

Data Representation

- What is overflow when applied to binary

Data Representation

- Why do we not use signed magnitude to operations on data? represent numbers inside computers?

Data Representation

- What is the two's compliment number

Data Representation

- How is a two's compliment number sign representation? extended?

Data Representation

- Why does MIPS have:
- lb and lbu instructions?
- slt and sltu instructions?

Addition and Subtraction

- No overflow possible when:
- Adding numbers with different signs
- Subtracting numbers with same sign
- one of numbers is zero
- Overflow occurs when:
- Adding two numbers with same sign and sign of result is different
- Subtracting numbers with different signs \& result is the same sign as second number
- MIPS handles overflow with an exception

MIPS ALU Design

- MIPS ALU requirements
- add, addu, sub, subu, addi, addiu
- => 2's complement adder/sub with overflow detection
- and, or, andi, ori, xor, xori, nor
- => Logical AND, logical OR, XOR, nor
- SLTI, SLTIU (set less than)
- => 2's complement adder with inverter, check sign bit of result

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- Don't want to have to go through too many gates
- Let's look at a 1 -bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

Building a 32 bit ALU

What about subtraction (a-b) ?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (sit)
- remember: slt is an arithmetic instruction
- produces a 1 if rs $<\mathrm{rt}$ and 0 otherwise
- use subtraction: $(a-b)<0$ implies $a<b$
- Need to support test for equality (beq $\$+5, \$ t 6, \$ t 7)$
- use subtraction: $(a-b)=0$ implies $a=b$

Test for equality

- Notice control lines:
$000=$ and
$001=$ or
$010=$ add
$110=$ subtract
$110=$ sub
$111=$ slt
-Note: zero is a 1 when the result is zero!

ALU symbol

Addition

- Ripple adders are slow

- What about sum-of products representation?

```
c
c}\mp@subsup{c}{2}{}=\mp@subsup{b}{1}{}\mp@subsup{c}{1}{}+\mp@subsup{a}{1}{}\mp@subsup{c}{1}{}+\mp@subsup{a}{1}{}\mp@subsup{b}{1}{}\quad\mp@subsup{c}{2}{}
c
c
```

Carry Look-ahead Adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry? $\quad g_{i}=a_{i} b_{i}$
- When would we propagate the carry? $\quad p_{i}=a_{i}+b_{i}$
$c_{1}=g_{0}+p_{0} c_{0}$
$\mathrm{c}_{2}=\mathrm{g}_{1}+\mathrm{p}_{1} \mathrm{c}_{1} \quad \mathrm{c}_{2}=$
$\mathrm{c}_{3}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{c}_{2} \quad \mathrm{c}_{3}=$
$\mathrm{c}_{4}=\mathrm{g}_{3}+\mathrm{p}_{3} \mathrm{c}_{3} \quad \mathrm{c}_{4}=$

Example

a: 0001101000110011
b: 1110010111101011
gi:
pi:

P0, P1, P2, P3 \leftarrow super propagate.
G0, G1, G2, G3 \leftarrow super generate.
C4
\leftarrow what's that?

Carry Look-ahead Adder

Conclusion

- We can build an ALU to support the MIPS instruction set
- key idea: use multiplexer to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1 -bit ALU to produce a 32 -bit ALU
- Important points about hardware
- all of the gates are always working
- the speed of a gate is affected by the number of inputs to the gate
- the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
- Clever changes to organization can improve performance (similar to using better algorithms in software)

