

Floating Point

· We need a way to represent

- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., .000000001
- -~ very large numbers, e.g., 3.15576×10^9
- Representation:
 - sign, exponent, significand: (–1)^{sign} \times significand \times $2^{exponent}$ - more bits for significand gives more accuracy
 - more bits for exponent increases range

0.5 0.25 0.125 0.0625

.

programming languages

Sorting

- In an ideal world, the sort operation could use existing (integer) hardware.
- Board exercise: In what order do we check the fields of a floating point number when sorting?
 - -1.256 x 10⁻²
 - 0.234 x 10⁻³
 - $-0.187 \ge 10^{1}$

IEEE 754 Floating Point Standard

- Exponent is "biased" to make sorting easier – all 0s is smallest exponent; all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{sign} \times (1+significand) \times 2^{exponent-bias}$
- · Leading "1" bit of significand is implicit
- Board Exercise: encode -0.75 in single precision

IEEE 754 Floating Point Standard

- Example:
 - decimal point: $-.75 = -3/4 = -3/2^2$
 - binary point: -0.11 x $2^0 = -1.1 x 2^{-1}$
 - floating point exponent = 126 = 01111110

Floating Point Complexities

- · Mathematical operations are somewhat more complicated
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divided by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 see text for description of 80x86 and Pentium bug!

Floating Point Addition: Board Exercise

- 9.999 x $10^1 + 1.610 x 10^{-1}$
- Assume that we can only store - 4 decimal digits of significand
 - 2 decimal digits of exponent

Floating point Multiplication

- · Multiply mantissas and add exponents
- Steps:
 - Add exponents
 - Multiply mantissas
 - Normalise result
 - Round results
 - Fix sign of product

Floating Point Accuracy

- Floating point numbers are normally approximations for the numbers they represent

 infinite numbers between 0 and 1, but only 53 bits in double precision to represent them
- IEEE-754 keeps two extra bits on the right during intermediate calculations called guard and round respectively
- Example: add $2.56_{ten} * 10^0$ to $2.34_{ten} * 10^2$ assuming three significant digits
 - with guard and round digits
 without guard and round digits

Sticky Bit

- IEEE 754 allows for a third bit in addition to guard and round.
- in school we always rounded 0.5 up
 - error accumulates with each round
 - $0.35 + 0.4 \rightarrow 0.4 + 0.4 \rightarrow 0.8$
 - solution: use sticky bit, round down ~half the time
 - 0.35 + 0.4 → 0.7

Sticky bit example

• 5.01 x 10⁻¹ + 2.34 x 10² - Three significant digits

Floating Point Accuracy

• Four Rounding modes :

- round to nearest (default)
- round towards plus infinity
- round towards minus infinity
- round towards 0

Examples

	G	R	s	Plus infinity	Minus infinity	Truncate	Nearest even
+1001	1	1	0	+1010	+1001	+1001	+1010
+1001	0	1	1	+1010	+1001	+1001	+1001
+1001	1	0	0	+1010	+1001	+1001	+1010
+1000	1	0	0	+1001	+1000	+1000	+1000
+1001	0	0	0	+1001	+1001	+1001	+1001
-1001	1	1	0	-1001	-1010	-1001	-1010
-1001	0	1	1	-1001	-1010	-1001	-1001
-1001	1	0	0	-1001	-1010	-1001	-1010
-1000	1	0	0	-1000	-1001	-1000	-1000
-1001	0	0	0	-1001	-1001	-1001	-1001

Special Symbols

- Special symbols used by IEEE-754
 - $-+\infty$ or $-\infty$ (largest exponent with 0 mantissa) (result of divide by zero)
 - NaN (Not a number) (largest exponent with non 0 mantissa) (0/0 or $\infty \infty$)
 - Unnormalised Numbers (no explicit 1 in MSB) (0 exponent non-zero mantissa)
 - Zero (zero Mantissa and zero exponent)

Single Precis	sion	Double Prec	represents	
Exponent	Significand	Exponent	Significand	
0	0	0	0	0
0	Non-zero	0	Non-zero	+/- denormalised number
1-254	Anything	1-2046	Anything	+/- floating point number
255	0	2047	0	+/- infinity
255	Non-zero	2047	Non-zero	NaN (not a number)

C.