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Introduction
 Desire is to have unlimited amounts of 

fast memory
 Too expensive
 Can exploit locality of reference to 

appear to have lots of fast memory
 Two types of locality

− Spatial Locality
− Temporal Locality 

 will consider temporal first



Memory Hierarchy 
(very approximate)
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Memory Hierarchy
 minimum unit is called a block
 hit rate is the fraction of 

memory accesses found in 
upper level

 miss rate is (1 – hit rate)
 hit time is the time to access 

upper level
 miss penalty is the time to 

replace block in upper level 
with corresponding block from 
lower level

main memory
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L1

CPU



Cache Basics

 Caches first appear in early 1960’s
 This cache has single word 

sized block
 How do we know if 

the requested item
 is in the cache?

 If it is where is
it?
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Direct Mapped Cache
 cache address = (block address) mod (No blocks in cache)
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Word format
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Cache Size
 The tag structure introduces a memory 

overhead
 How many bits in total are required for a 

cache that is:
− direct mapped cache 
− stores 64 KB of data 
− has one word blocks
− uses 32 bit address?



Separate Caches
 Instructions and data have separate 

localities
 A lot of activity in one set may invalidate 

the usefulness of the other
− very bad if we stall the pipeline for cache 

misses

 Some machines support separate 
instruction and data caches



Handling Misses
 No modifications required to pipelined 

data-path to handle hits
 On a miss a basic approach is to stall 

the entire data-path until the value is 
fetched

 In addition to the CPU micro-controller 
there is a memory-controller



Read Miss 
send PC address to memory 

for a read cycle

wait for memory to return
the result of the read

write the cache entry:
(a) data from memory into data portion

(b) tag bit from address
(c) valid bit true

restart the instruction

 



Write Miss

 The result of a write must (eventually) get to main 
memory

 Simple caches “write-through” to main memory
− On a write, write word to the cache and to main 

memory
− Eases cache coherence on a multiprocessor with 

separate caches for each processor



Write-through performance

 Cache write-through requires a lot more time
 E.G. If we have a CPU with:

− 1.2 CPI when there are no cache misses or writes 
− 13% of memory accesses are writes
− Write operations take and additional 10 cycles per 

write
         

 CPI goes up to:
− 1.2 + 0.13 * 10 = 2.5 



Write Buffer
 One improvement is to use a small write 

buffer (e.g. 4 words)
 Assumes that writes occur at a slower rate 

than the values can be written to memory
 Overflows can occur. 
 What should happen when an overflow 

occurs?



Taking Advantage of Spatial 
Locality 

 Need a block size bigger than a word
 When a miss (read or write) occurs 

then we fetch the whole block
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Multiword block size
 Reads are dealt with as before
 Write hits okay
 With write misses it is not possible to just 

write tag and data
 For a write miss have to fetch replacement 

block from memory and re-perform write

tag

read

write



Miss Rate Verses Block Size
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Performance of multi-block 
cache

Program
gcc 1 6.1% 2.1% 5.4%

4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%

4 0.3% 0.6% 0.4%

Block size in 
words

Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate



Memory Interface

 The memory bus is much slower than 
the CPUs internal clock rate (maybe 10 
times slower)

 DRAM is slower still 
− 1 bus cycle to send address
− 15 bus cycles for the DRAM to read a word 

of data
− 1 bus cycle to send a word of data

 A read miss for a 4 word cache block 
size costs:
    1 + 4*15 + 4*1 = 65 bus cycles
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Wide and Interleaved 
Memory Interface

 For a four word wide memory and bus, a 
read miss on a four word block size 
cache costs:

− 1 + 1*15 + 1*1 = 17 bus cycles

 For a four word banked memory the 
miss cost is:

− 1 + 1*15 + 4*1 = 20 bus cycles



Measuring & Improving 
Cache Performance

 Measurement and analysis of cache 
performance

 Look at two different techniques for 
improving cache performance:

− Adding associatively  to the cache to 
reduce the miss rate

− Use of multi-level caches to reduce the 
miss penalty



Cache miss cost
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Improving Cache Utilisation
 Direct mapping means some blocks are 

evicted from the cache quickly
 A fully associative caches allow blocks to be 

placed anywhere in the cache
− Have to search every tag field for every memory 

access
 Set associative cache allows blocks to be 

placed in a fixed number of locations in the 
cache

− an n-way set associative cache allows a block to 
be placed in one of n locations in the cache
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Associative Cache

 All caches can be considered as being 
set associative

 Increasing associatively tends to 
decrease the miss rate



Associative Caches
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Replacement Strategies
 When the cache is full one or more 

entries need to be removed to allow 
new data to be stored.

 Least Recently Used (LRU) is the most 
common strategy

 Clock Scan is often used as an 
approximation to LRU
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Virtual Memory
 Main memory can act as a cache for 

secondary storage
 Motivation:

− Allow programs to use more memory that there is 
available

 transparent to programmer
 c.f. overlays

− Allow multiple programs concurrently
 non-active part of programs reside in secondary 

storage
 active portions of many programs reside in memory
 active portion of current program in cache



Virtual Memory
 With multiple programs sharing memory 

have to deal with:
− program relocation
− protection

 Give each process its own (virtual) address 
space

 When process accesses memory 
− translate virtual address to physical address



Virtual Memory
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Definitions
 main concepts similar to caches 

however different terminology used
− virtual memory block => page
− virtual memory miss => page fault



Address Translation
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Design Choices
 Page faults : when a page not in memory 

then have to fetch from disk
− can take millions of cycles

 Minimise miss penalty:
− make pages fairly large (4KB to 64KB) 
− reduce page fault rate:

 High levels of associatively



Placing/Finding a page
 Want Full associatively 

− impractical to search all pages in memory
 Use page tables to map virtual addresses to 

physical addresses
 Each program has its own page table
 Page tables reside in memory

− reads/writes to main memory require two 
accesses:

 one to get page table entry
 one to perform data transfer



Page Tables
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Page Tables

 Base address of 
current page table 
held in the page 
table register

 A processes' state is 
defined by its

− PC
− Registers
− Page table
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TLBs
 Accessing the page table slows 

memory accesses
 Use a “Translation Look-aside Buffer”

− cache of page table mappings
 Typical values for a TLB might be:

− TLB size 32 – 4096 entries
− Block Size: 1 – 2 page table entries
− Hit time: 0.5 – 1 clock cycles
− Miss penalty: 10 – 30 clock cycles
− Miss rate: 0.01 – 1%



TLB Operation
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TLB and Cache
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TLB and Cache
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Virtual Memory Protection
 Most CPUs have a supervisor (OS) and user 

mode of operation.
− Change modes on an interrupt

 Page Table Register only accessable in 
supervisor mode

 If a physical page is not pointed to from the 
page table then it can not be accessed

 Some accessable pages may be read only
− write protect bit in the page table or segment 

table
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Segments

 Programs have different types of 
memory

− Program (text)
− Initilised Data (data)
− Uninitilsed Data (bss)
− Stack (stack)

 Have a seperate segment for each
− Different OS characteristics

 Bss allocated but not loaded at process start
− Different protection for each

 Text read only



Segments
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Modern Systems

Very complicated memory systems:
Characteristic Intel Pentium Pro PowerPC 604

Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through
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