
1

17 March 2009

COMP312-09A
Communications and Systems

Software

Lecture 7 – TCP III

Matthew Luckie

mluckie@cs.waikato.ac.nz

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

Overview

• Last lectures
• TCP receive window

• Window scaling

• TCP options

• Delayed acknowledgements

• This lecture
• Fast retransmit

• Fast recovery

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

TCP congestion avoidance

2 3 4 5

4

8

12

16

RTT

Data
rate

1 6 7 8 9 10

ssthresh

congestion
avoidance

Start at 1 data unit per RTT
enter slow-start

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

Delayed acknowledgements
• TCP implementations delay sending an
acknowledgement immediately

• Main idea is to avoid redundant acknowledgements

• Receiver application is likely to have something to send shortly

• TCP acknowledges data received in order

“EHLO\r\n”seq: 1000

ACK: 1006, win 65535
“220 Mail Server Ready”

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Exception to delaying an acknowledgement

• If TCP receives a data segment out of order (i.e. there
is a hole in the receive window) it is required to
generate an immediate acknowledgement

Seq: 501, 500 bytesSeq: 1001, 500 bytesSeq: 1501, 500 bytesSeq: 2001, 500 bytes

Delay ack
Expect 1001 next

Seq: 2501, 500 bytes

Ack 1001

Ack 1001

Ack 1001
RX three duplicate
acknowledgements
for 1001

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

Duplicate acknowledgements
• Notice that the receiver has a fairly good idea that a
segment has been lost by the receipt of the third
duplicate acknowledgement, asking for data beginning
with byte 1001.

Seq: 501, 500 bytesSeq: 1001, 500 bytesSeq: 1501, 500 bytesSeq: 2001, 500 bytes

Delay ack
Expect 1001 next

Seq: 2501, 500 bytes

Ack 1001

Ack 1001

Ack 1001

2

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Retransmission schemes

• Recall that TCP retransmits when the Retransmit Timer
(RTO) expires

• i.e. the absence of an acknowledgement is used to infer packet
loss

• Fast retransmit: on the third duplicate ack, retransmit
the assumed missing segment

• i.e. infer packet loss by an apparent hole in the receiver’s window

• the fact that we are receiving duplicate acknowledgements
means data is still being received, so the congestion event was
not severe

• don’t want to go into slow-start again, just want to avoid
congestion

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

Fast retransmitSeq: 501, 500 bytesSeq: 1001, 500 bytesSeq: 1501, 500 bytesSeq: 2001, 500 bytes

Delay ack
Expect 1001 next

Seq: 2501, 500 bytes

Ack 1001

Ack 1001

Ack 1001

Seq: 1001, 500 bytes

Ack 3001
Cumulative acknowledgement

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

Fast retransmit
• Why wait for three duplicate acknowledgements?

• Have more confidence that packet was lost, rather than just
reordered

• Some work is going into adaptive algorithms to adjust
the number of duplicate acknowledgements required
before the sender retransmits

• if the receiver has always observed duplicate acknowledgement
run lengths of three (and never of length two) then chances are
the path does not reorder packets

• Reduce number of duplicate acks required

• if the receiver has fast-retransmitted a packet, only to receive an
acknowledgement for it before one RTT after the retransmission,
then the segment was retransmitted too early

• Increase number of duplicate acks required

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

Fast Retransmit + Fast Recovery

• Step One:
• When third dup-ack is received, set ssthresh to half of the current

value of cwnd or half of the receiver’s window, which ever is
smaller

• Retransmit the segment assumed to be missing

• Set cwnd to ssthresh plus 3 times the segment size

• Step Two:
• Each time another dup-ack is received, increment cwnd by the

segment size and transmit a new segment, if allowed by the value
of cwnd

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

Step two Seq: 501, 500 bytesSeq: 1001, 500 bytesSeq: 1501, 500 bytesSeq: 2001, 500 bytesSeq: 2501, 500 bytes

Seq: 1001, 500 bytes

Seq: 3001, 500 bytes

Seq: 3501, 500 bytes

(1) Ack 1001

(2) Ack 1001

(3) Ack 1001

(4) Ack 1001

new segment is transmitted

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

Fast Retransmit + Fast Recovery

• Step three
• When an acknowledgement that is asking for new data arrives,

set cwnd to ssthresh (the value stored when we entered fast-
retransmit).

• Enter congestion avoidance

3

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

Fast Retransmit + Fast Recovery

3 5 7 9

4

8

12

16

RTT

Data
rate

1 11 13 15 17 20

ssthresh

congestion
avoidance

2 4 6 8 10 12 14 16 18

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

Loss as indication of congestion

• TCP assumes all packet loss is due to congestion
• Congestion occurs when the outgoing interface cannot transmit at

the same rate as packets are arriving and the queue holding
packets for transmission overflows

• However, loss is not always due to congestion

7 packets queued Transmitted one at a time

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

Loss as indication of congestion
• Main example of non-congestion loss in today’s Internet
is loss over wireless Ethernet

• Wireless as a medium is much less reliable, as interference is
difficult to insulate against

• Wireless tends to be found at the edges of the network

• Other wireless devices using same frequency band (2.4Ghz)

• baby monitors

• cordless phones

• microwave ovens

• Packet loss on wireless is normally not due to congestion, and is
a local artefact

• However, no good way to overcome this problem and
still have a TCP that is fair in other (non-wireless)
scenarios

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

TCP implementation quirks

• Cumulative acknowledgements

• Nagle

• Zero advertised window

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

TCP implementation quirks

• Recall that TCP acknowledges data received in order

• TCP acknowledgements are cumulative
• i.e. they acknowledge all data received up to the specified point

• No requirement for TCP receiver to keep data received
out of order, as sender is required to keep it until it is
acknowledged

• Makes implementation easy

• Small, embedded devices may discard data received out of order

• In practice, most other receivers do buffer data received out of
order

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

Nagle: TCP for interactive data flows

• Consider remote login systems, such as telnet and ssh

• Clients write() typed characters into socket as they are
typed

• Inefficient to transmit each character independent of
other characters.

• A one byte character with 20 bytes of TCP and 20 bytes of IP
would require 41 bytes to transmit

• Routers typically are bound by routing decisions, not serialisation
rate

4

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

Nagle: TCP for interactive data flows
• Nagle’s algorithm

• Send first byte immediately. Subsequent writes are
buffered until first byte is acknowledged

h

e

l

l

o

h

ello

41 bytes

44 bytes

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Nagle: TCP for Interactive flows

• Not all interactive data flows have the same
requirements

• Algorithm is disabled for “highly interactive” data flows
(e.g. X-windows) where the mouse (for example) is
moved frequently

Socket s;
s.setTcpNoDelay(true);

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Zero-advertised window

• Sometimes, we might fill up the receiver’s window, to
the point we receive a zero-advertised window

• At this point, we rely on the receiver to issue an
acknowledgement when space in the window comes
free

• What if that acknowledgement is lost?

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

Zero advertised window

• Sender allowed to send a one byte segment into
network to solicit a new acknowledgement

• and thus be told if space in the receive window has come free

17 March 2009© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 23

Summary

• Fast Retransmit and Fast Recovery use duplicate
acknowledgements to indicate a packet was lost, and
begin recovery faster than we otherwise would

• Brief coverage of TCP implementation quirks
• Cumulative acknowledgements

• Nagle

• Zero-advertised window

• Next Lecture:
• Queues, RED, ECN

• LFNs

