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Computer Arithmetic

Chapter Three P&H

Data Representation

• Why do we not encode numbers as strings 
of ASCII digits inside computers?

Data Representation

• What is overflow when applied to binary 
operations on data?

Data Representation

• Why do we not use signed magnitude to 
represent numbers inside computers?

Data Representation

• What is the two’s compliment number 
representation?

Data Representation

• How is a two’s compliment number sign 
extended?
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Data Representation

• Why does MIPS have:
– lb and lbu instructions?
– slt and sltu instructions?

Addition and Subtraction

• No overflow possible when: 
– Adding numbers with different signs

– Subtracting numbers with same sign

– one of numbers is zero

• Overflow occurs when:
– Adding two numbers with same sign and sign of result 

is different

– Subtracting numbers with different signs & result is 
the same sign as second number

• MIPS handles overflow with an exception

MIPS ALU Design

• MIPS ALU requirements

– add, addu, sub, subu, addi, addiu
• => 2’s complement adder/sub with overflow 

detection

– and, or, andi, ori, xor, xori, nor
• => Logical AND, logical OR, XOR, nor

– SLTI, SLTIU (set less than)

• => 2’s complement adder with inverter, 
check sign bit of result

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?

• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a c in + b c in

sum = a xor b xor c in
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• Two's complement approach:  just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction  (a – b)  ?
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• Need to support the set-on-less-than instruction (slt)

– remember:  slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction:  (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction:  (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt
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Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

•Note:  zero is a 1 when the result is zero!
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Addition

• Ripple adders are slow

• What about sum-of products representation?
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c1 = b 0c0 + a 0c0 + a0b0

c2 = b 1c1 + a 1c1 + a1b1 c2 = 

c3 = b 2c2 + a 2c2 + a2b2 c3 = 

c4 = b 3c3 + a 3c3 + a3b3 c4 = 

Carry Look-ahead Adder

• An approach in-between our two extremes
• Motivation: 

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi 
– When would we propagate the carry?                pi = ai + bi

c1 = g0 + p0c0 
c2 = g1 + p1c1 c2 = 

c3 = g2 + p2c2 c3 = 

c4 = g3 + p3c3 c4 =

Example
a:  0001 1010 0011 0011

b:  1110 0101 1110 1011

gi:

pi:

P0, P1, P2, P3 ���� super propagate.

G0, G1, G2, G3 ���� super generate.

C4             ���� what’s that?

Carry Look-ahead Adder

G0 P0 C0

Cin

G1 P1 C1G2 P2 C2

.
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.

Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea:  use multiplexer to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the gate

– the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

• Our primary focus:  comprehension,  however,
– Clever changes to organization can improve performance

(similar to using better algorithms in software)


