Data Representation
* Why do we not encode numbers as strings

_ _ of ASCII digits inside computers?
Computer Arithmetic

Chapter Three P&H

Data Representation Data Representation
» What is overflow when applied to binary * Why do we not use signed magnitude to
operations on data? represent numbers inside computers?
Data Representation Data Representation
* What is the two’s compliment number * How is a two’s compliment number sign

representation? extended?

Data Representation

* Why does MIPS have:
—1Ib and Ibu instructions?
— slt and sltu instructions?

Addition and Subtraction

* No overflow possible when:
— Adding numbers with different signs
— Subtracting numbers with same sign
— one of numbers is zero

¢ Overflow occurs when:

— Adding two numbers with same sign and sign of result
is different

— Subtracting numbers with different signs & result is
the same sign as second number

« MIPS handles overflow with an exception

MIPS ALU Design

MIPS ALU requirements

—add, addu, sub, subu, addi, addiu

» => 2's complement adder/sub with overflow
detection

—and, or, andi, ori, xor, xori, nor
* => Logical AND, logical OR, XOR, nor
— SLTI, SLTIU (set less than)

=> 2's complement adder with inverter,
check sign bit of result

Different Implementations

+ Not easy to decide the “best” way to build something
— Don't want too many inputs to a single gate
— Don't want to have to go through too many gates
— for our purposes, ease of comprehension is important
« Let's look at a 1-bit ALU for addition:

carryin

Coq =ab+ac +bc
sum = axor b xor ¢

+ [—* Sum n

in

carryout

+ How could we build a 1-bit ALU for add, and, and or?
* How could we build a 32-bit ALU?

Building a 32 bit ALU

Operation
Carryin
|

CarryOut

Building a 32 bit ALU

Carryin Operati

—» Result
—» Resultl

— Result2

a3l
Result31
b31

What about subtraction (a—Db) ?

« Two's complement approach: just negate b and add.
* How do we negate?

« Avery clever solution:

canyn ‘
|

Carryout

Tailoring the ALU to the MIPS

« Need to support the set-on-less-than instruction (slt)
— remember: sltis an arithmetic instruction
— produces a 1ifrs <rt and O otherwise
— use subtraction: (a-b) <0impliesa<b

« Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0 impliesa=b

Supporting slt

Binvert Operation

carryln ‘
|

Overflow I,
detection Overflow

Less

a CarryOut

Binvert Carry Operatic

a0 —{ Caryin
b0 —+| ALUO Result0

a1 — Camyin
b1 —| ALUL Resultl
0—> Less

a2 — Camyin
b2 —| ALUZ Resultz
0—> Less

| Carryin

a31 —+[Camryln|————* Result31
b31 —»{ ALU3L
0—> Less Overflow

Test for equality

a0 —Camyin| peguno

« Notice control lines:

000 = and a1 —f Resull

001 = or N == —
010 = add H
110 = subtract

a2 —[Garyin

111 = slt bo —| ALz [
0 —| Less
camyou]

*Note: zeroisalwhen theresultiszero!

ALU symbol

ALU op

———> Zero
———> Result

f——— Overflow

CarryOut

Addition

e e
3

« Ripple adders are slow Tm v
3

»
2

3

2gate | CnCout| 2gate | CinCou| 2gate
delays delays delays
[}

i ¢:> i k L

> ™ ™
I Il I
* What about sum-of products representation?

¢, =bcy +anc, + agh,

c, =b,c, +a,c, +a,b, c, =
C3 =b,C, +a,C, + b, C3 =
c, =bsc; +ac, +agb, c, =

Cin

Carry Look-ahead Adder

« An approach in-between our two extremes

« Motivation:
— If we didn't know the value of carry-in, what could we do?
— When would we always generate a carry? g = a b
— When would we propagate the carry? pp = a + b
€1 = Go * PoCo
Cr = 01 + PGy C, =
C3 = 0 + PsCy C3 =
Cs = O3 + P3C3 €, =

Example

a: 0001 1010 0011 0011
b: 11100101 1110 1011

gi:

pi:

PO, P1, P2, P3 € super propagate.
GO0, G1, G2, G3 €« super generate.
C4 < what'’s that?

Carry Look-ahead Adder

Conclusion

* We can build an ALU to support the MIPS instruction set
— key idea: use multiplexer to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
« Important points about hardware
— all of the gates are always working
— the speed of a gate is affected by the number of inputs to the gate
— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
« Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

