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Datapath III --
Microprogramming

Example

• Which of the following implementations would be faster and by how 
much
– Implementation which uses a fixed length clock cycle
– Implementation where clock cycle length determined by instruction

• Assume:
– Memory units have 2ns delay
– ALU and adders have 2ns delay
– Register file has 1ns delay
– All other units have 0 delay

• Assume following instruction mix:
– 24% loads
– 12% stores
– 44% R-Type
– 18% branches
– 2% Jumps 
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Example

• Timing results
– Loads: 8ns
– Stores: 7ns
– R-type: 6ns
– Branch: 5ns
– Jump: 2ns

• (8 x 24%) + (7 x 12%) + (6 x 44%) + (5 x 
18%) + (2 x 2%) = 6.3ns

• 8/6.3 = 1.27 times faster

MultiCycle Implementation

• Instruction execution can be broken into the 
following steps
– Instruction Fetch
– Instruction Decode
– Operand Fetch
– Execute
– Store Results

• Also allows sharing of components
– single memory for data and instructions
– Single ALU

• Extra registers required to store results between 
stages
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High Level Datapath
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Additional Registers

• Determined by:
– What combination units can fit in a clock cycle
– What data is required in later clock cycles

• Assume at most one of the following can be accommodated by a 
single clock cycle:
– A memory access
– A register file access (two reads or one write)
– An ALU operation

• Require the following additional registers
– IR
– MDR
– A and B registers
– ALUout register

• All new regs except IR only have to hold values from one clock cycle 
to next so do not require write control signal
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Combining ALUs

• Merging all ALUs and adders into a single 
datapath requires two main changes:
– An additional multiplexer on the A input to the ALU, 

selects:
• PC
• A register

– Extend multiplexer on second input
• The constant 4 for incrementing PC

• The sign extended and shifted 16-bit offset field used in 
branch address computation

Datapath
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Datapath with Control Signals
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Microprogramming

What are the “microinstructions” ?
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• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions

• Will two implementations of the same architecture have the same 
microcode?

• What would a microassembler do?

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW 2 Read ALU Seq

Write MDR Fetch
SW 2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch
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Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

• No encoding:
– 1 bit for each datapath operation

– faster, requires more memory (logic)

– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
– send the microinstructions through logic to get control signals

– uses less memory, slower

• Historical context of CISC:
– Too much logic to put on a single chip with everything else

– Use a ROM (or even RAM) to hold the microcode

– It’s easy to add new instructions

Maximally vs. Minimally 
Encoded
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Microcode:  Trade-offs
• Distinction between specification and implementation is sometimes blurred

• Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

• Implementation Disadvantages,  SLOWER now  that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes

Summary

• Can reduce the length of time some classes of 
instructions take to execute by moving to a multi-
cycle implementation.

• CPI for multi-cycle implementation will be > 1
• But: goal is to maximise the number of 

instructions executed per clock cycle
• Next week:

– Pipelining
– Hazards


