

Overview

- 200
- Introduction to how a computer operates
- Only small emphasis on issues that affect performance
- 311
- how to analyse their performance (or how not to!)
- issues affecting modern processor design (caches, pipelines)

COMP311-2008

- No tutor assigned
- Class Representatives
- Ben Stasiewicz ben@staz.net.nz
Shane Howearth sah54@students.waikato.ac.nz

Why not study $\mathbf{i} 386$?

- i386 (IA-32) is known as a CISC architecture - Complex Instruction Set Computer
- Practically all CPU architectures designed since the mid 1980s are RISC architectures
- Reduced instruction set computer
- In terms of units shipped, IA-32 is only important in the personal computer industry

Sales of Microprocessors

- 1998 to 2002
- 125 million IA-32 units per year
- ARM
- 1998: 45 million units
- 2002: 500 million units
- Any guesses as to cause?
- Source: Figure 1.2 P\&H

Windows NT 3.5, 4.0

- NT 4.0 supported
- i386
- PowerPC
- MIPS
- Alpha
- All capable of addressing at least 4GB of memory
- Only i386 supported today
- Guesses as to why?

What is so great about MIPS?

- MIPS architecture designed to lend itself to optimised implementations, from the outset
- Pipelining
- Multiple instruction issue
- Low power, low heat, relatively high performance

What is so great about MIPS?

- Licensable architecture
- QED, Texas Instruments, Broadcom, + others
- System on a chip designs
- Common in embedded systems
- Linksys WRT54G
- Many DSL routers
- CPU in Sony Playstation, Playstation 2.
- High-end Juniper routers use MIPS
processors as their CPU
- Their low-end is x86

RISC CPUs

- ARM architecture
- Cell phones
- embedded designs : system on a chip

Hardware accelerated Java (Jazelle)

- 75\% of embedded RISC market
- Power architecture
- Supercomputers

PlayStation 3
Cell broadband engine architecture: 3.2 Ghz
Xbox 360, Nintendo Wii
. PowerPC architecture

- Earlier Apple computers
- PowerPC architecture too

Introduction

- Rapid Advances in Computer technology
- first stored program computer ran 1st program 50 years ago
- Looks like the first phase has ended
- CPU clock speeds have tended to double every two years
- Heat becoming a bigger issue
- New techniques will be required to extract performance gains

Multi-core

- Current trend is to place multiple processors on a single CPU
- Two approaches
- Full-featured multiple cores per CPU
- Intel/AMD
- UltraSPARC
- Octeon MIPS64
- ARMv7
- Simplified processor engines
- Cell processor

Multi-core challenges

- Parallel programming
- Requires software writer to think about how they will exploit available parallelism
- Particularly, locking constructs
- This is really a topic for COMP301
- Though I do plan to talk about required CPU architecture support for locking
- Compiler support
- gcc 4.2 and later support OpenMP
- Incremental parallelism
- Topology awareness
- Cores may be physically separated

History

- Babbage (The Father/Great Uncle of Computing) 1791-1871
- Designed a General purpose Computer (Analytical Engine)
- Machine controlled by punched cards strung together like punched paper tape
- Location in Data store numbered
- For control he devised a system rotating barrels with projecting studs (barrels could step forward or backwards an arbitrary number of steps
- Never built, but programmed by Ada Lovelace - Next significant step not till 1945

History

- In 1944 John von Neumann and others joined the team
- Ideas they came up with can be summarized as:
- Electronic Operation
- Binary
- Instruction set as user interface
- Serial execution of instructions
- Single Memory
- Modification and construction of instructions
- Paper published only had Von Neumann's name on

DRAM Capacity

Performance Increases

Price/Performance

- Other areas designers must be aware of:
- Target markets
- Price
- Performance
- Price/performance

Further reading

- P \& H Chapter 1
- http://people.freebsd.org/~kris/scaling/smp.html

