Instruction Set Architecture
* Part two

Chapter2—-P &H

i CPU Design Principles

= Simplicity favours regularity
= Smaller is faster

= Good design demands good
compromises

= Make the common case fast

| Control Flow

= We have: beq, bne, what about Branch-if-less-than?

= New instruction:
if $sl < $s2 then

$t0 =1
slt $t0, $s1, $s2 el se
$t0 =0

= Can use this instruction to build "bl't $s1, $s2, Label"
— can now build general control structures

= Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Constants

= Small constants are used quite frequently
(50% of operands)

eg., A=A+5;
B=B+1,
C=C-18;
= Design Principle: Make the common case
fast

= Solutions? Why not:
= put 'typical constants' in memory and load them?

= create hard-wired registers (like $zero) for
constants like one?

Constants

= MIPS provides instructions that use a register
value and a constant (immediate) value

= MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

= How do we make this work?

| How about larger constants?

= We'd like to be able to load a 32 bit constant into a register

= Must use two instructions, new "load upper immediate"
instruction

lui $t0, 1010101010101010 filled with zero

[1010101010101010 [0000000000000000 |

= Then must get the lower order bits right, i.e.,
ori $t0, $t0, 1010101010101010

‘ 1010101010101010‘ 0000000000000000‘

[0000000000000000 [1010101010101010]

’—TDTUTUETDTUTUE—FUFTHJTUTUTUETD“

Policy of Use Conventions

Name |Register number Usage
$zero 0 the constant value 0
$at 1
$v0-$vl 2-3 values for results and expression evaluation
$a0- $a3 4-7 arguments
$t0-$t7 8-15 porari
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer

Assembly Language vs.
Machine Language

= Assembly provides convenient symbolic
representation
= much easier than writing down numbers
= e.g., destination first
= Machine language is the underlying reality
= e.g., destination is no longer first
= Assembly can provide ‘pseudo instructions'
= e.g., “move $t0, $t1” exists only in Assembly
= would be implemented using “add $t0,$t1,$zero”
= When considering performance you should count real
instructions

= Instructions:
bne $t4, $t5, Label
beq $t4, $t5, Label

4 Formats:

Addresses in Branches

Next instruction is at Label if $t4 != $t5

Next instruction is at Label if $t4

$t5

[

‘ 16 bit address ‘

= Could specify a register (like lw and sw) and add it to address
= use Instruction Address Register (PC = program counter)
= most branches are local (principle of locality)
= Jump instructions just use high order bits of PC
= address boundaries of 256 MB

To summarize:

MIPS operands.

Name Example Comment:
$50-$57, $10-$t9, Szero, |Fastlocations for data. In MIPS, data must be in registers to perform
|32 registers $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$20- $a3, $vO-$v1,
3

fp, $sp, Sra, Sat reserved for the assembler to handle large constants.

Memory[0],
2% memorv [Memoryral,

[Accessed only by data transfer instructions. MIPS uses byte addresses, so

sequential words differ by 4. Memory holds data structures, such as arrays,
land spilled registers. such as those saved on procedure calls.

ords

Memory[4294967292

MIPS assembly language

Category Instruction Example Meaning Comment
add add $s1, $s2, $53 [$s1 = 952 + 953 Three operands; data in registers
rithmetic [subtract Sub $s1, $s2, $53 51 = 952 - $s3 [Three operands; data in registers
add immediate addi_$s1, $s2, 100 [$s1 = $s2 + 100 Used 10 add constants
load word lw_$s1, 100($s2) $s1 = Memol [$52+10_0[|Word7rommemer 1o register
store word sw_$s1, 100($s2) |Memory[$s2 + 100] = $51 |word from register to memory.
IData transfer [load byte b $s1, 100(8s2) [$s1 = Memory[$52 + 100][Byte from memory to register
store byte sb_$s1, 100($52) |Memory[$52 + 100] = $s1_|Byte from register to memory
load upper immediate || Ui $s1, 100 $51 = 100 * 2° Loads constant in upper 16 bits
branch on equal beq $sl1, $s2, 25 if $s1 == $52)goto Equal test; PC-relative branch
PC + 4+ 100
branch on not equal _|bNe $51, $52, 25 |i1®s1 1= $52)goto Not equal test; PC-relative
PC + 4+ 100
(Conditional
branch set on less than sl't $sl, $s2, $s3 [if($s2 < $s3) $s1=1; Compare less than; for beq, bne
else $51 =0
set less than slti $s1, $s2, 100 [if($s2 < 100) $sl=1; Compare less than constant
immediate eise $51 =0
jump i 2500 go to 10000 [Jump to target address
uncondi- jump register ir__Sra goto $ra For switch, procedure return
onal jump __[jump and link ial 2500 [$ra = PC + 4; go to 10000 [For procedure cal

1. Immedate adressing

Lo Lo Lo [e]
=
[T e]

4.PC.roatve addressing

Memory

E—
\] & [|

————— 7]
5 Pamudodrect aidessng

e wemery
[re] ©O— o] |

1

Alternative Architectures

= Design alternative:
= goal is to reduce number of instructions executed
= provide more powerful operations
= danger is a slower cycle time and/or a higher CPI
= Sometimes referred to as “RISC vs. CISC”
= virtually all new instruction sets since 1982 have been RISC

= VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

= We'll look at PowerPC and 80x86

PowerPC

= Indexed addressing
= example: lw $t1, $a0+$s3 #$t 1=Menor y[$a0+$s3]
= What do we have to do in MIPS?

= Update addressing

= update a register as part of load (for marching through arrays)
= example: |wu $t 0, 4($s3)
#%t 0=Menor y[$s3+4] ; $s3=$s3+4

= What do we have to do in MIPS?
= Others:
= load multiple/store multiple
= a special counter register “bc Loop”
decrement counter, if not O goto loop

80x86

= 1978: The Intel 8086 is announced (16 bit architecture)
= 1980: The 8087 floating point coprocessor is added

= 1982: The 80286 increases address space to 24 bits,
+instructions

= 1985: The 80386 extends to 32 bits, new addressing modes

= 1989-1995: The 80486, Pentium, Pentium Pro add a few
instructions

(mostly designed for higher performance)
= 1997: MMX is added

“This history illustrates the impact of the “goldbandcuffs” of compatibility
“adding new features as someone might add clotiuregpacked bag”

“an architecture that is difficult to explain andpossible to love”

A dominant architecture:
80x86

= See your textbook for a more detailed description

= Complexity:

Instructions from 1 to 17 bytes long

one operand must act as both a source and destination

one operand can come from memory

complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

= Saving grace:
= the most frequently used instructions are not too difficult to build
= compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

Summary

= Four MIPS design principles
= Simplicity favours regularity
= Smaller is faster
= Good design demands good compromises
= Make the common case fast

