Computer Arithmetic I

Chapter Three P&H

Addition

* Ripple adders are slow i) 9

z 2 2
3

3 3

2gate | CnCout| 2gate | CinCou| 2gate
delays delays delays

}(C;n

* What about sum-of products representation?

C; = bycy + a,Cy + agh,
c, = bc, + ac, +ab, c, =
C3 = b,C; + 8, +ash, C3 =

Lk T,, Tm L

Carry Look-ahead Adder

« An approach in-between our two extremes
« Motivation:

— If we didn't know the value of carry-in, what could we do?
— When would we always generate a carry? g = a b
— When would we propagate the carry? pi = a + b

Carry Look-ahead Adder

e

C1 = do * PoCo CH Cn

C; =091 + PiC; Cp = B

C3 = gy + PCy; C3 = G1P; C; ‘(’opo Co ‘
Example Multiplication

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011

gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

0 0 1 0
1 0
1 1 1 0

0O9v®
=
=

More complicated than addition
— accomplished via shifting and addition
More time and more area

Let's look at 4 versions based on high school
algorithm

0010 (mutiplicand)
__x_1011 (multiplier)

Multiplication

0010 (2) € nultiplicand
x 1011 (11) € nultiplier
0010
0010
0000
0010
0010110 (22) € product

* What logic is required to implement this?

* What can we say about the size requirements te sto

the product?

Multiplication: 1St Implementation

—

Multiplicand
Shift left

64 bits

Multiplier
Shift right

32 bits

i

64-bit ALU

Product
Write

I 64 bits

Multiplication: 1St Implementation

Muliplier0 = 1

1a. Add multiplicand to product and
place the result in Product register

Board Exercise

¢« 2x3=6
—0010 x 0011 = 0110

Multiplication: 1st implementation
performance
» How many steps does this implementation
take?

* Is the implementation wasteful in other
areas?

Second Version

Multiplicand

e

Multiplier
Shit right

32 bits

Shift right

| Product Write

I 64 bits

use left hand side of product register.

Second Version

Board Exercise

¢« 2x3=6
—0010 x 0011 = 0110

Third Version

start

o

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

Multiplicand

2. Shift the Product register right 1 bit

I

No: < 32 repetitions
32nd repetition?

\

—
Shift right

64 bits

Yes: 32 repetitions

Board Exercise

¢« 2x3=6
—0010 x 0011 = 0110

Multiplication: Third Implementation
performance.

» How many steps does this implementation
take?

» What other improvements have been
made compared to the first
implementation?

Signed multiplication

* An easy (to comprehend) way to do
signed multiplication is
—remember the original signs

— convert the numbers to positive (temporary
working) values

« when is the product negated?

« what extra cycles and resources are
required?

Booth’s Algorithm

Does not require conversion cycles

First step of the third multiplication
implementation changes

Second step (shift product right) remains

The replacement step depends on the current
and previous right-most bits in product

— 00: no arithmetic op

— 01: add multiplicand to left half of product

— 10: sub multiplicand from left half of product

— 11: no arithmetic op

Board Exercises

e 2Xx-3=-6
—0010 x 1101 = 1010

Multiplication by powers of 2

» accomplished using left shift
*e.g.6x8=48
—0110 x 1000 = 00110000
—-6x2"3=48
-6<<3=48

Summary

« Multiplication is accomplished by shift and
add hardware, using a similar algorithm to
that we were taught in school.

