
1

Instruction Set Architecture
Part two

Chapter 2 – P & H

CPU Design Principles

� Simplicity favours regularity
� Smaller is faster
� Good design demands good

compromises
� Make the common case fast

� We have: beq, bne, what about Branch-if-less-than?

� New instruction:
if $s1 < $s2 then

$t0 = 1
slt $t0, $s1, $s2 else

$t0 = 0

� Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

� Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Control Flow

� Small constants are used quite frequently
(50% of operands)

e.g., A = A + 5;
B = B + 1;
C = C - 18;

� Design Principle: Make the common case
fast

� Solutions? Why not:
� put 'typical constants' in memory and load them?
� create hard-wired registers (like $zero) for

constants like one?

Constants

Constants
� MIPS provides instructions that use a register

value and a constant (immediate) value
� MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

� How do we make this work?

� We'd like to be able to load a 32 bit constant into a register
� Must use two instructions, new "load upper immediate"

instruction

lui $t0, 1010101010101010

� Then must get the lower order bits right, i.e.,
ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

2

Policy of Use Conventions

Name Register number Usage
$zero 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer

� Assembly provides convenient symbolic
representation
� much easier than writing down numbers
� e.g., destination first

� Machine language is the underlying reality
� e.g., destination is no longer first

� Assembly can provide 'pseudo instructions'
� e.g., “move $t0, $t1” exists only in Assembly
� would be implemented using “add $t0,$t1,$zero”

� When considering performance you should count real
instructions

Assembly Language vs.
Machine Language

� Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 == $t5

� Formats:

� Could specify a register (like lw and sw) and add it to address
� use Instruction Address Register (PC = program counter)
� most branches are local (principle of locality)

� Jump instructions just use high order bits of PC
� address boundaries of 256 MB

op rs rt 16 bit address

I

Addresses in Branches
To summarize:

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
30

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

3

� Design alternative:

� goal is to reduce number of instructions executed

� provide more powerful operations

� danger is a slower cycle time and/or a higher CPI

� Sometimes referred to as “RISC vs. CISC”

� virtually all new instruction sets since 1982 have been RISC

� VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

� We’ll look at PowerPC and 80x86

Alternative Architectures PowerPC

� Indexed addressing
� example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
� What do we have to do in MIPS?

� Update addressing
� update a register as part of load (for marching through arrays)
� example: lwu $t0,4($s3)

#$t0=Memory[$s3+4];$s3=$s3+4

� What do we have to do in MIPS?
� Others:

� load multiple/store multiple
� a special counter register “bc Loop”

decrement counter, if not 0 goto loop

80x86

� 1978: The Intel 8086 is announced (16 bit architecture)
� 1980: The 8087 floating point coprocessor is added
� 1982: The 80286 increases address space to 24 bits,

+instructions
� 1985: The 80386 extends to 32 bits, new addressing modes
� 1989-1995: The 80486, Pentium, Pentium Pro add a few

instructions
(mostly designed for higher performance)

� 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

A dominant architecture:
80x86
� See your textbook for a more detailed description
� Complexity:

� Instructions from 1 to 17 bytes long
� one operand must act as both a source and destination
� one operand can come from memory
� complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
� Saving grace:

� the most frequently used instructions are not too difficult to build
� compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

Summary

� Four MIPS design principles
� Simplicity favours regularity
� Smaller is faster
� Good design demands good compromises
� Make the common case fast

