
1

Branch Hazards

Branch Hazards
� In our pipeline decision about whether a

branch instruction should branch or not is not
made to Mem stage

� Know as a control hazard
� Stalling while resolving a control hazard very

inefficient
� Can predict:

� branch not taken
� outcome of branch dynamically

� Also look at ways to reduce the delay of
branches

Branch Hazards

R e g

R e g

C C 1

T im e (in c lo c k c y c le s)

4 0 b e q $ 1 , $ 3 , 7

P r o g r a m

e x e c u t io n

o r d e r

(in in s t r u c t io n s)

IM R e g

IM D M

IM D M

IM D M

D M

D M R e g

R e g R e g

R e g

R e g

R e gI M

4 4 a n d $ 1 2 , $ 2 , $ 5

4 8 o r $ 1 3 , $ 6 , $ 2

5 2 a d d $ 1 4 , $ 2 , $ 2

7 2 lw $ 4 , 5 0 ($ 7)

C C 2 C C 3 C C 4 C C 5 C C 6 C C 7 C C 8 C C 9

R e g

Branch not taken

� Assume branch not taken and continue
to fetch instructions until control
dependence determined
� if branch taken then no penalty
� if branch taken must discard instructions

after branch in pipeline
� if right 50% of time then cost of control

hazards halved

Reducing the Delay of Branches

� can reduce cost of mis-predicted branches by
moving them earlier in pipeline
� currently on mem stage

� Many MIPS implementations move it to decode
stage

� Have to:
� move the branch address calculation to the ID stage

� Make the branch decision in the same stage

Reducing Delay of Branches

PC Instruction
memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

2

Dynamic Branch Prediction
� Look at branch history to determine whether

a branch should be taken
� One approach is to use a branch prediction

buffer:
� a small memory indexed by the LSBs of the

address,
� each location contains a bit that determines

whether the branch was taken last time or not
� This scheme is likely to mis-predict twice in a row

when a branch that is almost always taken is not
taken

Two-bit prediction schemes

� A prediction must be wrong twice before
it is changed

T a k e n

T a k e n

T a k e n

T a k e n

N o t t a k e n

N o t t a k e n

N o t t a k e n

N o t t a k e n

P r e d i c t t a k e n P r e d ic t t a k e n

P r e d ic t n o t t a k e n P r e d ic t n o t t a k e n

Superscalar and Dynamic
Pipelining
� Three main approaches to making processor go even

faster:
� Super-pipelining – break pipelines into more stages so CCT

can be decreased
� e.g. Alpha pipeline with nine stages

� Superscalar – replicate internal components so that can
launch multiple instructions per clock cycle

� Dynamic Pipelining – Hardware schedules instructions so as
to avoid having to stall the pipeline

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

Superscalar MIPS

� Assume 2 instructions can be issued per clock
� one integer or branch

� one load or store

� Assume instruction pairs are aligned on 64-bit
boundary

Superscalar MIPS

WBMEMEXIDIFmem

WBMEMEXIDIFALU or Bra

WBMEMEXIDIFmem

WBMEMEXIDIFALU or Bra

WBMEMEXIDIFmem

WBMEMEXIDIFALU or Bra

WBMEMEXIDIFmem

WBMEMEXIDIFALU or Bra

Pipeline stagesinstruct type

Superscalar MIPS

PC Instruction
memory

4

Registers
M
u
x

M
u
x

ALU

M
u
x

Data
memory

M
u
x

40000040

Sign
extend Sign

extend

ALU Address

Write
data

3

Commit
unit

Instruction fetch
and decode unit

…

In-order issue

In-order commit

Load/
Store

Floating
point

IntegerInteger …Functional
units

Out-of-order execute

Reservation
station

Reservation
station

Reservation
station

Reservation
station

