COMP311-07B MID-SEMESTER TEST

DEPARTMENT:
PAPER TITLE:
TIME ALLOWED:
TOTAL MARKS:
NUMBER OF QUESTIONS IN PAPER:

NUMBER OF QUESTIONS
TO BE ANSWERED:
VALUE OF EACH QUESTION:
GENERAL INSTRUCTIONS:
SPECIAL INSTRUCTIONS:

CALCULATORS PERMITTED:

Computer Science
Computer Systems Architecture
90 minutes
90 marks
Eleven

Eleven

The value of each question is noted.
Answer ALL ELEVEN questions.
If possible, write your answers in the spaces provided. Additional paper is available, should you require it.

Yes

1. Two MIPS design principles are 'simplicity favours regularity' and 'good design demands good compromises'. Provide an example of each using the MIPS architecture.
2. A simple ALU unit for a MIPS CPU can be built using a ripple adder. Draw a 4-bit ripple adder that supports subtraction, the set-if-less-than instruction, overflow detection, and a test for equality. Note: your answer does not have to show the internals of each 1-bit adder; it should, however, show how signals are forwarded as well as control lines.
3. Multiplication can be accomplished using a combination of shifting and addition.
(a) Multiply 0101 by 1011 showing all intermediate steps, in binary.
(b) Draw a multiplier unit that is capable of completing this multiplication. Your unit will comprise of an 8 -bit product register, an 8 -bit ALU, an 8 -bit multiplicand register, a 4-bit multiplier register, and a control test.
4. Using the following components, draw a single-cycle datapath capable of executing R-type instructions, as well as lw and sw. Note: your datapath does not need to show the fetch or decode logic, nor does it have to show a control unit.
[14 marks]

5. To reduce the delay of the branch instruction, some architectures move the equality test from the execute stage to the decode stage.
(a) outline a faster, more efficient test for equality that does not use subtraction. provide examples to show how it works.
(b) draw a diagram that illustrates how the equality test is logically connected to other components in the decode stage of the MIPS 5-stage pipelined datapath.
6. What dependencies exist in the following 5 MIPS instructions? Which dependencies are hazards, assuming a 5 -stage IF/ID/EX/MEM/WB pipeline?
```
add $3, $1, $2
lw $4, 0($3)
sub $5, $4, $3
or $6, $3, $1
sw $5, 0($3)
```

7. The IEEE 754 floating point standard specifies that a C float consists of a sign bit, 8 bits of exponent with a bias of 127 , and 23 bits of significand.
(a) What is the purpose of an exponent bias? That is, why not just use two's complement to represent the exponent?
(b) Show the result, in floating point binary, of adding the following two floating point numbers.
8. Three techniques to improving processor performance are super-pipelining, super-scalar, and dynamic pipelining. Using examples, describe each of these techniques.
9. Some CPU architectures, such as the Alpha, include conditional move instructions. For example, cmoveq $\$ 4, \$ 5$, $\$ 6$ will store the value held in register $\$ 5$ in register $\$ 6$ if register $\$ 4$ is equal to zero.
(a) what is the equivalent MIPS instruction sequence? Hint: your answer should show three instructions.
(b) what are the two main advantages of a conditional move instruction?
10. Some CPU architectures, such as the SPARC, provide a register window. What is a register window? How is one used?
11. Some CPU architectures require memory accesses to be aligned.
(a) If an architecture has a word size of 32 bits, outline a logic test to see if a particular value is word-aligned.
(b) What is the range of branch distances on this machine, assuming a 16 -bit immediate value?
