COMP312-09A
Communications and Systems ‘
Software |

Lecture 5—-TCP |

Matthew Luckie
mluckie@cs.waikato.ac.nz

Overview

« Brief re-cap of COMP202-08B lectures 13 to 16 ‘
inclusive

« Pages 532 to 554 ‘

|

* New material today
|
« sliding windows vs. stop-and-wait (pages 211 to 223)
|

« bandwidth delay product (page 559)
|

TCP: connection-oriented

* must establish a connection before data can be
transmitted
« 3-packet handshake (syn, syn/ack, ack)
« connection defined by
« source IP address
« destination IP address
« source port
« destination port

«two connections cannot share the same combined set
of address/port values because it would be hard to

distinguish them

TCP TCP header: learned in 202
|

* TCP is a reliable, connection oriented, network-friendly, | 0 15 16 G
stream-based transport protocol | |
| . . |
+ Most Internet applications use TCP because a stream- | Source Port Destination Port \
based, reliable transport protocol is useful in many “ “
scenarios, e.g. Sequence Number |
« bulk transfer (reliability important, delay tolerant) | |
o fi | |
file tff‘"Sfer \ Acknowledgement Number \
* emal | |
« interactive data flows (reliability important, delay intolerant) “ (A: 2 3 '|: Wind Si “

. indow Size
« remote login “ <l TN “
« Some Internet apps don't use TCP by choice ‘ ‘
_niernet app i) ‘ Checksum ‘

« Reliability in the form of retransmissions is inappropriate
« Voice | /
. Games / Note: portions have intentionally been left clejaj Y
TCP: reliability

* Retransmit timer (RTO)
« if acknowledgement is not received in time, packet is
retransmitted
« RTO(K) = SRTT(K) + f * SRTT, 5 (K)

» Acknowledge data successfully received

* Checksum over TCP header, and data

« Transparently handles segments received out of order

« Transparently handles segments being duplicated

« Flow control to avoid overwhelming end-host and
network

TCP: stream based

* TCP applications do not deal in packets; they deal in
bytes
|
« No ability for TCP application to see how received data was
transmitted, i.e. 80 bytes:
« could have been transmitted in one 80 byte segment

« could have been transmitted in two 40 byte segments
« Sender writes bytes into one end of the connection
« Receiver reads identical stream of bytes at the other end

TCP: network friendly

« Slow-start: (rapidly) find the available capacity in the
network path

» Congestion avoidance: slowly increase rate of
transmission towards threshold established in slow-start

TCP slow start: ack every packet ‘
| For each data packet
acknowledged, introduce
1RTT 4 two packets
~2RTT |
Process continues until data
is lost.
~3RTT
~4RTT | |
B |
/

TCP slow start

* Despite its name, TCP slow-start results in an
exponential increase in transmission rate
« 1 RTT: 1 data unit
« 2 RTT: 2 data units Data
rate
* 3 RTT: 4 data units 16
« 4 RTT: 8 data units

« 5RTT: 16 data units 12
« and so on s
4
1 2 4 5
RTT

TCP congestion avoidance

Data
rate |
16 ‘
congestion
12 b
avoidance
ssthresh
8
4

N
w
IS
o —
o
~
©

Start at 1 data unit per RTT
enter slow-start

TCP: what we’re going to learn

* TCP header options
« Window scaling
« Selective acknowledgements
« Segment size
* TCP for interactive data flows
* Nagle
« Delayed acknowledgement
*» TCP for bulk transfer
« Bandwidth delay product
« Fast Retransmit

« Fast Recovery
« Explicit Congestion Notification

» Formalise what we know about TCP’s behaviour

Data transmission methods

« Stop and wait

« Sliding window

* What TFTP uses

* What TCP uses

Stop and wait (TFTP)

» Whenever a node transmits a frame
« it waits to receive an acknowledgement from the destination for a
predetermined time.
*Whenever a node receives a frame that passes error
checking
« it responds to the source of that frame with an acknowledgement
« If the predetermined time expires without the source
receiving an acknowledgement
« it retransmits the frame
*Whenever the source receives an acknowledgement
« itis free to transmit another frame if it has more data to send.

/ f /
Stop and wait J Stop and wait J
- -
et \“ \
%\2\‘ “‘ timeout XM “‘
| |
m‘ ‘ W» ‘\‘
% ‘ pck, 4 \
o, y

Stop and wait performance

« The time to transfer a frame is composed of
« the time to put the packet on the wire (serialisation delay, Ts)
« the time for it to travel (propagation delay, Tp)
« and processing time at nodes.
« Usually we neglect the processing time and the serialisation time
for the acknowledgement.
« computers are fast, packets should be processed in a fraction of a

millisecond
« acknowledgements are small frames, serialisation time should be small

« For stop and wait, the time to transmit each frame is one
serialisation delay and two propagation delays (Ts + 2Tp).

« The useful work is being done during the serialisation delay.
« If the propagation delay is large, the efficiency is poor.
« i.e. good on LANSs, poor on the Internet

Stop and wait performance
Ts —»
T: Dala, 1
1
™ ACKs
B Datay 2
poks 2

Datay 3

() 3

g
5

Sliding window
|

* A window size is defined: W frames.
« The source is allowed to transmit up to W frames
without acknowledgement.
« Frames contain sequence numbers so that they can be “
identified (distinguished from each other)
|
«When the destination receives a frame that passes ‘
error check it responds with an acknowledgement. |
|

«When the source receives an acknowledgement for
frame number n it may transmit up to frame n + W
i

S”ding Window Sender’s perspective
Window of frames that
|

Frames buffered
may be transmitted

until acknowledged

Frames already tx'd

3lals|e|7]8]ow0fu].. |

LJol1]e
1
/ / ‘
Frame Last Last window shrinks Window expands |
Seq.No. frame frame from trailing from leading |
ackd tx'd edge as frames edge as ack's “

are tx'd are received. |

. .
Receiver's perspective ‘w

Sliding Window
Window of frames that |

may be accepted “

|

Frames already rx'd ‘
|

...‘0\1‘2 3|4 5|6‘7|8|9 10‘11‘...

;

Window expands

Last Last window shrinks

frame frame from trailing from leading

ack'd x'd edge as frames edge as ack’s
are rx'd are sent.

Sliding window performance ‘

 The transmitter can send W frames before it has to stop ‘
to wait for acknowledgement.

|

* The time to do this is W.Ts ‘

* So long as this is greater than the round trip
propagation delay W.Ts > 2 then acknowledgements
will have already arrived and the window advanced.

« In this case sliding window throughput can approach
100%.

* This can be restated as the window size must be

greater than the bandwidth delay product ‘

Bandwidth delay product
|

«In order to not limit the connection speed, the receive
window needs to be at least this size

WindowSize = BW * RTT ‘
|

WindowsSize ‘

Throughput =
ghp RTT

BDP example 1

* An Ethernet connected device has a receive buffer of
only 500 bytes. What data rate can it receive from a
host that is 10ms away round-trip, in bytes per second?

* How much buffer memory would be required to receive
at 100 kB/s from a host 50ms away round-trip?

BDP example 1
|

« An Ethernet connected device has a receive buffer of
only 500 bytes. What data rate can it receive from a
host that is 10ms away round-trip, in bytes per second?

« 500 bytes / 0.01 = 50,000 bytes/sec ‘

* How much buffer memory would be required to receive
at 100 kB/s from a host 50ms away round-trip?

« 100 kB/s = 102400 bytes/sec
» Window = 102400 * 0.05 = 5120 bytes ‘
|

BDP example 2

*You have a Windows 2000 computer at university with
a default receive window of 17520 bytes
« What is the maximum throughput available to a host 4ms away
(say auckland to hamilton)

* What is the maximum throughput available to a host 150ms away
(say google to hamilton)

BDP example 2

*You have a Windows 2000 computer at university with
a default receive window of 17520 bytes
« What is the maximum throughput available to a host 4ms away
(say auckland to hamilton)
« 17520/ 0.004 = 4,380,000 bytes/sec

* What is the maximum throughput available to a host 150ms away
(say google to hamilton)
« 17520/ 0.150 = 116,800 bytes/sec

BDP examples 3

*You have a FreeBSD or Linux system at home with a
default receive window of 262144 bytes
« What is the maximum throughput available from youtube.com,
240ms away?

« How does this compare with Windows 2000 w/ 17520 byte
window size?
|

BDP examples 3

*You have a FreeBSD or Linux system at home with a
default receive window of 262144 bytes
* What is the maximum throughput available from youtube.com,
240ms away?
* 262144/ 0.240 = 1,092,266 bytes / sec

« How does this compare with Windows 2000 w/ 17520 byte
window size?
« 17520/ 0.240 = 73,000 bytes / sec

Summary

« Stop and wait is a simple protocol, but its performance
is only good over very short round-trip-times

« Sliding window is better, but its performance depends
on the size of the receiver’s window and round-trip-time

* Next lecture:
« Window scaling issues
« TCP issues with Long Fat Networks

