
1

Caches II

Chapter 7

Example Cache – DecStation
3100

• Released 1989
• Used a MIPS R2000
• separate Instruction and

Data caches
– single word block size

– each cache 16K words

Address (showing bit positions)

16 14 Byte�
offset

Valid Tag Data

Hit Data

16 32

16K�
entries

16 bits 32 bits

31 30 17 16 15 5 4 3 2 1 0

DecStation 3100 cache

• Steps for Read:
– send address to appropriate cache

– If a hit then return value on data-lines

– If a miss then get value from main memory then put in
cache – re-perform original read

• For writes have to ensure cache and main
memory remain consistent:
– simplest approach is to write data to both main

memory and cache

DecStation 3100 cache

• Writes on the 3100
– Index cache using bits 15-2 of the address
– Write bits 31-16 of address to the tag field, write data

& update valid field
– Also write word to main memory

• CPI on 3100 is about 1.2 without cache misses
• adding 10 cycles for every write operation

changes this to:
• 1.2 + 10*13% = 2.5

Write Buffer

• One solution is to use a write buffer (e.g. 3100
caches can buffer up to 4 words)

• Assumes that writes occur at a slower rate than
the values can be written to memory

• Can overflows still occur?
• What should happen if an overflow is going to

occur?

2

Taking advantage of Spatial
Locality

• Need a block size bigger than a word
• When a miss (read or write) occurs then

need to fetch the whole block

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 32

4K�
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Multiword block size

• Reads are dealt with as before
• With writes not possible to just write tag and

data

• For a write miss then have to fetch replacement
block from memory and re-perform write

1055

Tag

2033 Data

Miss rate verses Block Size

1 K B�

8 K B�

1 6 K B�

6 4 K B�

2 5 6 K B

25 6

4 0%

3 5%

3 0%

2 5%

2 0%

1 5%

1 0%

5 %

0 %

M
is

s
ra

te

6 41 64

B loc k s iz e (b y te s)

Designing Memory to Support
Caches

CPU

Cache

Bus

Memory

a. One-word-wide�
 memory organization�
�

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory�
bank 1

Memory�
bank 2

Memory�
bank 3

Memory�
bank 0

c. Interleaved memory organization

Reducing Cache misses by more
flexible placement of blocks

• Fully associative caches allow blocks to be
placed anywhere in the cache
– Have to search every tag field for every memory

access

• Set associative cache allows blocks to be placed
in a fixed number of locations in the cache
– an n-way set associative cache allows a block to be

placed in one of n locations in the cache

3

1�

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1�

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1�

2
Tag

Data

Search

Fully associative

• All caches can be considered as being set
associative

• Increasing associatively tends to decrease
the miss rate

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative�
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

Address

22 8

V TagIndex

0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Summary

• Store more than one word per block for spatial
locality
– Adds complexity to write-miss

• Provide more than one location to store a block
in a cache to reduce miss rate
– Associative caches

– Need mechanism to determine which block to replace

– Rate of return of additional associativity reduces fairly
quickly compared with additional complexity in
implementation

