
Exploiting the Memory
Hierarchy

Chapter 7 P&H

Introduction
 Desire is to have unlimited amounts of

fast memory
 Too expensive
 Can exploit locality of reference to

appear to have lots of fast memory
 Two types of locality

− Spatial Locality
− Temporal Locality

 will consider temporal first

Memory Hierarchy
(very approximate)

$0.2520 million nsDisk

$3015nsDRAM

$30,0000.5nsSRAM

$/Gbyteaccess timeMem Tech

Memory Hierarchy
 minimum unit is called a block
 hit rate is the fraction of

memory accesses found in
upper level

 miss rate is (1 – hit rate)
 hit time is the time to access

upper level
 miss penalty is the time to

replace block in upper level
with corresponding block from
lower level

main memory

L2

L1

CPU

Cache Basics

 Caches first appear in early 1960’s
 This cache has single word

sized block
 How do we know if

the requested item
 is in the cache?

 If it is where is
it?

CPU

108

116

101

102

Cache

100

104

107

111

115

102

103

105

106

108

109

110

112

113

114

116

101

main
memory

Direct Mapped Cache
 cache address = (block address) mod (No blocks in cache)

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

0
01

0
1

0
01

1
1

00
1

01
1

10
1

1
1

Number of blocks in cache
should be a power of two

Word format

31 11 1 012

page
offset

byte
offsetpage number

Cache With Tags
31 11 1 012

page
offset

byte
offset

3220

20
10

page number

=

data

hit

Valid Tag DataIndex

1
2

1023

Cache Size
 The tag structure introduces a memory

overhead
 How many bits in total are required for a

cache that is:
− direct mapped cache
− stores 64 KB of data
− has one word blocks
− uses 32 bit address?

Separate Caches
 Instructions and data have separate

localities
 A lot of activity in one set may invalidate

the usefulness of the other
− very bad if we stall the pipeline for cache

misses

 Some machines support separate
instruction and data caches

Handling Misses
 No modifications required to pipelined

data-path to handle hits
 On a miss a basic approach is to stall

the entire data-path until the value is
fetched

 In addition to the CPU micro-controller
there is a memory-controller

Read Miss
send PC address to memory

for a read cycle

wait for memory to return
the result of the read

write the cache entry:
(a) data from memory into data portion

(b) tag bit from address
(c) valid bit true

restart the instruction

Write Miss

 The result of a write must (eventually) get to main
memory

 Simple caches “write-through” to main memory
− On a write, write word to the cache and to main

memory
− Eases cache coherence on a multiprocessor with

separate caches for each processor

Write-through performance

 Cache write-through requires a lot more time
 E.G. If we have a CPU with:

− 1.2 CPI when there are no cache misses or writes
− 13% of memory accesses are writes
− Write operations take and additional 10 cycles per

write

 CPI goes up to:
− 1.2 + 0.13 * 10 = 2.5

Write Buffer
 One improvement is to use a small write

buffer (e.g. 4 words)
 Assumes that writes occur at a slower rate

than the values can be written to memory
 Overflows can occur.
 What should happen when an overflow

occurs?

Taking Advantage of Spatial
Locality

 Need a block size bigger than a word
 When a miss (read or write) occurs

then we fetch the whole block

Multi-Word Cache Block
block
offset

mux

3 2

2

page
offset

32 32 3232

offset
byte

page number

=

data

hit

Valid Tag DataIndex

1
2

1023

31 13 014 1

18

10

18

Multiword block size
 Reads are dealt with as before
 Write hits okay
 With write misses it is not possible to just

write tag and data
 For a write miss have to fetch replacement

block from memory and re-perform write

tag

read

write

Miss Rate Verses Block Size

1 KB

�

8 KB

�

16 KB

�

64 KB

�

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Performance of multi-block
cache

Program
gcc 1 6.1% 2.1% 5.4%

4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%

4 0.3% 0.6% 0.4%

Block size in
words

Instruction
miss rate

Data miss
rate

Effective combined
miss rate

Memory Interface

 The memory bus is much slower than
the CPUs internal clock rate (maybe 10
times slower)

 DRAM is slower still
− 1 bus cycle to send address
− 15 bus cycles for the DRAM to read a word

of data
− 1 bus cycle to send a word of data

 A read miss for a 4 word cache block
size costs:
 1 + 4*15 + 4*1 = 65 bus cycles

Memory Interface
CPU

Cache

Bus

Memory

a. One-word-wide

�

 memory organization

��

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory

�

bank 1
Memory

�

bank 2
Memory

�

bank 3
Memory

�

bank 0

c. Interleaved memory organization

Wide and Interleaved
Memory Interface

 For a four word wide memory and bus, a
read miss on a four word block size
cache costs:

− 1 + 1*15 + 1*1 = 17 bus cycles

 For a four word banked memory the
miss cost is:

− 1 + 1*15 + 4*1 = 20 bus cycles

Measuring & Improving
Cache Performance

 Measurement and analysis of cache
performance

 Look at two different techniques for
improving cache performance:

− Adding associatively to the cache to
reduce the miss rate

− Use of multi-level caches to reduce the
miss penalty

Cache miss cost

CCTcyclesstallMemorycyclesclkexecutionCPUTimeCPU ×+=)(

cyclesstallwritecyclesstallreadcyclesstallMemory +=

penalitymissreadratemissread
program

reads
cyclesstallread ××=

stallsbufferwritepenalitymisswriteratemisswrite
program

writes
cyclesstallwrite +





××=

assume write buffer stalls are insignificant and that read and write penalties are
the same

penalitymissratemiss
program

accessesmem
cyclesstallmemory ××=

Improving Cache Utilisation
 Direct mapping means some blocks are

evicted from the cache quickly
 A fully associative caches allow blocks to be

placed anywhere in the cache
− Have to search every tag field for every memory

access
 Set associative cache allows blocks to be

placed in a fixed number of locations in the
cache

− an n-way set associative cache allows a block to
be placed in one of n locations in the cache

Associative Cache

11

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

11

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

11

2
Tag

Data

Search

Fully associative

Associative Cache

 All caches can be considered as being
set associative

 Increasing associatively tends to
decrease the miss rate

Associative Caches

tag datablock set tag data tag data

tag data tag data tag data tag data tag data tag data tag data tag data

0

3

2

1

4

5

6

7

0

1

2

3

one way set associative
(direct mapped)

two way set associative

eight way set associative
(fully associative)

Four-way Set Associative
Cache

MUX

0

1

255

22
8

hit

data

021031 9 1

= = = =

tag datav tag datav tag datav tag datav

Replacement Strategies
 When the cache is full one or more

entries need to be removed to allow
new data to be stored.

 Least Recently Used (LRU) is the most
common strategy

 Clock Scan is often used as an
approximation to LRU

Clock Scan

X

X

X

pointer
eviction

usedtagv data

Virtual Memory
 Main memory can act as a cache for

secondary storage
 Motivation:

− Allow programs to use more memory that there is
available

 transparent to programmer
 c.f. overlays

− Allow multiple programs concurrently
 non-active part of programs reside in secondary

storage
 active portions of many programs reside in memory
 active portion of current program in cache

Virtual Memory
 With multiple programs sharing memory

have to deal with:
− program relocation
− protection

 Give each process its own (virtual) address
space

 When process accesses memory
− translate virtual address to physical address

Virtual Memory

process 3

process 2

process 1

paging
disk

physical
memory

virtual
process

address space

Definitions
 main concepts similar to caches

however different terminology used
− virtual memory block => page
− virtual memory miss => page fault

Address Translation

virtual address

translation

1112 031

20

20

1112 031

12

physical address

physical page number page offset

page offsetvirtual page number

Design Choices
 Page faults : when a page not in memory

then have to fetch from disk
− can take millions of cycles

 Minimise miss penalty:
− make pages fairly large (4KB to 64KB)
− reduce page fault rate:

 High levels of associatively

Placing/Finding a page
 Want Full associatively

− impractical to search all pages in memory
 Use page tables to map virtual addresses to

physical addresses
 Each program has its own page table
 Page tables reside in memory

− reads/writes to main memory require two
accesses:

 one to get page table entry
 one to perform data transfer

Page Tables

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual pagee
number

Physical page orr
disk address

Page Tables

 Base address of
current page table
held in the page
table register

 A processes' state is
defined by its

− PC
− Registers
− Page table

1112 031

+

1112 031

page table
register

page table

virtual address

physical address

20

12

20

in core

accessed

TLBs
 Accessing the page table slows

memory accesses
 Use a “Translation Look-aside Buffer”

− cache of page table mappings
 Typical values for a TLB might be:

− TLB size 32 – 4096 entries
− Block Size: 1 – 2 page table entries
− Hit time: 0.5 – 1 clock cycles
− Miss penalty: 10 – 30 clock cycles
− Miss rate: 0.01 – 1%

TLB Operation

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

TLB and Cache

MUX

0

1

255

hit

data

= = = =

tag physical page numberdirtyvalid

tag datav tag datav tag datav tag datav

031131 10 222 8

1112 031

virtual address

12

1112 031

physical address

TLB and Cache

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

Virtual Memory Protection
 Most CPUs have a supervisor (OS) and user

mode of operation.
− Change modes on an interrupt

 Page Table Register only accessable in
supervisor mode

 If a physical page is not pointed to from the
page table then it can not be accessed

 Some accessable pages may be read only
− write protect bit in the page table or segment

table

Write Protect Bit

accessed

1112 031

+

1112 031

page table
register

page table

virtual address

physical address

20

12

20

in core

write protect

Segments

 Programs have different types of
memory

− Program (text)
− Initilised Data (data)
− Uninitilsed Data (bss)
− Stack (stack)

 Have a seperate segment for each
− Different OS characteristics

 Bss allocated but not loaded at process start
− Different protection for each

 Text read only

Segments

2930

accessed

flags start end

data

bss

stack

text

+

1112 031

virtual address

physical address

20

12

18

in core

page table

1112 031

registers
segment

Modern Systems

Very complicated memory systems:
Characteristic Intel Pentium Pro PowerPC 604

Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

