Addition

Computer Arithmetic II

Chapter Three P\&H

- Ripple adders are slo

- What about sum-of products representation?
$c_{1}=b_{0} c_{0}+a_{0} c_{0}+a_{0} b_{0}$
$c_{2}=b_{1} c_{1}+a_{1} c_{1}+a_{1} b_{1}$
$c_{3}=b_{2} c_{2}+a_{2} c_{2}+a_{2} b_{2}$

Carry Look-ahead Adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry? $\quad g_{i}=a_{i} b_{i}$
- When would we propagate the carry? $\quad p_{i}=a_{i}+b_{i}$
$c_{1}=g_{0}+p_{0} c_{0}$
$c_{2}=g_{1}+p_{1} c_{1} \quad c_{2}=$
$c_{3}=g_{2}+p_{2} c_{2} \quad c_{3}=$

Carry Look-ahead Adder

Multiplication

- More complicated than addition
- accomplished via shifting and addition
- More time and more area
- Let's look at 4 versions based on high school algorithm

$$
\begin{aligned}
0010 & \text { (multiplicand) } \\
\mathbb{x}^{\mathrm{x}} \mathbf{1 0 1 1}^{1011} & \text { (multiplier) }
\end{aligned}
$$

G :	0	0	1	0
P :	1	1	1	0
C :	1	1	1	0

```
                    Multiplication
        0010 (2) \leftarrow multiplicand
    x 1011 (11) \leftarrow multiplier
        0010
        0010
    0000
0010
0010110 (22) ¢ product
```

- What logic is required to implement this?
- What can we say about the size requirements to store the product?

Multiplication: $1^{\text {st }}$ Implementation

Multiplication: $1^{\text {st }}$ Implementation

Board Exercise

- $2 \times 3=6$
$-0010 \times 0011=0110$

Multiplication: 1st implementation performance

- How many steps does this implementation take?
- Is the implementation wasteful in other areas?

use left hand side of product register.

Board Exercise

- $2 \times 3=6$
$-0010 \times 0011=0110$

Board Exercise

- $2 \times 3=6$
$-0010 \times 0011=0110$

Multiplication: Third Implementation

 performance.- How many steps does this implementation take?
- What other improvements have been made compared to the first implementation?

Signed multiplication

- An easy (to comprehend) way to do signed multiplication is
- remember the original signs
- convert the numbers to positive (temporary working) values
- when is the product negated?
- what extra cycles and resources are required?

Booth's Algorithm

- Does not require conversion cycles
- First step of the third multiplication implementation changes
- Second step (shift product right) remains
- The replacement step depends on the current and previous right-most bits in product
- 00: no arithmetic op
- 01: add multiplicand to left half of product
- 10: sub multiplicand from left half of product
- 11: no arithmetic op

Multiplication by powers of 2

- accomplished using left shift
- Multiplication is accomplished by shift and add hardware, using a similar algorithm to that we were taught in school.
$-0110 \times 1000=00110000$
$-6 \times 2^{\wedge} 3=48$
$-6 \ll 3=48$

Summary

- $2 x-3=-6$
$-0010 \times 1101=1010$
- e.g. $6 \times 8=48$

