Floating Point

Computer Arithmetic

Floating Point

- We need a way to represent
- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., .000000001
- very large numbers, e.g., 3.15576×10^{9}
- Representation:
- sign, exponent, significand: $\quad(-1)^{\text {sign }} \times$ significand $\times 2^{\text {exponent }}$
- more bits for significand gives more accuracy
- more bits for exponent increases range

Definitions

- A normalised number has no leading zeros
- e.g. 0.000000001 is 1.0×10^{-9}

Binary Point

e.g. $3.625_{\text {ten }}=0011.1010_{\text {two }}$

IEEE 754 Floating Point Standard

- Single precision: 8 bits exponent, 23 bits significand
- 32 bits, C float
- range: 2.0×10^{-38} to 2.0×10^{38}
\square
- Double precision: 11 bits exponent, 52 bits significand
- 64 bits: C double
- range: 2.0×10^{-308} to 2.0×10^{308}
\square

Pentium / PPC

- Internally, these architectures use an 80 bit floating point representation
- defined by IEEE 754 as double-extended
- 15 exponent bits
- 64 significand bits
- CPU converts to double / float when reqd.
- 80-bit format poorly supported by programming languages

Sorting

- In an ideal world, the sort operation could use existing (integer) hardware.
- Board exercise: In what order do we check the fields of a floating point number when sorting?
$--1.256 \times 10^{-2}$
-0.234×10^{-3}
-0.187×10^{1}

IEEE 754 Floating Point Standard

- Exponent is "biased" to make sorting easier
- all 0 s is smallest exponent; all 1 s is largest
- bias of 127 for single precision and 1023 for double precision
- summary: $\quad(-1)^{\text {sign }} \times(1+$ significand $) \times 2^{\text {exponent }- \text { bias }}$
- Leading " 1 " bit of significand is implicit
- Board Exercise: encode -0.75 in single precision

IEEE 754 Floating Point Standard

- Example:
- decimal point: $-.75=-3 / 4=-3 / 2^{2}$
- binary point: $-0.11 \times 2^{0}=-1.1 \times 2^{-1}$
- floating point exponent $=126=01111110$
- IEEE single precision:

10111111010000000000000000000000

Floating Point Complexities

- Mathematical operations are somewhat more complicated
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divided by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
- see text for description of 80×86 and Pentium bug!

Floating Point Addition: Board Exercise

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$
- Assume that we can only store
- 4 decimal digits of significand
- 2 decimal digits of exponent

Floating point Multiplication

- Multiply mantissas and add exponents
- Steps:
- Add exponents
- Multiply mantissas
- Normalise result
- Round results
- Fix sign of product

Floating Point Accuracy

- Floating point numbers are normally approximations for the numbers they represent
- infinite numbers between 0 and 1 , but only 53 bits in double precision to represent them
- IEEE-754 keeps two extra bits on the right during intermediate calculations called guard and round respectively
- Example: add $2.56_{\text {ten }} * 10^{0}$ to $2.34_{\text {ten }} * 10^{2}$ assuming three significant digits
- with guard and round digits
- without guard and round digits

Sticky Bit

- IEEE 754 allows for a third bit in addition to guard and round.

Sticky bit example

- $5.01 \times 10^{-1}+2.34 \times 10^{2}$
- Three significant digits
- in school we always rounded 0.5 up
- error accumulates with each round
$-0.35+0.4 \rightarrow 0.4+0.4 \rightarrow 0.8$
- solution: use sticky bit, round down \sim half the time
$-0.35+0.4 \rightarrow 0.7$

Floating Point Accuracy

- Four Rounding modes :
- round to nearest (default)
- round towards plus infinity
- round towards minus infinity
- round towards 0
- Special symbols used by IEEE-754
$-+\infty$ or - ∞ (largest exponent with 0 mantissa) (result of divide by zero)
- NaN (Not a number) (largest exponent with non 0 mantissa) ($0 / 0$ or $\infty-\infty$)
- Unnormalised Numbers (no explicit 1 in MSB) (0 exponent non-zero mantissa)
- Zero (zero Mantissa and zero exponent)

Special Symbols

Examples							
	G	R	S	Plus infinity	Minus infinity	Truncate	Nearest even
+1001	1	1	0	+1010	+1001	+1001	+1010
+1001	0	1	1	+1010	+1001	+1001	+1001
+1001	1	0	0	+1010	+1001	+1001	+1010
+1000	1	0	0	+1001	+1000	+1000	+1000
+1001	0	0	0	+1001	+1001	+1001	+1001
-1001	1	1	0	-1001	-1010	-1001	-1010
-1001	0	1	1	-1001	-1010	-1001	-1001
-1001	1	0	0	-1001	-1010	-1001	-1010
-1000	1	0	0	-1000	-1001	-1000	-1000
-1001	0	0	0	-1001	-1001	-1001	-1001

Examples

Summary				
Single Precision Exponent Significand Exponent Significand 0 0 0 0	Non-zero	0	Non-zero	+/- denormalised number
0	Anything	$1-2046$	Anything	$+/-$ floating point number
$1-254$	0	2047	0	+/- infinity
255	Non-zero	2047	Non-zero	NaN (not a number)
255				

