
1

29 September 2008

COMP202-08B
Computer Communications

Lecture 19

Java – Asynchronous I/O, Part One

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

Remember HelloWorldServer?

ServerSocket ss = new ServerSocket(1234);

while(true) {

Socket client = ss.accept();

PrintWriter writer = new

PrintWriter(client.getOutputStream(), true);

BufferedReader reader = new BufferedReader(

new InputStreamReader(client.getInputStream()));

String line = reader.readLine();

writer.println(“You said: “ + line);

client.close();

}

Note: THIS CODE IS MISSING NECESSARY EXCEPTION HANDLING

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

Remember HelloWorldServer?

• Main problem is the blocking nature of the readLine():
• readLine does not return until it has a complete line

• any new connection to HelloWorldServer will not be serviced until
a line has been read

accept()

readLine()

println()

client socket

close()

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

Remember HelloWorldServer?

• Secondary problem is the blocking nature of the
println():

• println does not return until operating system can buffer line
internally for transmission

• any new connection to HelloWorldServer will not be serviced until
buffer space has been freed, if necessary

accept()

readLine()

println()

client socket

close()

Note: this problem is unlikely
to occur with HelloWorldServer,
but is more likely to occur with a
real-life application that sends
lots of data over the network.

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Remember HelloWorldServer?

• How did we get around these problems in
HelloWorldServer2?

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

HelloWorldServer2

accept

ServerSocket

readLine

println

close

readLine

println

close

readLine

println

close

client #1 client #3client #2

Server process

2

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Threads

• Just as our computer can run multiple programs at the
same time, each of which share the processor, we can
have two strands of our program run at the same time

• Each strand is a Thread

• Jargon
• Operating system runs processes

• Programs have threads

• Threads can be thought of as light-weight processes

• Threads can share data structures amongst themselves

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

HelloWorldServer2.java
class HelloWorldServer2 {

public static void main(String args[])

{

try {

ServerSocket ss = new ServerSocket(1234);

while(true) {

Socket client = ss.accept();

HelloWorldServerThread thread =

new HelloWorldServerThread(client);

thread.start();

}

}

catch(Exception e) {

System.err.println("Exception: " + e);

}

}

}

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

HelloWorldServer2.java
class HelloWorldServerThread extends Thread {

public void run() {

try {

PrintWriter writer = new

PrintWriter(client.getOutputStream(), true);

BufferedReader reader =

new BufferedReader(

new InputStreamReader(client.getInputStream()));

String line = reader.readLine();

writer.println("You said: " + line);

client.close();

} catch(Exception e) {

System.err.println("Exception: " + e);

}

}

}

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

Threads

• Multiple points of execution

• Shared program variables amongst threads
• ChatServer.java: list of connected clients and their sockets

• Need for synchronisation
• ensure only one thread is able to modify data at a time

• with synchronize

• Can be problematic:
• Need to ensure shared data is correctly locked

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

What are threads good for?

• Taking advantage of multiple CPUs now present in
nearly all computer systems

• Core2duo 2 CPUs per processor

• Core2quad 4 CPUs per processor

• requires programmer ability to break up workload to efficiently
make use of available capability

• GUI applications: processing data while keeping user
up to date with progress

• … other things too
29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

Threads and Sockets

• HelloWorldServer2 (and ChatServer.java) are really
good examples of crappy applications that use threads

• They are not CPU bound!

• Threads used as a convenient way to get around blocking

• Each time a new connection is established, operating
system has to spawn a new thread

• only scales so far

• requires operating system to schedule threads to execute

• overhead

• threads have their own stack, copies of CPU registers

3

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

Alternative: Event-based

• Similar to programming model used when programming
GUI applications

• wait for user to click a button, then do something in response

• Network applications:
• wait for data to arrive, then do something

• wait for a new connection to be established, then do something

• wait for buffer space to come available, then write data

• Faster than spawning threads for each socket:
• no process scheduling, synchronisation overheads

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

Event-based network applications

ServerSocket

Socket

Socket

Socket

Wait for events
on this set of

Sockets

ready to accept
accept()

ready to read
read()

ready to write
write()

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

Event based applications in Java

• Until Java 1.4, Sockets + threads was only way to get
around blocking

• 2002

• though blocking problem has been solved for at least 25 years.

• Java introduced “New I/O”
• import java.nio.*

• import java.nio.channels.*

• Selector

• Channels
• ServerSocketChannel

• SocketChannel

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

Selector + Channels : ServerSocket
• Monitor multiple event channels for information
simultaneously, using a selector

/* create a selector; used to group Channels */�� ����� � �� ����� � � �� ����� � 	�
���
 ��� � ����� ����� ���� ��� �� ��� � ������ �
� �� ���� ���� ��� ������������� � ��� ���� 	�������
 	� ��� ��� !���������"�� ���������

 ���� 	���# �� $��% ���� ��� �#� ���
 ��� ��� �� ����� � �� ���� #� � �� ������� ���� ����� 	��� ���� ���� ����� �� �� ���� �� �&�' 	()*"��+),
 ��� � ���� $�� �� �� ����� ���$�� ���� ����� � 	�� ���� �
 �

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

Selector + Channels : Socket

• Code for regular sockets similar:

SocketChannel socket;

/*
* MISSING: accept connection to socket, or
* connect using socket
*/

/* configure the socket to be non-blocking */
socket.configureBlocking(false);
socket.register(selector, SelectionKey.OP_READ);

• Can register socket for OP_WRITE as well.

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

Putting this together : a starting point
Selector selector = Selector.open();
ServerSocketChannel ssc;
SocketChannel socket;
SelectionKey ssck;

ssc.socket().bind(new InetSocketAddress(1234));
ssc.configureBlocking(false);
ssck = ssc.register(selector, SelectionKey.OP_ACCEPT);

while(true) {

selector.select();
Set set = selector.selectedKeys();

if(set.contains(ssck)) {
if(ssck.isAcceptable()) {

socket = ssc.accept();
addClient(socket);

}
set.remove(ssck);

}
}

4

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

Putting this together : a starting point
while(true) {

selector.select();

/* get set of sockets that have events to deal with */
Set set = selector.selectedKeys();

/* if the set contains the server socket */
if(set.contains(ssck)) {

/* if event to handle is accept a new socket */
if(ssck.isAcceptable()) {

/* accept the socket and remember it */
socket = ssc.accept();
addClient(socket);

}
/* tell selector the event has been handled */
set.remove(ssck);

}
}

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Putting this together : a starting point
while(true) {

selector.select();

/* code to accept new sockets removed */

/* get all of the other events and loop through */
Iterator it = set.iterator();
while(it.hasNext()) {

/* get the key for this event */
SelectionKey key = (SelectionKey)it.next();

/* remove the key from the selector */
it.remove();

/* handle event */
if(key.isReadable())

handle_read();
if(key.isWritable())

handle_write();
}

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Summary

• Blocking methods are bad for network applications that
want to deal with multiple connection concurrently

• have seen two ways to get around this

• Threads
• Fairly simple to implement

• Does not scale well

• Select
• A little more complicated to implement to begin with

• Scales well

29 September 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

Next lecture

• One more lecture on Asycnhronous I/O

• Have not shown you a complete application that uses
select yet, so:

• Putting this all together to get a useful network
application

