
1

Computer Arithmetic

Floating Point

Floating Point

• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576 × 109

• Representation:

– sign, exponent, significand: (–1)sign × significand × 2exponent

– more bits for significand gives more accuracy

– more bits for exponent increases range

Definitions

• A normalised number has no leading zeros
– e.g. 0.000000001 is 1.0 x 10-9

Binary Point

1248 0.
5

0.
25

0.
12

5

0.
06

25

e.g. 3.625ten = 0011.1010two

IEEE 754 Floating Point Standard

• Single precision: 8 bits exponent, 23 bits significand
– 32 bits, C float

– range: 2.0 x 10-38 to 2.0 x 1038

• Double precision: 11 bits exponent, 52 bits significand
– 64 bits: C double

– range: 2.0 x 10-308 to 2.0 x 10308

S significandexponent

S
significand

exponent

Pentium / PPC

• Internally, these architectures use an 80 bit
floating point representation
– defined by IEEE 754 as double-extended
– 15 exponent bits
– 64 significand bits

• CPU converts to double / float when reqd.
• 80-bit format poorly supported by

programming languages

2

Sorting

• In an ideal world, the sort operation could
use existing (integer) hardware.

• Board exercise: In what order do we check
the fields of a floating point number when
sorting?
– -1.256 x 10-2

– 0.234 x 10-3

– 0.187 x 101

IEEE 754 Floating Point Standard

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent; all 1s is largest

– bias of 127 for single precision and 1023 for double
precision

– summary: (–1)sign × (1+significand) × 2exponent – bias

• Leading “1” bit of significand is implicit

• Board Exercise: encode -0.75 in single precision

IEEE 754 Floating Point Standard

• Example:

– decimal point: -.75 = -3/4 = -3/22

– binary point: -0.11 x 20 = -1.1 x 2-1

– floating point exponent = 126 = 01111110

– IEEE single precision:
10111111010000000000000000000000

Floating Point Complexities

• Mathematical operations are somewhat more complicated

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divided by zero yields “not a number”

– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

Floating Point Addition: Board Exercise

• 9.999 x 101 + 1.610 x 10-1

• Assume that we can only store
– 4 decimal digits of significand

– 2 decimal digits of exponent

Done

2. Add the significands

4. Round the significand to the appropriate�
number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or�
underflow?

Exception

3. Normalize the sum, either shifting right and�
incrementing the exponent or shifting left�

and decrementing the exponent

1. Compare the exponents of the two numbers.�
Shift the smaller number to the right until its�
exponent would match the larger exponent

3

0 10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Shift smaller
number right

Compare
exponents

Add

Normalize

Round

Floating point Multiplication

• Multiply mantissas and add exponents

• Steps:
– Add exponents

– Multiply mantissas

– Normalise result

– Round results

– Fix sign of product

2. Multiply the significands

4. Round the significand to the appropriate�
number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or�
underflow?

Exception

3. Normalize the product if necessary, shifting�
it right and incrementing the exponent

1. Add the biased exponents of the two�
numbers, subtracting the bias from the sum�

to get the new biased exponent

Done

5. Set the sign of the product to positive if the�
signs of the original operands are the same;�

if they differ make the sign negative

Floating Point Accuracy

• Floating point numbers are normally
approximations for the numbers they represent
– infinite numbers between 0 and 1, but only 53 bits in

double precision to represent them
• IEEE-754 keeps two extra bits on the right during

intermediate calculations called guard and round
respectively

• Example: add 2.56ten * 100 to 2.34ten*102

assuming three significant digits
– with guard and round digits
– without guard and round digits

Sticky Bit

• IEEE 754 allows for a third bit in addition to
guard and round.

• in school we always rounded 0.5 up
– error accumulates with each round

– 0.35 + 0.4 � 0.4 + 0.4 � 0.8

– solution: use sticky bit, round down ~half the time

– 0.35 + 0.4 � 0.7

Sticky bit example

• 5.01 x 10-1 + 2.34 x 102

– Three significant digits

4

Floating Point Accuracy

• Four Rounding modes :
– round to nearest (default)

– round towards plus infinity

– round towards minus infinity

– round towards 0

Examples

-1001-1001-1001-1001000-1001

-1000-1000-1001-1000001-1000

-1010-1001-1010-1001001-1001

-1001-1001-1010-1001110-1001

-1010-1001-1010-1001011-1001

+1001+1001+1001+1001000+1001

+1000+1000+1000+1001001+1000

+1010+1001+1001+1010001+1001

+1001+1001+1001+1010110+1001

+1010+1001+1001+1010011+1001

Nearest evenTruncateMinus infinityPlus infinitySRG

Special Symbols

• Special symbols used by IEEE-754
– +∞ or - ∞ (largest exponent with 0 mantissa)

(result of divide by zero)

– NaN (Not a number) (largest exponent with non
0 mantissa) (0/0 or ∞ - ∞)

– Unnormalised Numbers (no explicit 1 in MSB)
(0 exponent non-zero mantissa)

– Zero (zero Mantissa and zero exponent)

Summary

NaN (not a
number)

Non-zero2047Non-zero255

+/- infinity020470255

+/- floating
point number

Anything1-2046Anything1-254

+/-
denormalised
number

Non-zero0Non-zero0

00000

SignificandExponentSignificandExponent

representsDouble PrecisionSingle Precision

