Some Other Instruction Set
Architectures

Overview

* Alpha
* SPARC
* ARM

* 386

Alpha

Processor architecture designed by Digital
Equipment Corporation (DEC)

— Purchased by Compaq

— Purchased by HP

The alpha is a 64-bit RISC processor
similar to MIPS

The alpha is also dead ®

The alpha processor handbook is a superb
piece of documentation

Alpha

» “Alpha AXP is a 64-bit load/store RISC
architecture that is designed with particular
emphasis on the three elements that most
affect performance: clock speed, multiple
instruction issue, and multiple processors.”

 The first implementation issues 2
instructions per cycle.

Alpha

32 Integer registers, all 64 bits wide.

32 floating point registers, all 64 bits wide
2 Lock registers

Processor cycle counter register

Alpha
» 32 bit instruction words
31 26 25 21 20 16 15 0
opcode ra b ‘ Memory_disp ‘

Memory Format

31 26 25 21 20 0

opcode

ra ‘ Branch_disp ‘

Branch Format

Alpha

¢ 32 bit instruction words

31 26 25 21 20 16 15131211 54 0

0

opcode ra rb ISBZ |0| Function

31 26 25 21 20 131211 54

opcode 1

ra ‘ LT

Function

Operate Format

Alpha

 Alpha assembly convention has
destination register last

—add $t0, 4, $t1 #$t1=$t0+4

Alpha

» Jump instruction uses a memory format
encoding
— Destination specified in Rb

— Displacement field used to hint where the

jump encoded in Rb will go, allowing early |-
cache fill

Alpha

* sd4add,s8add, s4sub, s8sub

— Scaled addition/subtraction by 4 and 8
respectively

— How would you do this in MIPS?

Alpha

Conditional move integer (CMOVXxX)
—cmoveq $t0, 4, $t1 #$t1=4if$t0eq0
—cmovge $t0, $t1, $t2 # $t2 =$t1if $t0ge 0
— How would you do this in MIPS?

o $t1 = MAX($t1, $t2)

—cmplt $t1, $t2, $t3

—cmovne $t3, $t2, $t1

» What is nice from an architecture point of
view about the cmov instructions?

Alpha

« No divide instruction
— Compiler must provide divide routines

« All memory accesses must be on a 64-bit
word aligned boundary

— Tedious when all you want is a single byte.
— BWX extensions added in a later revision

SPARC

» Designed at the same time as the MIPS
— MIPS was a Stanford project

* SPARC descended from the RISC project
at Berkeley
— Scalable Processor ARChitecture
—was more successful than the MIPS project.

— MIPS (and other processors like it) are known
as RISC processors.

SPARC

» Concept of register windows

— processor has up to 128 registers

« 32 are visible at any one time

« 8 global
— 8 local to current procedure

« Store temporary variables, intermediate working
— 16 shared with adjacent procedures

« Used to pass parameters and return values
between functions

‘ GP ‘ ‘Fl-FZ‘FZ,IocaI‘FZ—FS‘ &
J e
Global Function 2, 24 registers
‘ GP ‘ ‘FZ—F3‘F3,IocaI|F3—F4‘ A\
/\/7
- ~—

Global Function 3, 24 registers

SPARC

» Register Windows

— alternative to going through tedious procedure
entry / exit sequences where registers are
saved to a stack

— MIPS designers leave precise register usage
up to compilers

ARM

 Every instruction is executed conditionally
— COND_AL: always

— Remainder of conditions are arithmetic in
nature

31 28

cond

ARM

 Register operands for data instructions
can be shifted any of four ways, with shift
amount specified in register or immediate
— Logical shift left
— Logical shift right
— Arithmetic shift right
— Rotate right

ARM

¢ Thumb

— Separate processor mode

— Useful for making compact code

— Instructions are 16 bits wide, operate on 32-bit values

— Condition field present in only a few instructions

— Reduced range for unconditional branches (2KB)

— Reduced range for conditional branches (256 bytes)
« Jazelle

— Proprietary mode for processor to accelerate java
byte code

— Useful in cell phones
— Documentation for Jazelle not publically available

Intel i386

* registers are not general purpose

— instructions expect their operands in specific
registers

« destination can be either a memory
location or a register

» complex instruction formats
— somewhat restrictive too

—in arithmetic instructions, the destination has
to match one of the sources.

Intel 1386

» CPU does not require aligned access
— instruction length varies, 1 — 17 bytes.

» 80386 can access byte, 16-bit, and 32-bit
parameters

— most operations provide two parameter length
modes

— choice between 16bit and 32bit made with bit
in code segment register.

Summary

* Choice of instruction set up to designer

— More than one way to design RISC-like
processor

» Has tradeoffs in terms of
— Simplicity
— Number of instructions required to execute
common sequences of code
— Ease of ISA implementation optimisation

