
1

Branch Hazards

Branch Hazards
� In our pipeline decision about whether a 

branch instruction should branch or not is not 
made to Mem stage

� Know as a control hazard
� Stalling while resolving a control hazard very 

inefficient  
� Can predict:

� branch not taken
� outcome of branch dynamically

� Also look at ways to reduce the delay of 
branches
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Branch not taken

� Assume branch not taken and continue 
to fetch instructions until control 
dependence determined
� if branch taken then no penalty 
� if branch taken must discard instructions 

after branch in pipeline
� if right 50% of time then cost of control 

hazards halved

Reducing the Delay of Branches

� can reduce cost of mis-predicted branches by 
moving them earlier in pipeline
� currently on mem stage

� Many MIPS implementations move it to decode 
stage

� Have to:
� move the branch address calculation to the ID stage

� Make the branch decision in the same stage

Reducing Delay of Branches
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Dynamic Branch Prediction
� Look at branch history to determine whether 

a branch should be taken
� One approach is to use a branch prediction 

buffer:
� a small memory indexed by the LSBs of the 

address, 
� each location contains a bit that determines 

whether the branch was taken last time or not
� This scheme is likely to mis-predict twice in a row 

when a branch that is almost always taken is not 
taken

Two-bit prediction schemes

� A prediction must be wrong twice before 
it is changed
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Superscalar and Dynamic 
Pipelining
� Three main approaches to making processor go even 

faster:
� Super-pipelining – break pipelines into more stages so CCT 

can be decreased
� e.g. Alpha pipeline with nine stages

� Superscalar – replicate internal components so that can 
launch multiple instructions per clock cycle

� Dynamic Pipelining – Hardware schedules instructions so as 
to avoid having to stall the pipeline

lw   $t0, 20($s2)
addu $t1, $t0, $t2
sub  $s4, $s4, $t3
slti $t5, $s4, 20

Superscalar MIPS

� Assume 2 instructions can be issued per clock
� one integer or branch

� one load or store

� Assume instruction pairs are aligned on 64-bit 
boundary

Superscalar MIPS
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Pipeline stagesinstruct type

Superscalar MIPS

PC Instruction
memory

4

Registers
M
u
x

M
u
x

ALU

M
u
x

Data
memory

M
u
x

40000040

Sign
extend Sign

extend

ALU Address

Write
data



3

Commit
unit

Instruction fetch
and decode unit

…

In-order issue

In-order commit

Load/
Store

Floating
point

IntegerInteger …Functional
units

Out-of-order execute

Reservation
station

Reservation
station

Reservation
station

Reservation
station


