

Performance

●Tony McGregor
●G.1.05
●tonym@cs.waikato.ac.nz

mailto:tonym@cs.waikato.ac.nz

Introduction

 How does one measure, report and
summarise performance?

 Complexity of modern systems make it more
difficult to access performance

 See through marketing hype
 Need to understand performance at multiple

levels
 Understand why a program performs poorly on a

particular processor

c.f. Commercial Airplanes

Airplane Passengers Range (mi) Speed (mph) Throughput

Boeing 737-100 101 630 598 60,398
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

 Which of the following planes has the best
performance?

 Can also define computer performance in several ways

Performance

 Purchasing perspective
 given a collection of machines, which has the

 least cost ?
 best performance ?
 best performance / cost ?

 Design perspective
 faced with design options, which has the

 least cost ?
 best performance improvement ?
 best performance / cost ?

 Both require
 basis for comparison
 metric for evaluation

 Our goal is to understand cost & performance implications of
architectural choices

Two notions of “performance”

° Time to do the task (Execution Time)

– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)

– throughput, bandwidth

 Response time and throughput are sometimes in opposition

Plane

Boeing 747

BAD/Sud
Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Which has higher performance?

Definitions

 Performance is in units of things-per-second
 bigger is better

 If we are primarily concerned with response time
 performance(x) = 1

 execution_time(x)

" X is n times as fast than Y" means
 Performance(X)

 n = ---------------------
 Performance(Y)

Example

• Time of Concorde vs. Boeing 747?

• Concord is 1350 mph / 610 mph = 2.2 times as fast

 = 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?

• Concord is 178,200 pmph / 286,700 pmph = 0.63 times as fast

• Boeing is 286,700 pmph / 178,200 pmph = 1.6 times as fast

• Boeing is 1.6 times (“63%”) faster in terms of throughput

• Concord is 2.2 times (“120%”) faster in terms of flying time

We will focus primarily on execution time for a single job

CPU Statistics
 Clock speed

 CPI
 multi-core

 MIPS
 instruction complexity
 word size
 pipeline effects

 FLOPS
 multiple FPUs
 other types of workload

Basis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Micro benchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or

measure
• hard to identify cause• portable

• widely used
• improvements
useful in reality

• easy to run

• identify peak
capability and
potential bottlenecks

• less representative

• easy to “fool”

• effect of cache

• “peak” may be a long
way from application
performance

Benchmark Problems

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

S
P
E
C

 p
e
rf
o
rm

an
ce

 r
a
tio

SPEC95

 Eighteen application benchmarks (with inputs)
reflecting a technical computing workload

 Eight integer
 go, m88ksim, gcc, compress, li, ijpeg, perl, vortex

 Ten floating-point intensive
 tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi,

fppp, wave5
 Must run with standard compiler flags

 eliminate special undocumented incantations that may not
even generate working code for real programs

Measuring Performance

 Execution Time can be measured in several ways:
 Elapsed Time

 counts everything (disk and memory accesses, I/O , etc.)
 a useful number, but often not good for comparison purposes

 CPU time
 doesn't count I/O or time spent running other programs
 can be broken up into system time, and user time

 Our focus: user CPU time
 time spent executing the lines of code that are "in" our

program

Measuring Performance

 On Linux can use time command
 E.g.

> time tar cvzf pam2001.tgz pam2001
real 0m19.348s
user 0m0.930s
sys 0m0.660s

> time tar cvzf pam2001.tgz pam2001
real 0m1.482s
user 0m0.950s
sys 0m0.230s

Summary

 Bottom line performance measure is time
 PerformanceA = 1/Execution TimeA

 Comparing Performance
 N = PerformanceA / PerformanceB

Example

 If a machine A runs a program in 25 seconds and
machine B runs the same program in 20
seconds, how much faster is machine B that
machine A?

Relating Metrics

 Instead of reporting execution time in seconds, we often use cycles

 So, to improve performance (everything else being equal) you can
either

________ the number of cycles required for a program, or
________ the clock cycle time or, said another way,
________ the clock rate.

Example

 Our favourite program runs in 10 seconds on computer A,
which has a 1200 Mhz clock. We want to buy a new
machine B, that will run this program in 6 seconds. A
new machine we are considering has newer (or perhaps
more expensive) technology that substantially increases
the clock rate, the changes needed to support this clock
rate mean that the new machine uses 1.2 times as many
clock cycles as machine A for the same program. What
clock rate do we need to get our speedup?"

Amdahl's Law

Execution Time After Improvement =

Execution Time Unaffected + (Execution Time Affected / Amount of
Improvement)

 Example:

"Suppose a program runs in 100 seconds on a machine, with multiply
responsible for 80 seconds of this time. How much do we have to
improve the speed of multiplication if we want the program to run 4
times faster?"

How about making it 5 times faster?

 Principle: Make the common case fast

Amdahl's Law

 More conventianally, Amdahl's law relates to
parallel computers:
maxspeedup =

where:
 P = proportion of problem parallelised
 N = number of processors

E.G.

 90% paralleised and 10 processors
max speedup = 1((1-.9)+.9/10) = 0.19

 90% paralleised and 1000 processors = 0.1009

1/1−PP /N 

Amdahl's Law

Used underthe Creative Commons Attribution-ShareAlike 3.0 License

http://en.wikipedia.org/wiki/Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/

Amdahl's Law

 More generally for a set of problem
components:

 Speedup = P1/S1 + P2/S2 ... Pn/Sn
where:

 P1 = porprtion of problem of first component
 S1 = speedup of first component
 P1 + P2 +... + Pn = 1

Amdahl's Law -examples

 Suppose we enhance are compairing two machines with the same
specs except that one claims to have floating-point instructions that
run five times faster. If the execution time of a benchmark on the
slower machine takes 10 seconds with half of that time taken by
floating point instructions how long should the benchmark take on the
faster machine?

 The supplier of the fater machine above is looking for a benchmark
to show off the new floating-point unit and wants the overall
benchmark to show a speedup of 3 times. What proportion of a
benchmark must be floating-point instructions to show this speedup?

Remember

 Performance is specific to a workload
 Total execution time is a consistent summary of performance

 For a given architecture performance increases come from:
 increases in clock rate (without adverse CPI affects)
 improvements in processor organization that lower CPI
 compiler enhancements that lower CPI and/or instruction count
 Increases in the bus width

 Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

Evaluating Performance

 Real workloads good but often not possible
 Mostly use benchmarks

 Real applications best
 SPEC benchmarks – CPU92, CPU95, CPU2000
 SPECweb99

 Guiding principle to reporting performance is
“reproducibility”

 i.e. detailing:
 CPU details
 Software (e.g. compiler version etc)

An Asside

 On linux processor information is available
in the pseudo file: /proc/cpuifo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

