
COMP241-07A

Software Engineering Development

Assignment 2

1 Assignment Goals

The goal of this assignment is to study object-oriented design principles and test-first design by applying
them to the implementation of the ImageOrganizer specification. The task is to study the ImageOrganizer
specification and provide your own implementation of all the required functionality.

2 The Task

This assignment may be done in pairs or individually as the was the case with the first assignment. Your
task is to implement all the functionality required by the ImageOrganizer specification. You have written
some test cases for the first assignment; you should write test cases for the remaining functionality.

With one exception (see below) you will not have to modify any code in the imageorg package.
Instead, you will create your own classes that implement the interfaces and and place them in the imple-
mentation directory (delete or move my reference implementation first). Your code will be packaged in the
implementation package (i.e. each of your classes will have the package statement: package implementation;).
You may name your classes however you like—it does not matter to me as I will be testing your imple-
mentation polymorphically using only the interfaces in imageorg. You are free to add additional methods
(not defined in the imageorg interfaces) if it makes the job of providing the required functionality easier.
Just remember that I will have no knowledge of these methods because I will only be using the imageorg
interfaces to operate your code.

There is one case where you will have to modify code in the imageorg package. imageorg.ImageOrganizer
contains a static factory method called create() that is designed to return an ImageOrganizer object
which is a concrete subclass of ImageOrganizer. You will have to replace the single line in this method
which returns null with one that returns a concrete ImageOrganizer. For example, with assignment 1 I
provided a concrete subclass of ImageOrganizer called implementation.MarksImageOrganizer. In the
imageorg.ImageOrganizer source code I added the following line to the static create() method:

return new implementation.MarksImageOrganizer();

You will need to replace this line with the class name of your concrete implementation of ImageOrganizer.
A good design would probably have an abstract class that implements FileElement and provides as

much general purpose, reusable code as possible. Each subtype of this abstract class would implement
any left over abstract methods as well as one of the sub-interfaces (Folder or Image).

1



3 Concerning Files

To complete this assignment you will need to make use of classes in the java.io package. IO in Java
(including object serialization) will be covered later in the course. In the meantime you can read the
javadocs for the java.io.File class, which contains methods that will be useful for providing the func-
tionality required by the image organizer library. In order to ensure platform independence when dealing
with paths, you should always use path separator constants provided in the File class. I strongly
suggest that you test your program on a lab machine as I will be using Linux when I mark
the assignments.

The imageorg.ImageOrganizer abstract class declares a constant which holds the path to the home
(or root) of the image organizer’s repository. This is defined—in a platform independent way—to be a
directory called image_org_home in the user’s “home” directory. The image organizer should only allow
images (jpegs and gifs) and folders to be stored in the repository. The class imageviewer.ImageViewer
contains a static method that loads gif and jpeg images. You can use this method to determine whether
or not a file is an image.

Since you have to associate annotation data with images and folders, it is necessary to store this data
somewhere. Object serialization makes this easy because you can save an entire object (including all
objects it references) to a binary file. Therefore, any internal data structure you use to keep track of
annotations can be easily saved. If you take this approach, you should save such data to a special file
outside of the image organizer’s repository. Under Unix like environments it is common practice to save
configuration data to a file that begins with a ‘.’ in the user’s “home” directory. The ImageOrganizer
interface has a method called save(). When this method is called by a client, your program should
save any internal data structures. The specification of the save() method states that any serialized data
structures must be saved to a file called .imageorg in the user’s home directory.

Your program should be robust. You need to handle situations such as:

• The image organizer repository (or parts of it) being deleted.

• Any data stored as serialized objects being deleted.

• Inconsistencies between serialized data structures and actual disk files come about through files
being manually removed or added to the repository.

However, for this assignment you can assume that the image organizer’s files will be free from
external tampering during a session of usage—that is, from the point where a client program calls
imageorg.ImageOrganizer.create() to the point where they call the save() method in
imageorg.ImageOrganizer.

This assignment may be completed individually or in pairs.

4 Deliverables

Your complete submission should include:

• The well written and documented source code of your implementation.

• An ANT build script with targets to compile and run tests from the sources.

Please create an archive (.zip or .tar.gz) containing all your files and send it by e-Mail to the
address mhall@cs.waikato.ac.nz. Please indicate clearly (in a README) the names and ID numbers
of each person involved in the assignment.

Due date: Friday, 4th May 2007: 5 P.M

2


