
1

Some Other Instruction Set
Architectures

Overview

• Alpha
• SPARC
• ARM
• i386

Alpha

• Processor architecture designed by Digital
Equipment Corporation (DEC)
– Purchased by Compaq
– Purchased by HP

• The alpha is a 64-bit RISC processor
similar to MIPS

• The alpha is also dead �
• The alpha processor handbook is a superb

piece of documentation

Alpha

• “Alpha AXP is a 64-bit load/store RISC
architecture that is designed with particular
emphasis on the three elements that most
affect performance: clock speed, multiple
instruction issue, and multiple processors.”

• The first implementation issues 2
instructions per cycle.

Alpha

• 32 Integer registers, all 64 bits wide.
• 32 floating point registers, all 64 bits wide
• 2 Lock registers
• Processor cycle counter register

Alpha

• 32 bit instruction words

31 26 25 21 20 16 15 0

opcode ra rb Memory_disp

Memory Format

31 26 25 21 20 0

opcode ra Branch_disp

Branch Format

2

Alpha

• 32 bit instruction words

31 26 25 21 20 16 15 0

opcode ra rb

opcode ra

Operate Format

rcSBZ 0 Function

rcFunction1LIT

13 12 11 5 4

31 26 25 21 20 013 12 11 5 4

Alpha

• Alpha assembly convention has
destination register last
– add $t0, 4, $t1 # $t1 = $t0 + 4

Alpha

• Jump instruction uses a memory format
encoding
– Destination specified in Rb
– Displacement field used to hint where the

jump encoded in Rb will go, allowing early I-
cache fill

Alpha

• s4add,s8add, s4sub, s8sub
– Scaled addition/subtraction by 4 and 8

respectively
– How would you do this in MIPS?

Alpha

• Conditional move integer (CMOVxx)
– cmoveq $t0, 4, $t1 # $t1 = 4 if $t0 eq 0
– cmovge $t0, $t1, $t2 # $t2 = $t1 if $t0 ge 0
– How would you do this in MIPS?

• $t1 = MAX($t1, $t2)
– cmplt $t1, $t2, $t3
– cmovne $t3, $t2, $t1

• What is nice from an architecture point of
view about the cmov instructions?

Alpha

• No divide instruction
– Compiler must provide divide routines

• All memory accesses must be on a 64-bit
word aligned boundary
– Tedious when all you want is a single byte.
– BWX extensions added in a later revision

3

SPARC

• Designed at the same time as the MIPS
– MIPS was a Stanford project

• SPARC descended from the RISC project
at Berkeley
– Scalable Processor ARChitecture
– was more successful than the MIPS project.
– MIPS (and other processors like it) are known

as RISC processors.

SPARC

• Concept of register windows
– processor has up to 128 registers

• 32 are visible at any one time

• 8 global

– 8 local to current procedure
• Store temporary variables, intermediate working

– 16 shared with adjacent procedures
• Used to pass parameters and return values

between functions

SPARC

GP F1 - F2 F2 – F3F2, local

Function 2, 24 registers

GP F2 – F3 F3 – F4F3, local

Function 3, 24 registers

Global

Global

SPARC

• Register Windows
– alternative to going through tedious procedure

entry / exit sequences where registers are
saved to a stack

– MIPS designers leave precise register usage
up to compilers

ARM

• Every instruction is executed conditionally
– COND_AL: always
– Remainder of conditions are arithmetic in

nature

31 28

cond

ARM

• Register operands for data instructions
can be shifted any of four ways, with shift
amount specified in register or immediate
– Logical shift left
– Logical shift right
– Arithmetic shift right
– Rotate right

4

ARM

• Thumb
– Separate processor mode
– Useful for making compact code
– Instructions are 16 bits wide, operate on 32-bit values
– Condition field present in only a few instructions
– Reduced range for unconditional branches (2KB)
– Reduced range for conditional branches (256 bytes)

• Jazelle
– Proprietary mode for processor to accelerate java

byte code
– Useful in cell phones
– Documentation for Jazelle not publically available

Intel i386

• registers are not general purpose
– instructions expect their operands in specific

registers

• destination can be either a memory
location or a register

• complex instruction formats
– somewhat restrictive too
– in arithmetic instructions, the destination has

to match one of the sources.

Intel i386

• CPU does not require aligned access
– instruction length varies, 1 – 17 bytes.

• 80386 can access byte, 16-bit, and 32-bit
parameters
– most operations provide two parameter length

modes
– choice between 16bit and 32bit made with bit

in code segment register.

Summary

• Choice of instruction set up to designer
– More than one way to design RISC-like

processor

• Has tradeoffs in terms of
– Simplicity
– Number of instructions required to execute

common sequences of code
– Ease of ISA implementation optimisation

