
1

Instruction Set Architecture

Chapter 2 – P & H

Instruction sets

� Language understood by the CPU
� Instruction sets regardless of CPU type tend

to contain
� Arithmetic instructions

� Though some CPUs don’t support certain types of
arithmetic operation

� Instructions for reading and writing to memory

� Basic control instructions

� Their conventions can be quite different

Introduction
� Instruction set architecture interface between programmer and

CPU

� Good ISA makes program and CPU design easier
� P&H is based around MIPS architecture

WRAMP – Verses MIPS
� Addressing

� MIPS – byte Addressable verses WRAMP - word
addressable

� MIPS can address 232 locations verses 219 on
WRAMP

� Words have to be aligned to word boundaries on
MIPS

� General purpose registers
� MIPS – 32 verses WRAMP at 8
� On MIPS can reference byte, half word or word

WRAMP vs. MIPS

� Subroutine conventions
� MIPS uses combination of stack and

registers to pass parameters vs. stack only
on WRAMP

� $31 is returns address on MIPS verses $7
on WRAMP

� Mixture of caller and callee saved registers
on MIPS

� ISA not quite as regular on MIPS

CPU Design Principles

� Simplicity favours regularity
� Smaller is faster
� Good design demands good

compromises
� Make the common case fast

2

MIPS arithmetic
� All instructions have 3 operands
� Operand order is fixed (destination first)

Example:

C code: A = B + C

MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

MIPS arithmetic

� Design Principle: simplicity favours regularity. Why?
� Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

� Operands must be registers, only 32 registers provided
� Design Principle: smaller is faster. Why?

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

� On MIPS, arithmetic instructions operands must be
registers

— only 32 registers provided

� Compiler associates variables with registers

� What about programs with lots of variables?

Instructions

� Load and store instructions
� Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 32($s3)

� Store word has destination last
� Remember arithmetic operands are registers, not

memory!

Our First Example

� Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

� Instructions, like registers and words of data, are also 32 bits
long
� Example: add $t0, $s1, $s2

� registers have numbers, $t0=9, $s1=17, $s2=18

� Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

� Can you guess what the field names stand for?

Machine Language

3

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?
� New principle: Good design demands good compromises

� Introduce a new type of instruction format
� I-type for data transfer instructions
� other format was R-type for register

� Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

� Where's the compromise?

Machine Language

� Decision making instructions
� alter the control flow,
� i.e., change the "next" instruction to be executed

� MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

� Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

� MIPS unconditional branch instructions:
j label

� Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

� Can you build a simple for loop?

Control

� We have: beq, bne, what about Branch-if-less-than?

� New instruction:
if $s1 < $s2 then

$t0 = 1
slt $t0, $s1, $s2 else

$t0 = 0

� Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

� Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

2

Control Flow

