
1

Caches
Multiprocessor systems

Chapter 7 P&H
Chapter 9 P&H (CD-ROM)

Introduction

• Desire is to have unlimited amounts of fast
memory

• Can exploit locality of reference to appear
to have lots of fast memory

• Two types of locality
– Temporal Locality
– Spatial Locality

$0.10-$0.2010-20million nsDisk

$5-$1060-120nsDRAM

$100-$2505-25nsSRAM

$/MB (1997)access timeMem Tech

$0.50-$25-20million nsDisk

$100-$20050-70nsDRAM

$100-$2500.5-5nsSRAM

$/GB (2004)access timeMem Tech

Memory Hierarchy

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory

SRAM

DRAM

Disk

Memory Hierarchy

• data only copied between two
levels at a time

• minimum unit is called a block
• hit rate is fraction of memory

accesses found in upper level
• miss rate = (1 – hit rate)
• hit time Time to access upper

level
• miss penalty time to replace

block in upper level with
corresponding block from
lower level

Processor

Data are transferred

Cache Basics

• Caches first appear in early 1960’s
• following cache has single word sized block
• How do we know if

the requested item
is in the cache?

• If it is where is
it?

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

2

Direct Mapped Cache

• cache address = (block address) mod (No. blocks in cache)

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1 Number of blocks in cache

should be a power of two

Tagged Storage
Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Example #1

• How many bits in total are required for a direct
mapped cache with 64 KB of Data and one word
blocks, assuming a 32 bit address?

Example #1

• 64KB = 16K words
• 16K = 16384 = 214 words
• One word per block = 214 blocks
• Tag size: 32 – 14 – 2 = 16 bits

– (word alignment means last 2 bits are implicit)

• 214 x (32 + 16 + 1) = 784 Kbits

• 784 Kbits = 98KB for 64KB cache
– 1.53

Example #2

• How many bits in total are required for a direct
mapped cache with 64 KB of Data and four word
blocks, assuming a 32 bit address?

Example #2

• 64KB = 16K words
• 16K = 16384 = 214 words
• Four words per block = 212 blocks
• Tag size: 32 – 12 – 2 = 18 bits

– (word alignment means last 2 bits are implicit)

• 212 x (128 + 18 + 1) = 588 Kbits

• 588 Kbits = 73.5KB for 64KB cache
– 1.14

3

Handling Misses

• No Modifications required to our pipelined data-path to
handle hits

• On a miss a basic approach is to stall the entire data-
path until the value is fetched

• Separate controller used for the caches

Example – Miss on Instruction Cache
Send PC - 4 to Memory

Wait for main memory to return result of read

Write cache entry:
- write data into data portion of cache

- Write Tag Field
turn valid bit on

Restart instruction execution at the first step
- should now be found in cache

Multiprocessors

• Make faster computers by adding multiple
CPUs per computer

• Hard to build software to use added
resources as multiple places it can go
wrong
– Poor operating system support
– Poor application design

Multiprocessors

• 1990s:
– motherboards came with a separate socket

for each CPU

• 2004 onwards:
– CPUs come with multiple cores built in
– motherboards may come with additional CPU

sockets

Multiprocessors

• To benefit, applications must be written to
be multi-threaded
– Have multiple points of simultaneous

execution
– Each using the same process address space

Single Processor system

Memory I/O

Single bus

Cache

Processor

4

Multiprocessor system

Memory I/O

Single bus

Cache

Processor

Cache

Processor

Cache

Processor

…

…

Multiprocessor systems

• Caches reduce contention for the system
bus by replicating data
– Multiple CPUs using a read-only copies of

data not a problem
• Challenge: keep data in cache coherent

amongst processors when data is written
to
– Could force all reads to go to memory, but

• Require method to indicate data is shared
• Going to memory is slow

Cache coherence

Memory I/O

Single bus

Cache tag
and data

Processor

…

…

Snoop
tag

Cache tag
and data

Processor

Snoop
tag

Cache coherence

• Snooping:
– Processors connected using single bus
– Snoop other CPUs accesses to main memory
– Check address being read or written

• When snooping on a write, if in cache, can:
– Invalidate cache block. When value in memory

location next needed value will be read from memory
– Update cache block with new value

Synchronisation

• Write-invalidate does not prevent multiple
processors working on some item of data
– each believing they have the up-to-date

version of it

• To provide synchronisation, processors
have to provide some atomic operation

• Applications build locking structures with
this CPU support

heap

Shared
variables

Thread #0
stack

Thread #1
stack

Thread #2
stack

<list>

Multiple threads deal with shared
variables stored in the heap

e.g. some list

Operating system runs multiple
threads simultaneously.

Threads will be put to sleep if CPU
is busy.

Unable to predict how CPU will
schedule your threads to execute.

5

Example
struct list_node {

void *item;
struct list_node *next;

};
struct list {

struct list_node *head;
struct list_node *tail;

};

Append list_node items to tail to record items in the list:
list->tail->next = node;
list->tail = node;

Example
Thread #1 Thread #2

$t1 = list->tail;

CPU halts execution of thread
$t4 = list->tail;
$t4->next = $node
list->tail = $node;

$t1->next = $node
list->tail = $node;

CPU resumes execution of thread

Node appended to list by thread #2
now lost
Lack of synchronisation between threads
as to how list should be accessed

Java

/* wait (block) until list can be locked */
synchronized(list) {

/* use list variable */
}

C / pthreads

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_trylock

MIPS atomic operation

• MIPS uses Load Linked / Store Conditional
• Load Linked (LL)

– ll $rt, offset($rs)
– Special type of load word.
– Processor remembers the memory address loaded.
– Can only remember one address per processor
– Processor monitors writes over shared bus to that

address

• Store conditional (SC)

MIPS atomic operation

• Load linked
– ll $rt, offset($rs)

• Store Conditional
– sc $rt offset($rs)
– Special type of store word.
– Write occurs only if the value in memory has

not been updated since ll was executed
– If the value has been updated, $rt is set to

zero

6

MIPS atomic operation

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # store counter conditionally
BEQ T2, 0, L1 # if unsuccessful (0), try again
NOP # branch delay

MIPS IV instruction set, rev 3.2, page 136.

LL/SC

• MIPS (II and above)
• ARM (v6 and above)
• Alpha
• PowerPC

• Intel: compare and swap
– Implemented atomically, fairly similar to

LL/SC

