comparator, you

must pass in the Comparator to binarySearch
– Note that primitive arrays do not allow sorting with a
Comparator

The University of Waikato COMP241 Lecture 9 Slide 24

Example: AlphabeticSearch (search
alphabetically sorted strings)

• First we need a Comparator to ensure that Strings
are sorted in alphabetical rather than lexicographic
order

public class AlphabeticComparator implements
Comparator<String> {
 public int compare(String s1, String s2) {
 // make case irrelevant
 return s1.toLowerCase().compareTo(s2.toLowerCase());
 }
}

5

The University of Waikato COMP241 Lecture 9 Slide 25

Example: AlphabeticSearch (search
alphabetically sorted strings)

public class AlphabeticSearch {
 public static void main(String [] args) {
 String [] a = new String [] {“Fred”, “george”, “Bob”,
 “Zaphod”, “Mary”, “sue”};
 String searchItem = new String(a[1]);
 AlphabeticComparator comp = new AlphabeticComparator();
 Arrays.sort(a, comp); //sort with respect to the Comparator

 // search for an element that is already in the array
 int index = Arrays.binarySearch(a, searchItem, comp);
 System.out.println(“Index = “ + index);

 // search for something that is not present
 index = Arrays.binarySearch(a, “Craig”, comp);
 System.out.println(“Index = “ + index);
 }
}

The University of Waikato COMP241 Lecture 9 Slide 26

Beyond Arrays

• Arrays should always be considered first for holding a
group of items because of their efficiency
– Forced to use arrays if you want to hold a group of

primitives
• However, sometimes arrays are not sophisticated

enough for a particular problem
• Java provides a number of powerful container classes

with sufficient functionality to cover most problems

