
1

Datapath III --
Microprogramming

Example

• Which of the following implementations would be faster and by how 
much
– Implementation which uses a fixed length clock cycle
– Implementation where clock cycle length determined by instruction

• Assume:
– Memory units have 2ns delay
– ALU and adders have 2ns delay
– Register file has 1ns delay
– All other units have 0 delay

• Assume following instruction mix:
– 24% loads
– 12% stores
– 44% R-Type
– 18% branches
– 2% Jumps 



2

Example

• Timing results
– Loads: 8ns
– Stores: 7ns
– R-type: 6ns
– Branch: 5ns
– Jump: 2ns

• (8 x 24%) + (7 x 12%) + (6 x 44%) + (5 x 
18%) + (2 x 2%) = 6.3ns

• 8/6.3 = 1.27 times faster

MultiCycle Implementation

• Instruction execution can be broken into the 
following steps
– Instruction Fetch
– Instruction Decode
– Operand Fetch
– Execute
– Store Results

• Also allows sharing of components
– single memory for data and instructions
– Single ALU

• Extra registers required to store results between 
stages



3

High Level Datapath

PPPP CCCC

MMMM eeeemmmm oooo rrrryyyy

AAAAddddddddrrrreeeessss ssss

IIIInnnnssss ttttrrrruuuuccccttttiiiioooonnnn

oooo rrrr ddddaaaa ttttaaaa

DDDD aaaa ttttaaaa

IIIInnnnssss ttttrrrruuuu ccccttttiiiioooonnnn

rrrreeeegggg iiiisssstttteeee rrrr

RRRR eeee ggggiiiisssstttteeeerrrrssss

RRRR eeeegggg iiiissss tttteeee rrrr ####

DDDD aaaa ttttaaaa

RRRR eeeegggg iiiissss tttteeee rrrr ####

RRRR eeeegggg iiiissss tttteeee rrrr ####

AAAA LLLLUUUU

MMMM eeeemmmmoooo rrrryyyy

ddddaaaa ttttaaaa

rrrreeeegggg iiiisssstttteeee rrrr

AAAA

BBBB

AAAALLLLUUUUOOOO uuuutttt

Additional Registers

• Determined by:
– What combination units can fit in a clock cycle
– What data is required in later clock cycles

• Assume at most one of the following can be accommodated by a 
single clock cycle:
– A memory access
– A register file access (two reads or one write)
– An ALU operation

• Require the following additional registers
– IR
– MDR
– A and B registers
– ALUout register

• All new regs except IR only have to hold values from one clock cycle 
to next so do not require write control signal



4

Combining ALUs

• Merging all ALUs and adders into a single 
datapath requires two main changes:
– An additional multiplexer on the A input to the ALU, 

selects:
• PC
• A register

– Extend multiplexer on second input
• The constant 4 for incrementing PC

• The sign extended and shifted 16-bit offset field used in 
branch address computation

Datapath

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

1 M
u
x

0

3

2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15–11]

A

B

ALUOut

0

1

Address



5

Datapath with Control Signals

Shift
left2

MemtoReg

IorD MemRead MemWrite

PC

Memory
MemData

Write
data

M
u
x

0

1
Registers

Write
register

Write
data

Read
data1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15–11]

M
u
x

0

1

M
u
x

0

1

4

ALUOpALUSrcB

RegDst RegWrite

Instruction
[15–0]

Instruction[5–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

1 M
u
x

0

3
2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

Shift
left2

PC
M
u
x

0

1
Registers

Write
register

Write
data

Read
data1

Read
data2

Read
register1

Read
register2

Instruction
[15–11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15–0]

Sign
extend

3216

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD
MemRead
MemWrite
MemtoReg

PCWriteCond
PCWrite

IRWrite

ALUOp

ALUSrcB
ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5–0]

Instruction
[31-26]

Instruction[5–0]

M
u
x

0

2

Jump
address[31-0]Instruction[25–0] 26 28

Shift
left2

PC[31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address



6

Microprogramming

What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogramcounter

Addressselect logic

O
p[

5 –
0 ]

Adder

1

Datapath

Instructionregister
opcode field

BWrite

• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions

• Will two implementations of the same architecture have the same 
microcode?

• What would a microassembler do?

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW 2 Read ALU Seq

Write MDR Fetch
SW 2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch



7

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

• No encoding:
– 1 bit for each datapath operation

– faster, requires more memory (logic)

– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
– send the microinstructions through logic to get control signals

– uses less memory, slower

• Historical context of CISC:
– Too much logic to put on a single chip with everything else

– Use a ROM (or even RAM) to hold the microcode

– It’s easy to add new instructions

Maximally vs. Minimally 
Encoded



8

Microcode:  Trade-offs
• Distinction between specification and implementation is sometimes blurred

• Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

• Implementation Disadvantages,  SLOWER now  that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes

Summary

• Can reduce the length of time some classes of 
instructions take to execute by moving to a multi-
cycle implementation.

• CPI for multi-cycle implementation will be > 1
• But: goal is to maximise the number of 

instructions executed per clock cycle
• Next week:

– Pipelining
– Hazards


