Caches

Multiprocessor systems

Chapter 7 P&H
Chapter 9 P&H (CD-ROM)

Introduction

* Desire is to have unlimited amounts of fast
memory

+ Can exploit locality of reference to appear
to have lots of fast memory

» Two types of locality
— Temporal Locality
— Spatial Locality

Mem Tech access time $/MB (1997)
SRAM 5-25ns $100-$250
DRAM 60-120ns $5-$10

Disk 10-20million ns | $0.10-$0.20
Mem Tech access time $/GB (2004)
SRAM 0.5-5ns $100-$250
DRAM 50-70ns $100-$200
Disk 5-20million ns $0.50-$2

Memory Hierarchy

Speed CPU Size Cost ($/bit)

Fastest Smallest Highest SRAM
Memory DRAM

Slowest Memory Biggest Lowest Disk

* miss penalty time to replace

Memory Hierarchy

» data only copied between two

levels at a time

* minimum unit is called a block
« hit rate is fraction of memory

accesses found in upper level

* miss rate = (1 — hit rate)
 hit time Time to access upper

Processor

I

* How do we know if

Data are transferred

level

block in upper level with
corresponding block from
lower level

Cache Basics

» Caches first appear in early 1960’s
« following cache has single word sized block

- X4 X4
the requested item X x1
i ?
is in the cache? Xn-2 Xn- 2
* Ifitis where is
it? Xn-1 Xn-1
X2 X2
Xn
X3 X3

a. Before the reference to Xn b. After the reference to Xn

Direct Mapped Cache

» cache address = (block address) mod (No. blocks in cache)
Cache

oooooooo

882588¢FF Number of blocks in cache
should be a power of two

M

00001 00101 01001 01101 10001 10101 11001 11101

Memary.

Address (showing bit positions)
3130 ---131211 --210

Tagged Storag

Index

Index Valid Tag Data

20 32

Example #1

» How many bits in total are required for a direct
mapped cache with 64 KB of Data and one word
blocks, assuming a 32 bit address?

Example #1

* 64KB = 16K words
+ 16K = 16384 = 214 words
* One word per block = 24 blocks
» Tag size: 32 -14 -2 = 16 bits
— (word alignment means last 2 bits are implicit)
o 214 x (32 + 16 + 1) = 784 Kbits

« 784 Kbits = 98KB for 64KB cache
- 1.58

Example #2

» How many bits in total are required for a direct
mapped cache with 64 KB of Data and four word
blocks, assuming a 32 bit address?

Example #2

* 64KB = 16K words
+ 16K = 16384 = 2'4 words
» Four words per block = 2'2 blocks
» Tag size: 32 -12 -2 =18 bits
— (word alignment means last 2 bits are implicit)
e 212x (128 + 18 + 1) = 588 Kbits

« 588 Kbits = 73.5KB for 64KB cache
-1.14

Handling Misses

» No Modifications required to our pipelined data-path to
handle hits

» On a miss a basic approach is to stall the entire data-
path until the value is fetched

» Separate controller used for the caches

Example — Miss on Instruction Cache

| Send PC - 4 to Memory |

l

| Wait for main memory to return result of read |

|

‘Write cache entry:
- write data into data portion of cache
- Write Tag Field
turn valid bit on

|

Restart instruction execution at the first step
- should now be found in cache

Multiprocessors

» Make faster computers by adding multiple
CPUs per computer

+ Hard to build software to use added
resources as multiple places it can go
wrong
— Poor operating system support
— Poor application design

Multiprocessors

* 1990s:
— motherboards came with a separate socket
for each CPU
+ 2004 onwards:
— CPUs come with multiple cores built in
— motherboards may come with additional CPU
sockets

Multiprocessors

+ To benefit, applications must be written to
be multi-threaded
— Have multiple points of simultaneous
execution
— Each using the same process address space

Single Processor system

Processor

Cache

II

Single bus

Multiprocessor system

Processor

‘ Processor ‘ Processor

!]

‘ Cache ‘ ‘ Cache ‘ Cache

! !

Single bus

II

Multiprocessor systems

+ Caches reduce contention for the system
bus by replicating data
— Multiple CPUs using a read-only copies of
data not a problem
» Challenge: keep data in cache coherent
amongst processors when data is written
to
— Could force all reads to go to memory, but
* Require method to indicate data is shared
» Going to memory is slow

Cache coherence

Processor Processor

Snoop || Cache tag Snoop || Cache tag
tag and data tag and data

I

Single bus

Memory l{e}

I

Cache coherence

» Snooping:
— Processors connected using single bus
— Snoop other CPUs accesses to main memory
— Check address being read or written

» When snooping on a write, if in cache, can:

— Invalidate cache block. When value in memory
location next needed value will be read from memory

— Update cache block with new value

Synchronisation

» Write-invalidate does not prevent multiple
processors working on some item of data
— each believing they have the up-to-date

version of it

» To provide synchronisation, processors
have to provide some atomic operation

+ Applications build locking structures with
this CPU support

Thread #2 Multiple threads deal with shared
stack variables stored in the heap
Thread #1 .
stack e.g. some list
Thread #0 Operating system runs multiple
threads simultaneously.
<list> Threads will be put to sleep if CPU
is busy.
Shared Unable to predict how CPU will
variables schedule your threads to execute.

heap

Example

struct list_node {
void *item;
struct list_node *next;

|3
struct list {
struct list_node *head;
struct list_node *tail;
b

Append list_node items to tail to record items in the list:
list->tail->next = node;
list->tail = node;

Example

Thread #1 Thread #2

$t1 = list->tail;

CPU halts execution of thread

$t4 = list->tail;

$t4->next = $node
list->tail = $node;
CPU resumes execution of thread
$t1->next = $node
list->tail = $node;

Node appended to list by thread #2

now lost

Lack of synchronisation between threads
as to how list should be accessed

Java

/* wait (block) until list can be locked */
synchronized(list) {
/* use list variable */

C / pthreads

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_trylock

MIPS atomic operation

» MIPS uses Load Linked / Store Conditional
» Load Linked (LL)
— 11 $rt, offset($rs)
— Special type of load word.
— Processor remembers the memory address loaded.
— Can only remember one address per processor

— Processor monitors writes over shared bus to that
address

» Store conditional (SC)

MIPS atomic operation

* Load linked

— I $rt, offset($rs)

 Store Conditional

—sc $rt offset($rs)

— Special type of store word.

— Write occurs only if the value in memory has
not been updated since Il was executed

— If the value has been updated, $rt is set to
zero

MIPS atomic operation LL/SC

L1: « MIPS (Il and above)
LL T1,(TO) # load counter « ARM (V6 and above)
ADDI T2,T1,1 #increment
SC T2, (TO) # store counter conditionally * Alpha
BEQ T2,0,L1 #if unsuccessful (0), try again * PowerPC
NOP # branch delay

* Intel: compare and swap

— Implemented atomically, fairly similar to
LL/SC

MIPS IV instruction set, rev 3.2, page 136.

