
1

Computer Arithmetic II

Chapter Three P&H

Addition

• Ripple adders are slow

• What about sum-of products representation?

2 gate
delays

Cin

A B
su

m

2 gate
delays

Cin Cout

A B
su

m

2 gate
delays

Cin Cout

A B
su

m

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 = 

c3 = b2c2 + a2c2 + a2b2 c3 = 

Carry Look-ahead Adder

• An approach in-between our two extremes
• Motivation: 

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi 
– When would we propagate the carry?                pi = ai + bi

c1 = g0 + p0c0 
c2 = g1 + p1c1 c2 = 

c3 = g2 + p2c2 c3 = 

Carry Look-ahead Adder

G0 P0 C0

Cin

G1 P1 C1G2 P2 C2

.

.

.

Example
a:  0001 1010 0011 0011
b:  1110 0101 1110 1011

gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

G:   0    0    1    0

P:   1    1    1    0
C:   1    1    1    0

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Let's look at 4 versions based on high school 

algorithm

0010 (multiplicand)

__x_1011 (multiplier)

Multiplication



2

Multiplication

0010   (2) ���� multiplicand

x 1011 (11) ���� multiplier

0010

0010

0000

0010      

0010110  (22) ���� product

• What logic is required to implement this?
• What can we say about the size requirements to store 

the product?

Multiplication:  1st Implementation

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

Multiplication:  1st Implementation

Done

1. Test�
Multiplier0

1a. Add multiplicand to product and�
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Board Exercise

• 2 x 3 = 6
– 0010 x 0011 = 0110

Multiplication: 1st implementation 
performance

• How many steps does this implementation 
take?

• Is the implementation wasteful in other 
areas?

Second Version

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

use left hand side of product register.



3

Second Version

Done

1. Test�
Multiplier0

1a. Add multiplicand to the left half of�
the product and place the result in�
the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Board Exercise

• 2 x 3 = 6
– 0010 x 0011 = 0110

Third Version

Control�
testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Done

1. Test�
Product0

1a. Add multiplicand to the left half of�
the product and place the result in�
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Board Exercise

• 2 x 3 = 6
– 0010 x 0011 = 0110

Multiplication: Third Implementation 
performance.

• How many steps does this implementation 
take?

• What other improvements have been 
made compared to the first 
implementation?

Signed multiplication

• An easy (to comprehend) way to do 
signed multiplication is
– remember the original signs
– convert the numbers to positive (temporary 

working) values

• when is the product negated?
• what extra cycles and resources are 

required?



4

Booth’s Algorithm

• Does not require conversion cycles
• First step of the third multiplication 

implementation changes
• Second step (shift product right) remains
• The replacement step depends on the current 

and previous right-most bits in product
– 00: no arithmetic op
– 01: add multiplicand to left half of product
– 10: sub multiplicand from left half of product
– 11: no arithmetic op

Board Exercises

• 2 x -3 = -6
– 0010 x 1101 = 1010

Multiplication by powers of 2

• accomplished using left shift
• e.g. 6 x 8 = 48

– 0110 x 1000 = 00110000
– 6 x 2^3 = 48
– 6 << 3 = 48

Summary

• Multiplication is accomplished by shift and 
add hardware, using a similar algorithm to 
that we were taught in school.


