A note on division of signed
integers
:---
- (left
- lefight and right are signed integers
- We know that multiplication by a power of
two can be accomplished by shifting left
- What about signed division?

MIPS compiler output

- (left+right)/2 : left is $\$ 2$, right is $\$ 3$
- addu $\$ 3, \$ 3, \$ 2$
- srl \$2,\$3,31

- addu $\$ 2, \$ 2, \$ 3$
- sra $\$ 2, \$ 2,1$
- What is the point of the middle two instructions?

The code

- addu\$3,\$3,\$2 \# add left + right
- srl $\$ 2, \$ 3,31 \quad \#$ get sign bit (1 or 0)
- addu\$2,\$2,\$3 \# add 1 or 0 to sum
- sra $\$ 2, \$ 2,1$ \# divide by $2 \mathrm{w} /$ shift
- MIPS code to say:
- if \$left + \$right is negative, add one.

Examples

- $(-5+3) / 2$
- $-5+3=-21110$
- Try with approach:
- Sign bit: 1; add 1

1111

- Shift right arithmetic: 1111 (-1)
- Try without:
- Sign bit 1: don't add
- Shift right arithmetic:

1110
1111 (-1)

- Same result! Hmmm.

Examples

- $(-5+3) / 2$
- $-5+2=-3$
- Try with approach:
- Sign bit: 1 ; add 1

1110

- Shift right arithmetic: 1111 (-1)
- Try without:
- Sign bit 1: don't add 1101
- Shift right arithmetic:
- Different result! Hmmm....

Summary

- If dividing a negative odd number by a power of two by using shifting, must add one first.
- Thankfully easy to do
- srl \$2,\$3,31
- addu \$2,\$2,\$3

