
1

Computer Arithmetic

Chapter Three P&H

Data Representation

• Why do we not encode numbers as strings
of ASCII digits inside computers?

Data Representation

• What is overflow when applied to binary
operations on data?

Data Representation

• Why do we not use signed magnitude to
represent numbers inside computers?

Data Representation

• What is the two’s compliment number
representation?

Data Representation

• How is a two’s compliment number sign
extended?

2

Data Representation

• Why does MIPS have:
– lb and lbu instructions?
– slt and sltu instructions?

Addition and Subtraction

• No overflow possible when:
– Adding numbers with different signs

– Subtracting numbers with same sign

– one of numbers is zero

• Overflow occurs when:
– Adding two numbers with same sign and sign of result

is different

– Subtracting numbers with different signs & result is
the same sign as second number

• MIPS handles overflow with an exception

MIPS ALU Design

• MIPS ALU requirements

– add, addu, sub, subu, addi, addiu
• => 2’s complement adder/sub with overflow

detection

– and, or, andi, ori, xor, xori, nor
• => Logical AND, logical OR, XOR, nor

– SLTI, SLTIU (set less than)

• => 2’s complement adder with inverter,
check sign bit of result

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?

• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a c in + b c in

sum = a xor b xor c in
Sum

CarryIn

CarryOut

a

b

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Building a 32 bit ALU

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

3

• Two's complement approach: just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

a.

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow
detection Overflow

b.

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

•Note: zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

ALU symbol

Zero

Overflow

Result

ALU op

CarryOut

a

b

4

Addition

• Ripple adders are slow

• What about sum-of products representation?

2 gate
delays

Cin

A B
su

m

2 gate
delays

Cin Cout

A B
su

m

2 gate
delays

Cin Cout

A B
su

m

c1 = b 0c0 + a 0c0 + a0b0

c2 = b 1c1 + a 1c1 + a1b1 c2 =

c3 = b 2c2 + a 2c2 + a2b2 c3 =

c4 = b 3c3 + a 3c3 + a3b3 c4 =

Carry Look-ahead Adder

• An approach in-between our two extremes
• Motivation:

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi
– When would we propagate the carry? pi = ai + bi

c1 = g0 + p0c0
c2 = g1 + p1c1 c2 =

c3 = g2 + p2c2 c3 =

c4 = g3 + p3c3 c4 =

Example
a: 0001 1010 0011 0011

b: 1110 0101 1110 1011

gi:

pi:

P0, P1, P2, P3 ���� super propagate.

G0, G1, G2, G3 ���� super generate.

C4 ���� what’s that?

Carry Look-ahead Adder

G0 P0 C0

Cin

G1 P1 C1G2 P2 C2

.

.

.

Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexer to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the gate

– the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

• Our primary focus: comprehension, however,
– Clever changes to organization can improve performance

(similar to using better algorithms in software)

