A note on division of signed integers

Overview

- (left+right)/2
- · left and right are signed integers
- We know that multiplication by a power of two can be accomplished by shifting left
- What about signed division?

MIPS compiler output (left+right)/2 : left is \$2, right is \$3

- addu \$3,\$3,\$2
- srl \$2,\$3,31 _ _{Er, what?}
- addu \$2,\$2,\$3
- sra \$2,\$2,1
- What is the point of the middle two instructions?

The code

- addu\$3,\$3,\$2
 - srl \$2,\$3,31
- # add left + right # get sign bit (1 or 0)
- addu\$2,\$2,\$3
- # add 1 or 0 to sum
- sra \$2,\$2,1 # divide by 2 w/ shift
- MIPS code to say: – if \$left + \$right is negative, add one.

Examples		
 (-5 + 3)/2 -5 + 3 = -2 	1110	
 Try with approach: Sign bit: 1; add 1 Shift right arithmetic: Try without: Sign bit 1: don't add Shift right arithmetic: Same result! Hmmm 	1111 1111 (-1) 1110 1111 (-1)	

Summary

- If dividing a negative odd number by a power of two by using shifting, must add one first.
- Thankfully easy to do - srl \$2,\$3,31
 - addu \$2,\$2,\$3